

“Big Data” In Analysis Of Streaming Physiologic Data: Implications For Health Care

Rishi Kamaleswaran, PhD

Center for Biomedical Informatics,
Division of Critical Care Medicine,
Department of Pediatrics,

The University of Tennessee Health Science Centre, Memphis TN

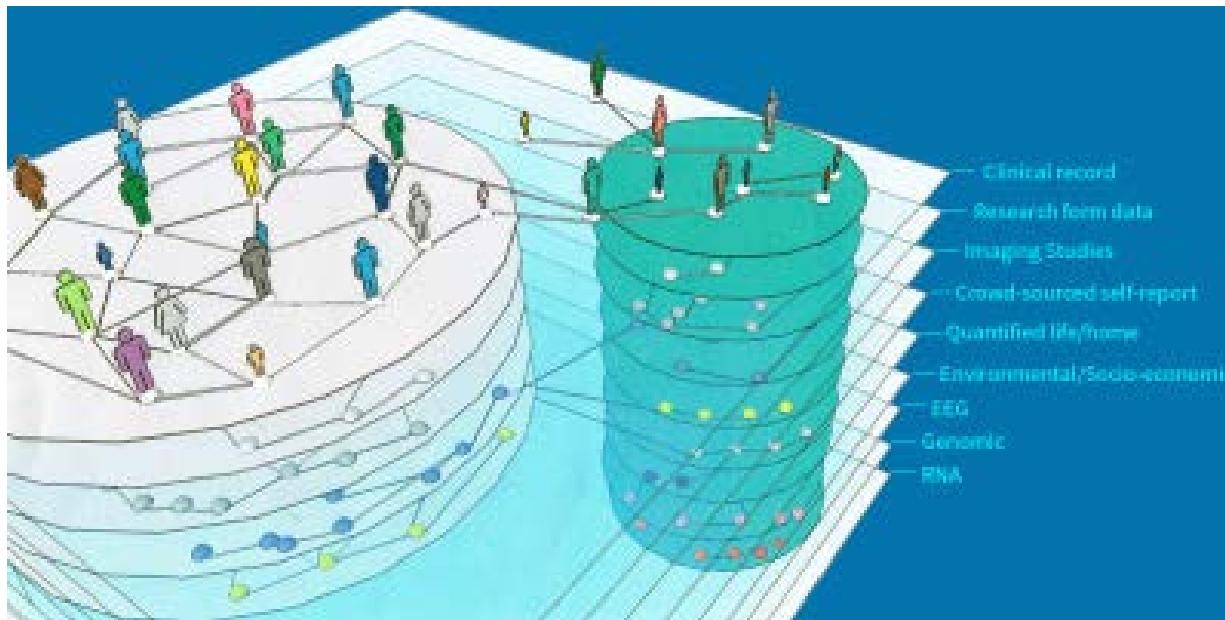
@rkamaleswaran

ADEPT4 Workshop 2017

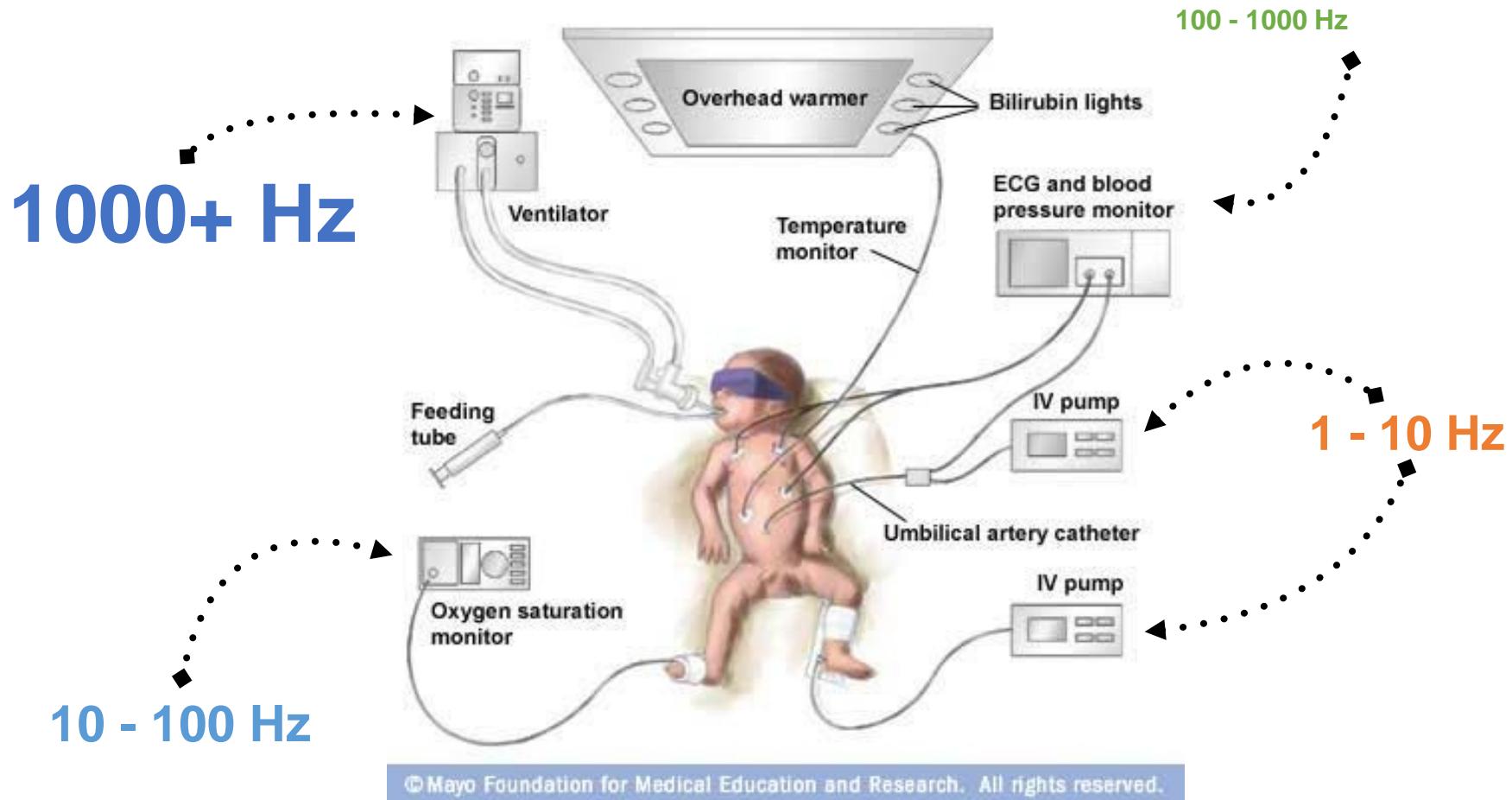
Big Data to Knowledge Initiative

PIC-SURE Precision Medicine June 2015 Patient Driven meeting (BD2K Center of Excellence, Harvard University)

“How do we securely collect and analyze distinct data streams in real-time to guide medical decisions?”



Big Data in the NICU



182 million readings a day per patient.
1 - 5 readings an hour

Characteristics of Physiologic Data

