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Some of the points I will make 


• 	 Most population genetics and clinical medicine 
addicted to categorical diagnosis 

• 	 Fake/Wrongly taxonomized diseases makes social & 
commercial construction of disease likely. 

• 	 Genomics-first/Genomics only unnecessarily limiting 

• 	 Clinical predictive accuracy does not imply shared 
physiology 

• 	 Disease overlaps demonstrates a fundamental problem 

• 	 Clinical data can be used to lesson the confusion. 

• 	 But multi-modal approaches are the most robust. 
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Blood Gene Expression Detection 
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Invited to HLS Meeting 


"I think when Ari [Ne'eman] talks 

about autism and I talk about 

autism, we're talking about people 

with different clusters of autism. I 

know he doesn't like the word 

'cure.' If my daughter could 

function the way Ari could, I would 

consider her cured," says Singer. "I 

have to believe my daughter 

doesn't want to be spending time 

peeling skin off her arm." 
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GIANT study 


• 	 lOO's of genes 

• 	Not like diseases at 
tails 

• 	So what do you call 
short stature and is 
that a diagnosis? 
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Criteria for Treatment 


• ''Growth hormone deficiency (GHD)'' 

• ''Idiopathic short stature (ISS), defined by 

height standard deviation score ~-2.25'' 

associated with growth rates unlikely to result in normal adult 
height, in whom other causes ofshort stature have been 
excluded 

and a little story from 
25 years ago 
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NEWS Election U.S. World Entertainment Health Tech ••• 

But about once a mornth, an ambitious parent with cash to burn asks 44 
SHARES 	 Desrosiers. a pediatric endrocrinologist in Florida, if he would be willing 

to g ive growth hormones to a short but otherwise healthy ch ild. 

0 
0 Desrosiers turns these patients away, but he says the requests still 

come. 

0 
null Just last week.• the father of a 

young baseball player ~ a 14-yea 
old who was already 5 feet 6 

inches tall - expected Desrosiers to prescribe recombinant growth 
hormone rGH to add hei ht to his biuddin athlete. 

rlHe wanted to make his kid big, and he th inks he1 s going to walk out 

with the shots,1 
r said Desrosiers, director of pediatrric endocrinollogy at 

Arnold Palmer Children's Hospital in Orlando. "He was willing to pay 

more than $45,000 a year, and didn1t even bat an eyelash." 

Desrosiers said he 1even gets requests for growth hormone from 11Jolly 

Green Gianr families, where children are likely to be tan. 

In 2003, the U.S. Food and Drug Administration approved the use of 

rGH for children with idiopathic - or unexplained -- short stature, 

without a diagnosed metabolic hormone deficiency. 



Pathological 

Interaction Between 


Clinical Annotation and 

Genetics. 
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Hypertrophic 
Cardiomyopathy 

(HCM} 

- Heart failure 
- Arrhythmias 
- Obstructed blood flow 
- Infective endocarditis 
- Sudden cardiac deat h 
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HCM Prevalence= 1 :500 
HCM Inheritance = Autosomal Dominant 
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Genetics-induced Health Disparities 
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P = Pathogenic and Presumed Pathogenic 
U = Pathogenicity Debated and Unknown Significance 

DEPARTMENT OF " HARVARD Biomedical InformaticsMEDICAL SCHOOL 



 

    

   

   

  



 ClinicalTrials.gov  
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Group 1 (Overt HCM Cohort) 

1. 	LV wall thickness 2:12 mm and :S25 mm or z score 2:3 and :S18 as determined by rapid assessment by the echocardiographic core laboratory 

2. 	NYHA functional class I or II; no perceived or only slight limitations in physical activities 

3. 	No resting or provokable LV obstruction (peak gradient :s 30 mmHg) on clinically-obtained Exercise Tolerance Test (ETT)-echo within the past 
24 months or transthoracic echo with Valsalva maneuver within the past 12 months 

4. 	Age 8-45 years 

5. Able to attend follow-up appointments, complete all study assessments, and provide written informed consent 

Group 2 (Preclinical HCM Cohort (G+/LVH-)) 

1. 	LV Wall Thickness <12 mm and z score <3 , as determined by rapid assessment by the echocardiographic ·~ore laboratory 

