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Question: How can we use
Artificial Intelligence

(aka Computational Statistics, Data Science,
Machine Learning, Data Mining, Data Analytics)

to solve healthcare problems?
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Lots of work in Al for Health!
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Leveraging large historical data in EHR, we developed Doctor Al a generic predictive model
that covers all medical conditions and medication uses. Doctor Al is a temporal model using
recurrent. neural networks (RNN) and was developed and applied to longitudinal time stamped
EHR data In this work, we are particularly interested in whether historical EHR. data could be used




Examples from our Lab:
Evidence-based Disease Subtyping

Goal: Find more homogeneous populations within a disease, to
understand etiology and predict treatment response.

Examples from our work:

 ASD subtyping: discovered 1
novel subtypes from —
diagnostic codes, verified In
patient-generated forum
data, and continuing to
refine based on clinical
notes.

e Similar work in progress for
pediatric migraine.

Prevalence of specific developmental delays for each
ASD subtype from birth to 15 years.



Examples from our Lab:
Stratifying Treatments

Goal: Identify which treatments are best (or worst) for specific
patients or specific groups of patients.

Examples from our work (adult):

* HIV management: state-of- |
the-art Al for matching patients /PP
to drug cocktails. oxetine -
* Depression treatment:
“actionable subtypes” that venlafaxine - ‘. I‘
correspond to treatment
choices. mirtazapine
* ICU management: techniques 0 9 180

for sepsis management,
prediCting interve ntiOn needS. Treatment trajectory for a patient with depression.



What can go wrong?

Image Search“Assistant” Image Search “CEQO”

Ll "!A
1 & 0
il - q. _3:’:'1‘ e T
1 " ) i
- -
\
——
- [~

There’s clear gender bias in the two image searches!



Biases and Causality Leakage

» Site/specialty effects:
- Example: obgyns prescribe prozac

o

* ¥  Alnotices Event happens, Al
tests, creates alert! thinks it succeeded.

e Causality leakage:

<7 | Clinician
suspects something,
orders tests

(Examples: mortality prediction from pneumonia, ICU)



Data Processing Concerns

* Natural language extraction
may do unexpected things (e.g. ..
“to” becomes “t0” becomes

230

“cancer”) 3
* Units are silently changed (e.g. ¢
pounds to kilos, percents 99
VS. proportions 0.99)
» “Standard” filled in values that R

time (hours)

may not be accurate (e.qg.
#children)

There’s a very large weight gain and drop!
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Challenges In Interpretation

Hard:

Anesthesia for ECT

Easiler:

.0000
.9999
.9999
.9999
.9998
.9998
.9997
.9996
.9993
.9993
.9985
.9985

29650:
2967:
29570:
29660:
c90870:
c001064:
29560:
po427:
deoe61:
29653:
29651:
do4825:

bipolar_affective_disorder,_depres
bipolar_affective_disorder,_unspec
schizo-affective_type_schizophreni
bipolar_affective_disorder,_mixed,
electroconvulsive_therapy_(include
anesthesia_for_electroconvulsive_t
residual_schizophrenia, _unspecifie
other_electroshock_therapy

lithium
bipolar_affective_disorder,_depres
bipolar_affective_disorder,_depres
aripiprazole

Patient has bipolar disorder

Patient has bipolar disorder



Al Is a great tool, but we must
validate carefully!



Validation Part 1: Statistical

What did the Al recommend?

- How often were they reasonable, according to
expert clinicians?

- How often were they unsafe?



Validation Part 1: Statistical

What did the Al recommend?

- How often were they reasonable, according to
expert clinicians?

- How often were they unsafe?

A good start, but we can do better!



Validation Part 2: Explanation

Why did the Al recommend a decision?

- Explanation may make it easier to determine
whether the decision makes sense, and thus

- Combine Als and humans more effectively to get
better decisions than either alone.



Validation Part 2: Explanation

Why did the Al recommend a decision?

- Explanation may make it easier to determine
whether the decision makes sense, and thus

- Combine Als and humans more effectively to get
better decisions than either alone.

(Recent discussion regarding “Right to Explanation”
from Al systems in the EU GDPR.)



A Model for Explanation
from Al Systems
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Implications for Effective, Safe Als

Regulation Research/Tech
* |dentify scenarios that * Design systems to
matter. provide explanation.
* Require that data * Determine how to
relevant to those extract information
scenarios are collected. relevant to scenarios

e Seek explanation, but (including proxies).

not transparency.




Implications for Effective, Safe Als

Regulation

Research/Tech

* |dentify scenarios that * Design systems to

matter.

* Require that data
relevant to those

scenarios are collected.
* Seek explanation, but

not transparency.

' wrrH GREvﬂg'I"\'f;_-

P(DWER

| 'COMES GREAT L

provide explanation.

 Determine how to
extract information
relevant to scenarios
(including proxies).
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