- **Unlike other sensor-based big data sources**
 - Has variances in signal quality, strength and frequently non-stationary
 - Changes over time as the infant grows and matures
 - New normal are established day-by-day
 - Contains numerous artefacts
 - Wasn't meant to be streamed!

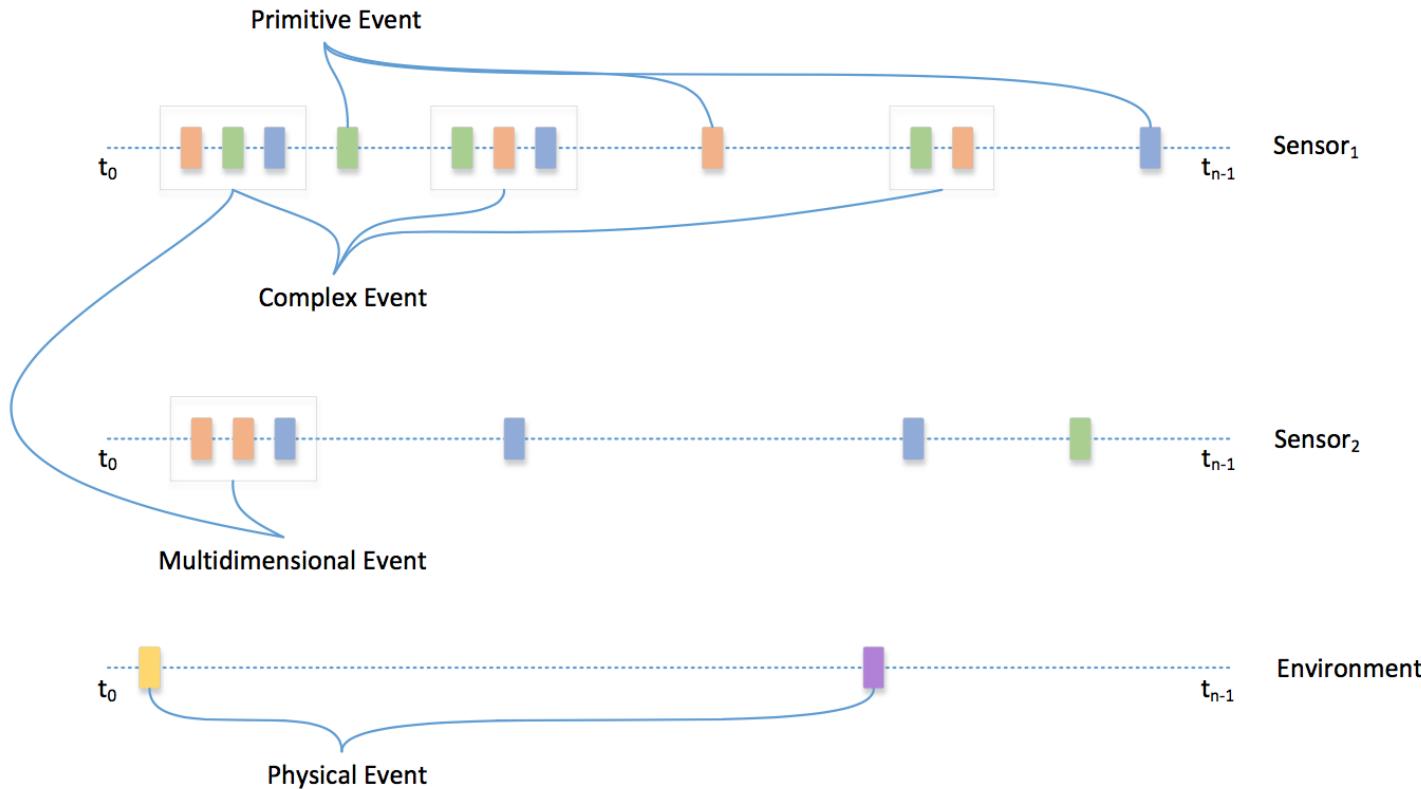
Bringing analytics to the bed-side

- Access the physiologic data to analyze every bit of information that can lead to ***personalized*** and ***earlier interventions***
- The provision of real-time physiologic analysis requires a multidimensional approach:
 - ***Multiple conditions***
 - ***Multiple streams*** of data
 - For which ***multiple behaviours*** can exist
- In addition, integrate of
 - Real-time synchronous medical device data
 - Asynchronous clinical data

