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Big Data to Knowledge Initiative

PIC-SURE Precision Medicine June 2015 Patient Driven
meeting (BD2K Center of Excellence, Harvard University)

“How do we securely collect and analyze distinct data
streams in real-time to guide medical decisions?”







Big Data in the NICU
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Characteristics of Physiologic Data

e Unlike other sensor-based big data sources

e Has variances in signal quality, strength
and frequently non-stationary

* Changes over time as the infant grows
and matures

 New normal are established day-by-day
e Contains numerous artefacts
* Wasn’t meant to be streamed!




Bringing analytics to the bed-side

e Access the physiologic data to analyze every bit of
information that can lead to personalized and
earlier interventions

* The provision of real-time physiologic analysis
requires a multidimensional approach:
* Multiple conditions
* Multiple streams of data
* For which multiple behaviours can exist

* In addition, integrate of
e Real-time synchronous medical device data
e Asynchronous clinical data



Sensor Analytics- Architectural
Requirements and Development



Event Streams— A hierarchy
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Event Stream Processing (InfoSphere Streams)

Standard Database
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Event Stream Processing (Spark Streaming)
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Spark Streaming— Structured Streaming

Triggers every 10 seconds
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System Architecture for Sensor Analytics at
Le Bonheur Children’s Hospital
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Analytics at the Point of Care-
Past work



Kamaleswaran et al., 2010 : A method for clinical and physiological event
stream processing
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Kamaleswaran et al., 2012 : Integrating complex business processes for
knowledge-driven clinical decision support systems
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Clinical Domain Challenges—

Apnea of Prematurity

 Apnoea of prematurity:
cessation of breathing for
more than 20 seconds [2]

e Challenge to visually assess
the etiology and type of

apnoea

{Rapid
breathing)

* Requires extensive monitoring
to determine diagnosis

* |n lieu of that monitoring, bed-
side staff broadly classify any
cardiorespiratory event as a
“Neonatal Spell” [3]
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[2] M. ). Miller and R. J. Martin, “Pathophysiology of apnea of prematurity,” Fetal and neonatal physiology, vol. 3, pp. 905-917, 1998.
[3] Thommandram A, Pugh JE, Eklund JM, McGregor C, James AG. Classifying neonatal spells using real-time temporal analysis of physiological data streams:
Algorithm development. Point-of-Care Healthcare Technologies (PHT), 2013 IEEE. 2013. p. 240-3.



Clinical Domain Challenges—
Nosocomial Infection

* Nosocomial infection COUNTERTHINK

(sepsis) is a common

hospital-borne infection (PR "8 . . ’ sl .- __ ENPLOVEE® |
for babies receiving care |py | Rngra SO S C™ Al W AL M aoe

in the NICU [4] L H s | | eerowe

e A cocktail of antibiotics
are prepared and
administered even before
diagnosis.

* Heart-Rate Variability
seen as a potential
indicator of the onset of
neonatal sepsis [5]

[4] Goldmann, Donald A., William A. Durbin, and Jonathan Freeman. "Nosocomial infections in a neonatal intensive care
unit." Journal of Infectious Diseases 144.5 (1981): 449-459.

[5] Moorman, J. Randall, et al. "Cardiovascular oscillations at the bedside: early diagnosis of neonatal sepsis using heart
rate characteristics monitoring." Physiological measurement 32.11 (2011): 1821. Y



Neonatal Sepsis and Spells

Question: Can we identify neonatal spells prior to onset of nosocomial infection?

. Thommandram et al., built a neonatal spells algorithm [3] for
detecting spells activity in real-time

Classifications: e central obstructive
e central apnoea * isolated blood oxygen
* vagal apnoea desaturation
* obstructive * isolated bradycardia.

e obstructive central

RI
HR
Sat

Baseline Resp Pause Spell

Sp0;

STAGE

Modified from Sale, 2010
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Events as Sequences
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PhysioEx: Visual analysis of physiological

event streams [6]
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[6] Kamaleswaran, Rishikesan, et al. "PhysioEXx: visual analysis of physiological event streams.” Computer Graphics

Forum. Vol. 35. No. 3. 2016.
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Data-driven Approaches:
Current Work



Continuous feature extraction: Probablistic
Symbolic Pattern Recognition (PSPR) [7]
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[7] Mahajan, R., Kamaleswaran, R., & Akbilgic, O. (2017). Paroxysmal Atrial Fibrillation Screening at Different ECG Sampling
Frequencies Using Probabilistic Symbolic Pattern Recognition. In IEEE International Conference on Biomedical and Health

Informatics 2017. Orlando, FL



Paroxysmal Atrial Fibrillation (PAF) Prediction

Average Distance from PAFE PTPs

Sampling frequency,

Accuracy (%)
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32 85 14.67
16 85.33 713.33
8 84.33 82.67

Subject group

Sampling frequency indicates influence on accuracy of predictive model

for PAF prediction




Deep Learning — Convolutional Neural
Networks for Sensor Timeseries Analytics

e ConvNets provide a method of
automatic feature extraction using a
combination of convolutional filters
and dimensional reduction

b7
{\‘K‘

output layer

®
NS
Ve
;

* Accuracies greater than humans e
have been observed using ConvNets hidden layer 1  hidden layer 2
on image data Multilayer perceptron Neural Network

e Features are extracted using multiple
filters applied to the same image /

Convolutional Neural Network
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Deep Learning — Convolutional Neural
Networks

e ECGs are continuously sampled
waveform data most remarkably
distinguished by the prominent ‘R’
peak.

e An ECG signal can be sampled
anywhere from a couple of minutes

to hours

. A sample ECG waveform at 300 Hz
* We abstract a continuous waveform

and segment it by it’s individual ”

complex
R A

A sample ECG complex at 300 Hz
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Deep Learning — Convolutional Neural
Networks

e Each complex is segmented into a square matrix that is then fed into the
ConvNet for feature extraction
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Influences of Noise on Sensor Data
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Deep Convolutional Neural Network Topology
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Deep Convolutional Neural Network Results

model accuracy
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Take home message

e Every breath, every beat —Critical Care
e Event stream processing a potent tool to uncover new knowledge
 Collection of high quality data is still a pressing challenge

e Not enough to simply “analyze” the data
* Knowledge is a holistic experience
* Feedback loop reinforces algorithm learning

e Deep learning methods offer novel means to classify difficult
and very noisy ECG sensor data
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Thank You!

Rishi Kamaleswaran

rkamales@uthsc.edu
3 @rkamaleswaran
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