2. Age 10-25 years 

3. E' z score :s -1 .5 OR ECG abnormalities other than NSSTW changes (Q waves, T wave inversion, repolarization changes) OR LV wall thickness 
z-score 1.5-2.9 combined with LV thickness to dimension ratio 2:0.19 (as determined by rapid assessment by the echocardiographic core 
laboratory) 

4. Able to attend follow-up appointments, complete all study assessments, and provide written informed consent 
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Is Prediction the Acid 

Test of Diagnosis? 
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Survival 3 Years After a WBC Test 
(White, Male, 50-69 Years; Using Last VVBC Between 7128105 and 7127106) 

Repeat 

Interval 

Result 

Time 

WBCValue 
Patients 

Low Normal High Any 

< 1 Day 

12a-8a 43.33% 84.68% 63.24% 76.39% 1830 

8a-4p 54.55% 86.61% 79.40% 83.15% 1442 

4p-12a 77.30% 67.53% 72.49% 229 

< 1 Year 

12a-8a 47.83% 79.58% 66.67% 74.39% 1644 

8a-4p 76.96% 90.73% 80.80% 88.53% 8812 

4p-12a 81 .65% 92.99% 86 .01% 91.69% 2769 

> 1 Year 

12a-8a 95.65% 96.97% 96.00% 175 

8a-4p 97.30% 98.13% 91.98% 97.83% 4280 

4p-12a 92 .68% 97.35% 96.67% 97.20% 1932 

Any 73.17% 91.79% 78.11% 88.95% 23113 

Patients 1286 18775 3052 23113 
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Healthcare System Dynamics 

Clinical data reflect both patients' health AND their interactions with the healthcare system. 

Patient P athophysiology Healthcare System Dynamics Data Quality 

Patient Demographics 

Diagnoses 

Laboratory Test Results 

Vital Signs 

Genetic Markers 

Number of Observations 

Time of Day of Observations 

Time Between Observations 

Cost of a Test or Treatment 

Clinical Setting I Clinician Type 

Data Entry Errors 

Dictation Mistakes 

Data Compression Loss 

Unstructured Data 

Missing Data 

Clinical 
Encounter 

Patient + Clinician 


Electronic Health Record Data 

Healthcare 
System Dynamics 

Normal 

Abnormal 

Patient Pathophysiology 

Normal 

Best 

Outcomes 

Moderate 
Outcomes 

Abnormal 

Moderate 

Outcomes 

Worst 
Outcomes
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Predicting Survival from Ordering a Lab Test 
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Predicting Survival Using Lab Value & HSD 
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Clinical Data To 

Clarify Diagnostic 


Boundaries? 
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Mothers told me about bowel 

problems but pediatricians told me... 
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•• 

Autism or 

Autisms? 
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What about 

increasing overlaps 

across diagnoses? 
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What genes are shared across co-


Nazeen et al. Genome Biology 17 (1): 228, 2016. 
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Classification accuracy reveals shared 

biology 
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What is the disease? 


Shared Genes? 

Shared Symptoms? 
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Autism(s) 


• Implications for study and treatment 

• Currently not obvious from a genetics­
first/only approach 

• Why clinicians might miss it 

• Unsupervised vs self-referential & circular 
supervised 

• Multi-modal-first exploration. 
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What about when 

there is NO 

diagnosis? 
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n UDN D1ata1 P'rocess Overview 
Undiagnosed 
Diseases Network 
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Model for the hard cases? 
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When there is no diagnosis 


• If there is a high probability causal variant: 


-	 Diagnostic label links clinical findings in that 
patient to that variant 

• 	Do all individuals with that variant have 
disease? 

- How does genetic background/environment 
contribute in the general population 

- p(D IV) --t- p(V ID) {cf. HFE & Hemochromatosis} 
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Why is medicine so 

dependent on 


categorical diagnoses? 
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RESEARCH LETTER 


Medicine's Uncomfortable Relationship With Math: 
Calculating Positive Predictive Value 
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Summary 

• 	 Addiction to categorical diagnoses is cognitively useful 

- But our patients have beaten us to the Google-reflex 

• 	 Categorical diagnosis can result in spurious biological & clinical 
inference 
- Often manipulated for$$$, 2ndry agenda 
- Single measurement modality (incl. genomics) easier to manipulate 

• 	 Prediction of diagnostic class not necessarily evidence of biological 
etiology 

• 	 Diagnoses are more robust and useful when 
Data-driven 
Formally model health systems dynamics 
Statistically-informed 
Multi-modal 
Unsupervised or lightly supervised. 
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