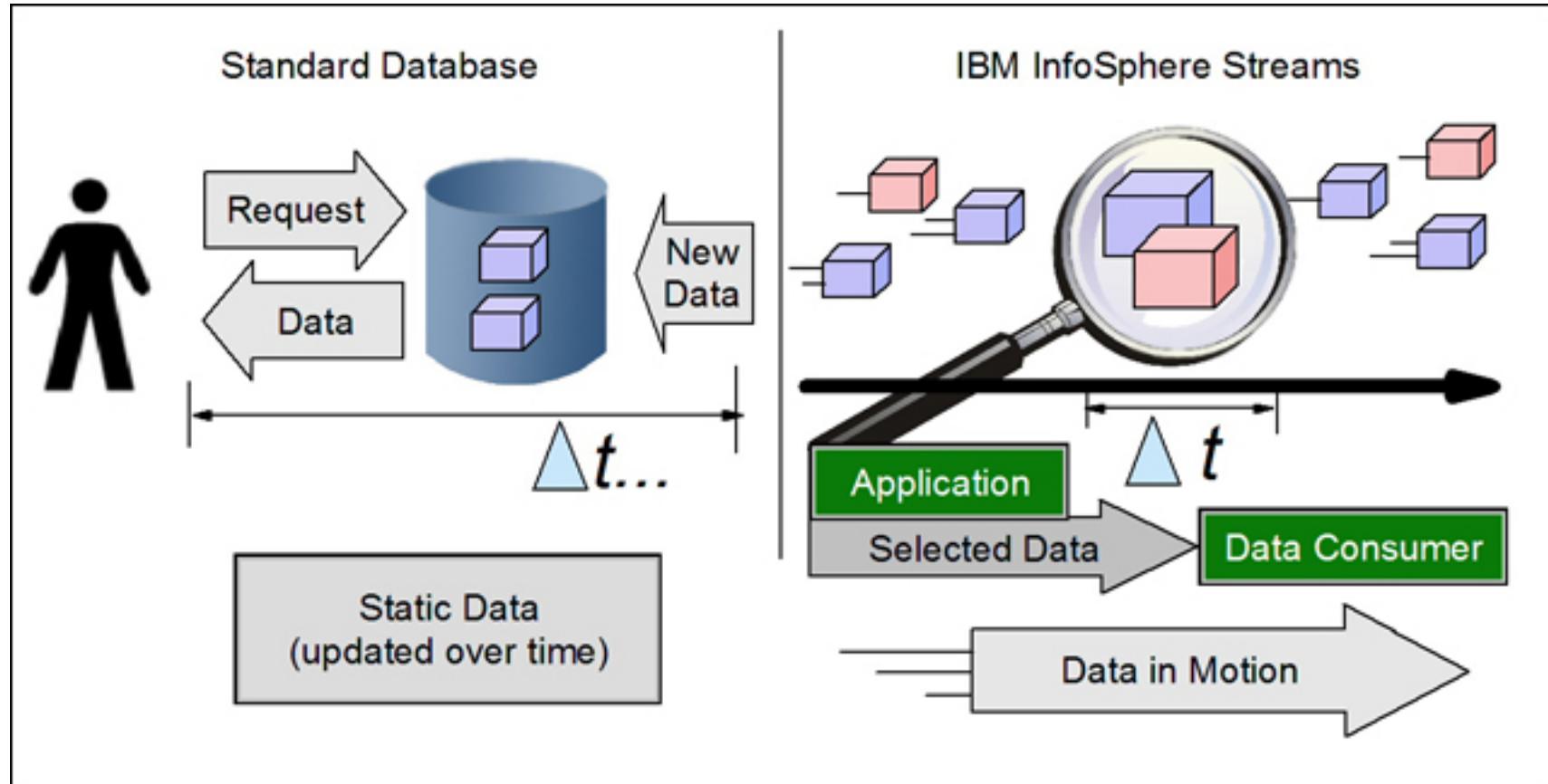
Sensor Analytics- Architectural Requirements and Development

Interactive Exploration of Event Streams

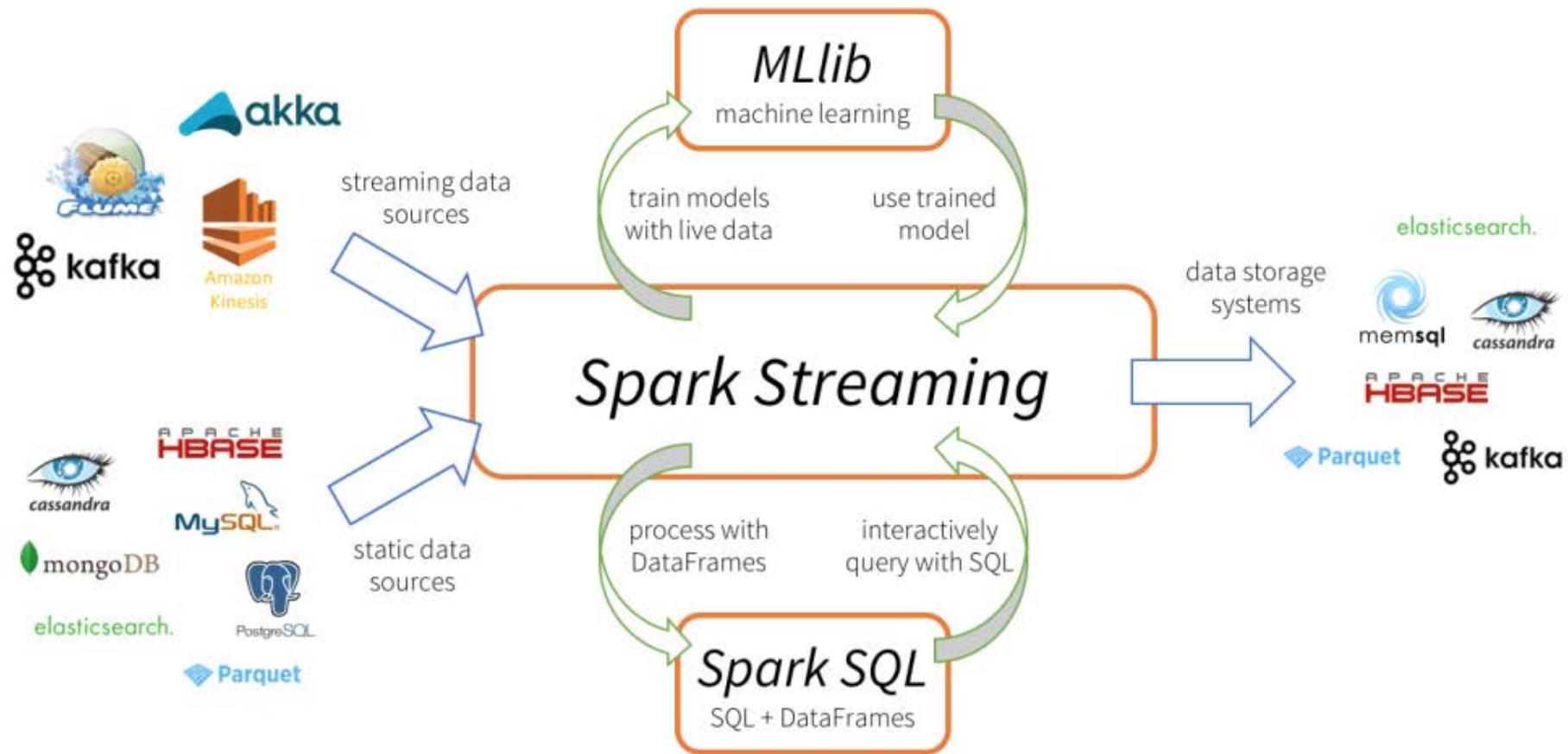
Event Streams – A hierarchy



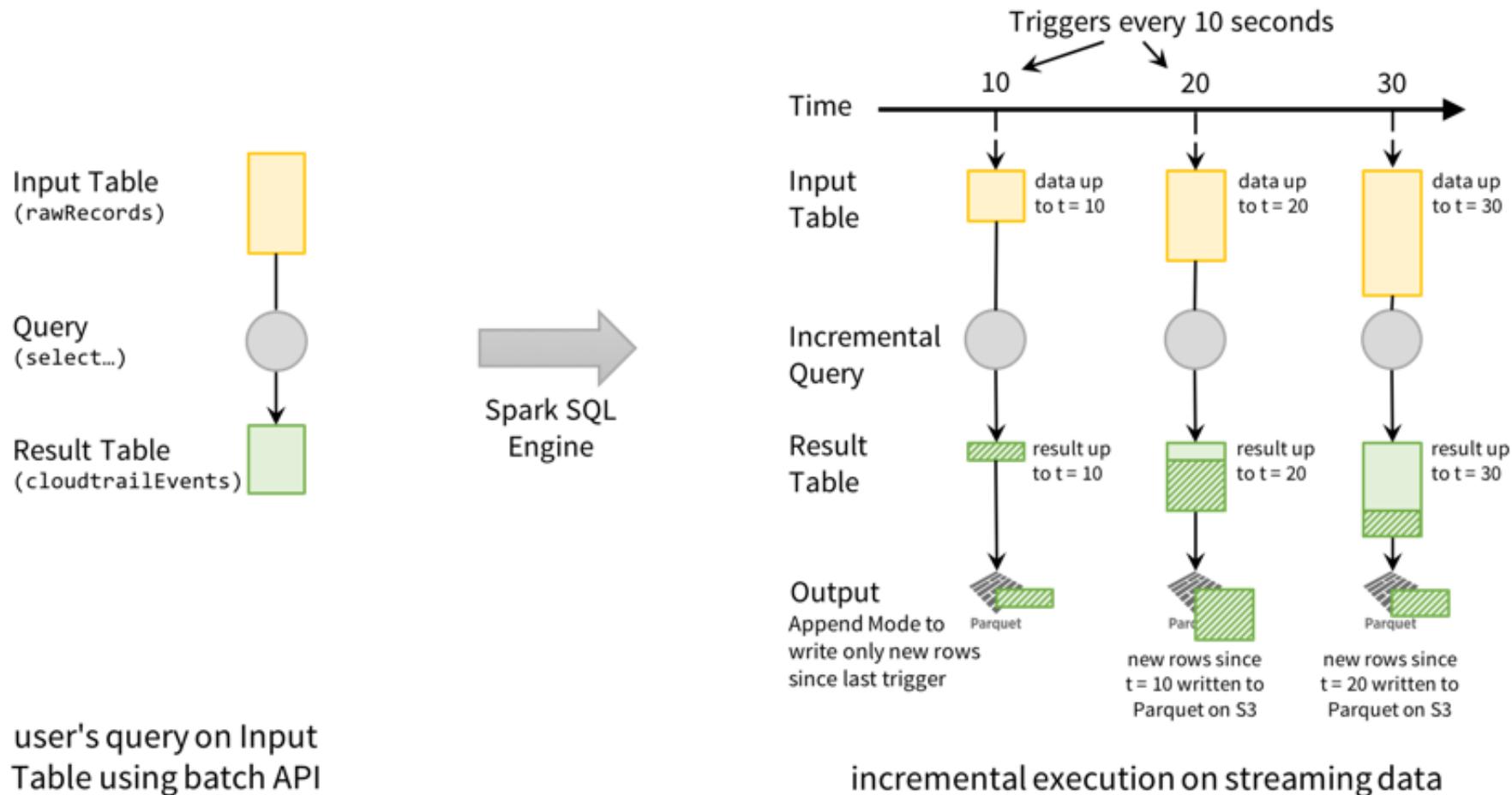
Event Stream Processing (InfoSphere Streams)



Event Stream Processing (Spark Streaming)



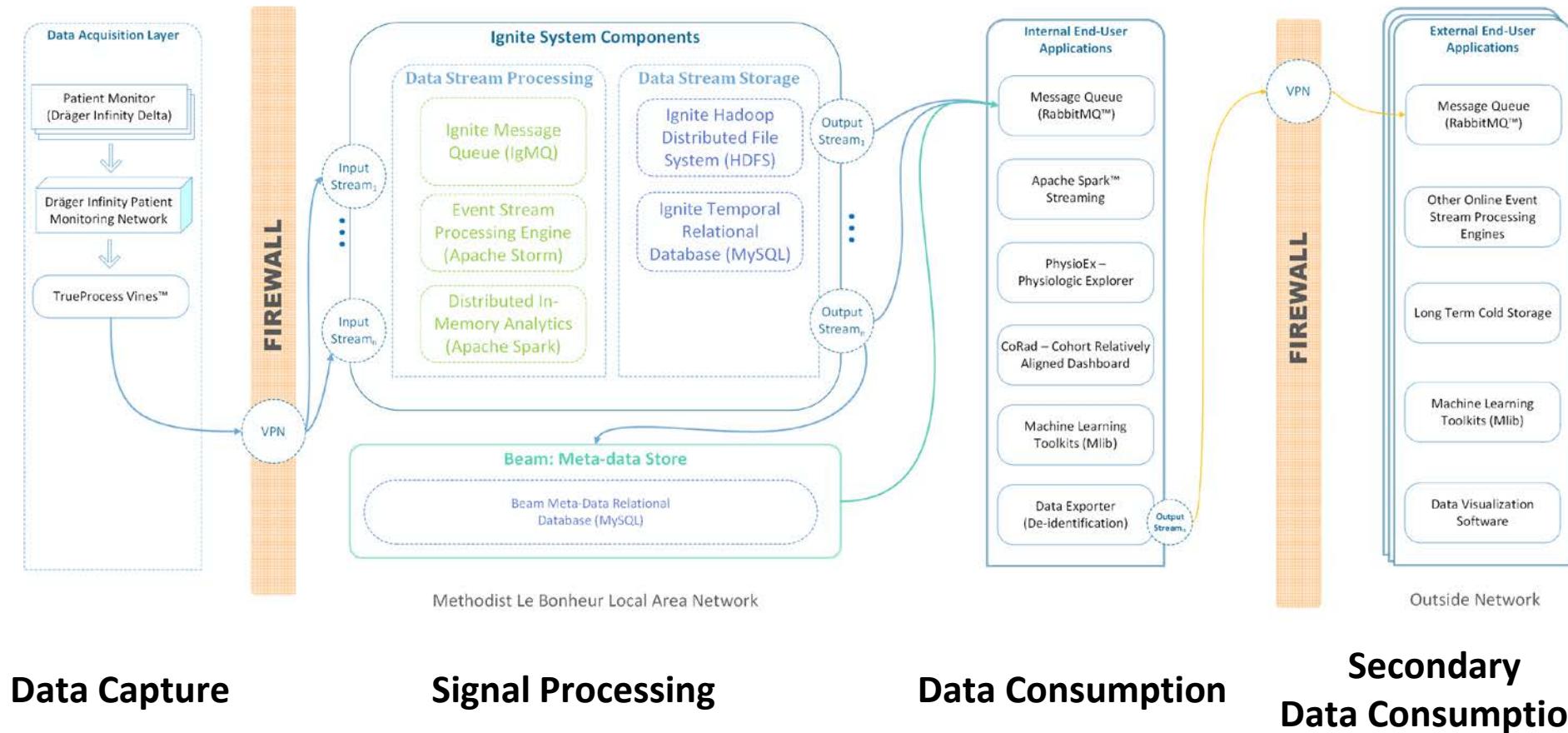
Spark Streaming— Structured Streaming



Structured Streaming Model

users express query on streaming data using a batch API; Spark incrementalizes them to run on streams

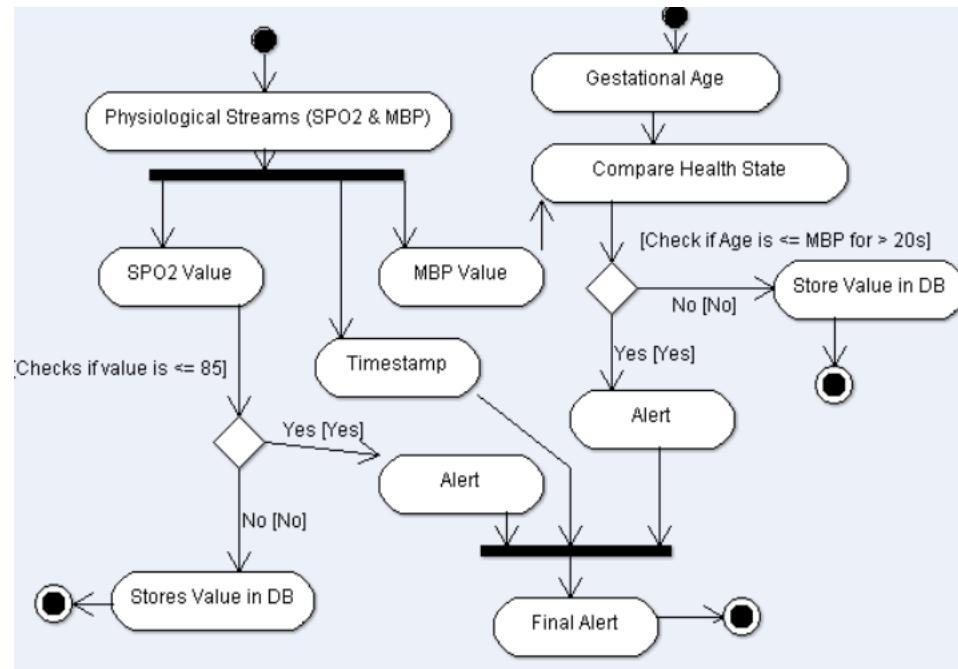
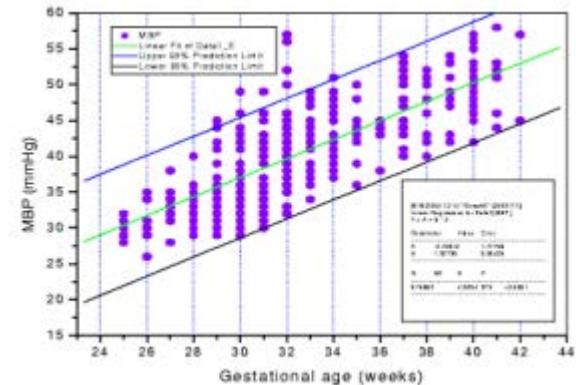
System Architecture for Sensor Analytics at Le Bonheur Children's Hospital



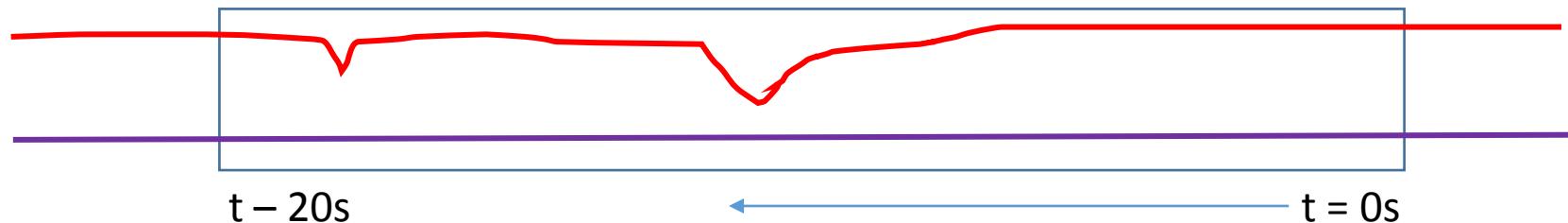
Analytics at the Point of Care- Past work

“Right information at the right time”

Kamaleswaran et al., 2010 : A method for clinical and physiological event stream processing

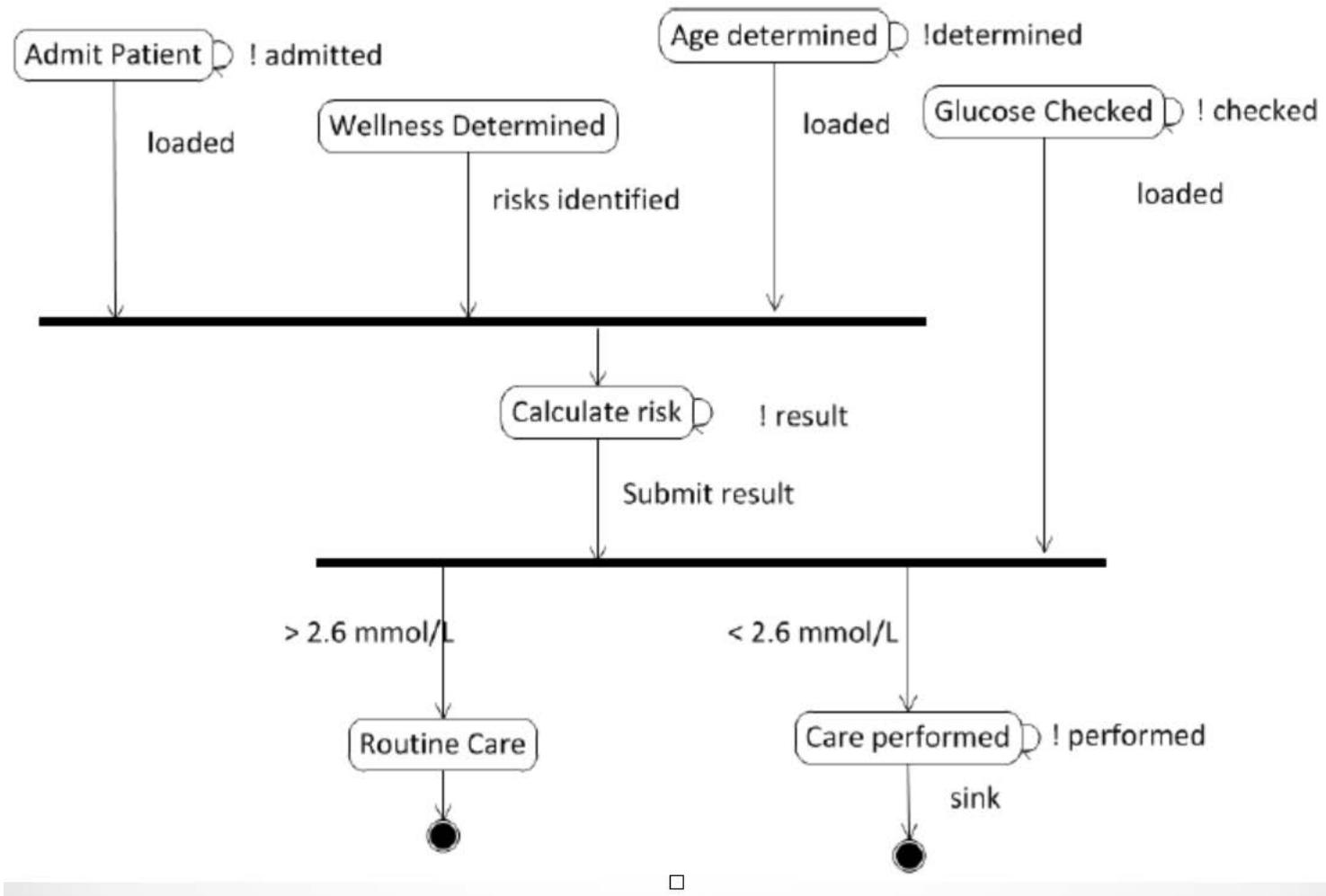


Mean blood pressure vs Gestational age [1]



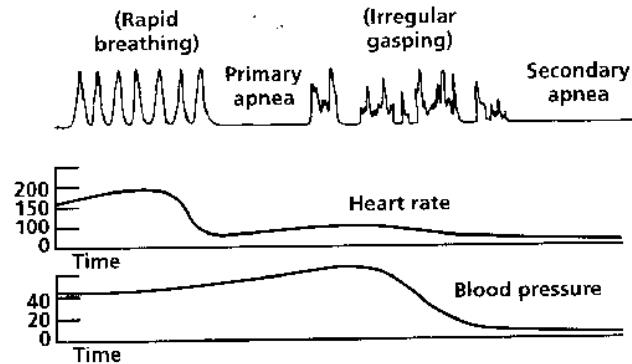
[1] Edward F. Bell, "Blood Pressure in the Newborn". Iowa Neonatology Handbook, 2012.

Kamaleswaran et al., 2012 : Integrating complex business processes for knowledge-driven clinical decision support systems



Clinical Domain Challenges— Apnea of Prematurity

- Apnoea of prematurity: **cessation of breathing** for more than *20 seconds* [2]
- Challenge to **visually assess** the etiology and type of apnoea
- Requires extensive monitoring to determine diagnosis
- In lieu of that monitoring, bedside staff broadly classify any cardiorespiratory event as a **“Neonatal Spell”** [3]



[2] M. J. Miller and R. J. Martin, “Pathophysiology of apnea of prematurity,” *Fetal and neonatal physiology*, vol. 3, pp. 905–917, 1998.

[3] Thommandram A, Pugh JE, Eklund JM, McGregor C, James AG. Classifying neonatal spells using real-time temporal analysis of physiological data streams: Algorithm development. *Point-of-Care Healthcare Technologies (PHT)*, 2013 IEEE. 2013. p. 240–3.

Clinical Domain Challenges— Nosocomial Infection

- ***Nosocomial infection*** (sepsis) is a common hospital-borne infection for babies receiving care in the NICU [4]
- A cocktail of antibiotics are prepared and administered even before diagnosis.
- ***Heart-Rate Variability*** seen as a potential indicator of the onset of neonatal sepsis [5]

[4] Goldmann, Donald A., William A. Durbin, and Jonathan Freeman. "Nosocomial infections in a neonatal intensive care unit." *Journal of Infectious Diseases* 144.5 (1981): 449-459.

[5] Moorman, J. Randall, et al. "Cardiovascular oscillations at the bedside: early diagnosis of neonatal sepsis using heart rate characteristics monitoring." *Physiological measurement* 32.11 (2011): 1821.

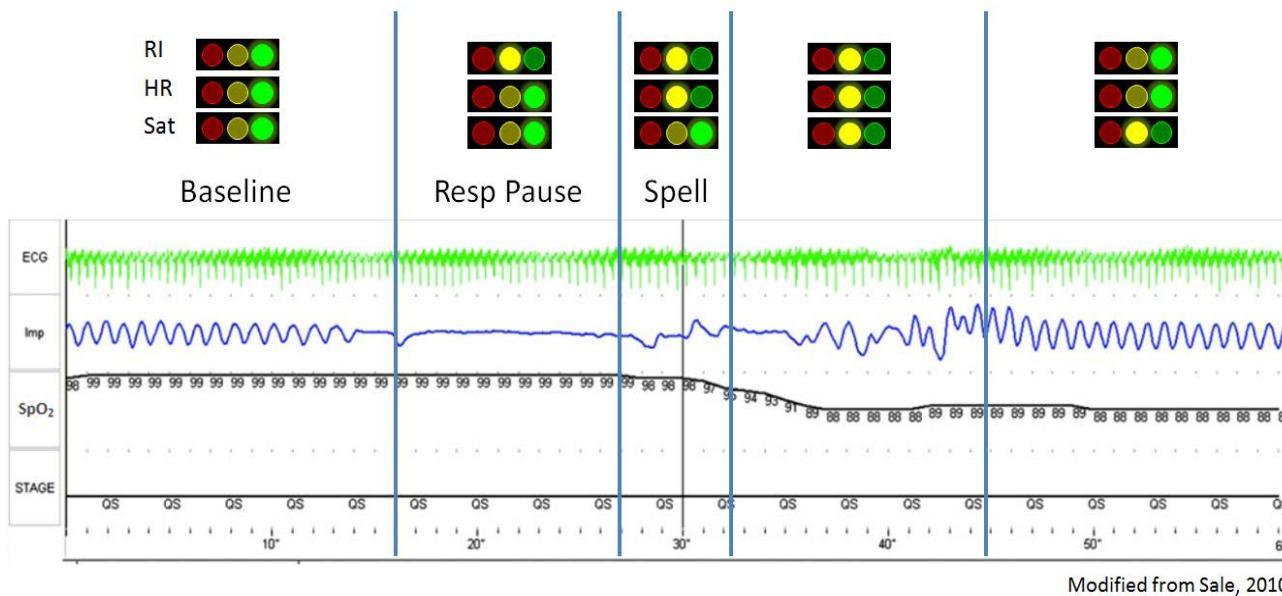
Neonatal Sepsis and Spells

Question: Can we identify neonatal spells prior to onset of nosocomial infection?

- Thommandram et al., built a neonatal **spells algorithm** [3] for detecting spells activity in real-time

Classifications:

- central apnoea
- vagal apnoea
- obstructive
- obstructive central
- central obstructive
- isolated blood oxygen desaturation
- isolated bradycardia.



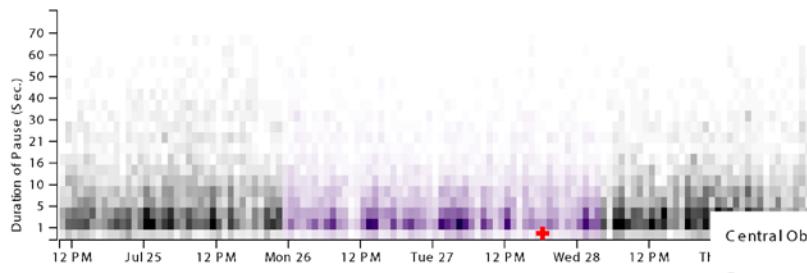
Modified from Sale, 2010

Events as Sequences

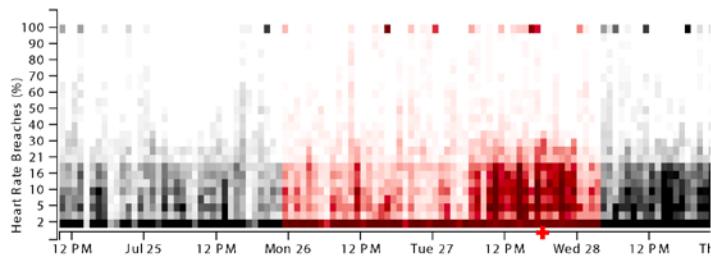
	1	2	3	4	5
Central	↓ Resp.	↓ Heart Rate	↓ O ₂	↑ Resp.	↑ Heart Rate
Vagal	↓ Resp. ↓ Heart Rate	↓ O ₂	↑ Resp. ↑ Heart Rate		
Obstructive	↓ Heart Rate (Incremental)	↓ O ₂	↑ Heart Rate		
Obstructive Central	↓ Heart Rate (Incremental)	↓ O ₂	↓ Resp.	↑ Resp.	↑ Heart Rate
Central Obstructive	↓ Resp.	↓ Heart Rate	↓ O ₂	↑ Resp.	↓ Heart Rate
Desaturation	↓ O ₂				
Bradycardia	↓ Heart Rate				

PhysioEx: Visual analysis of physiological event streams [6]

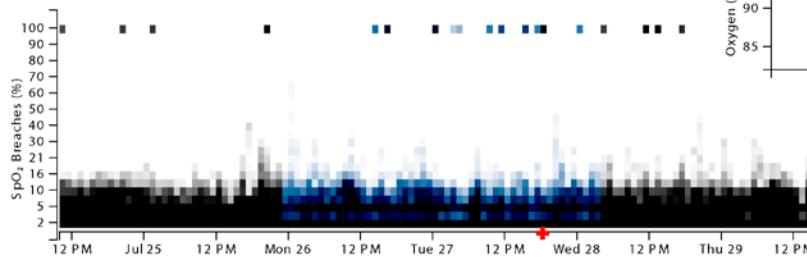
Respiratory Impedance Graph



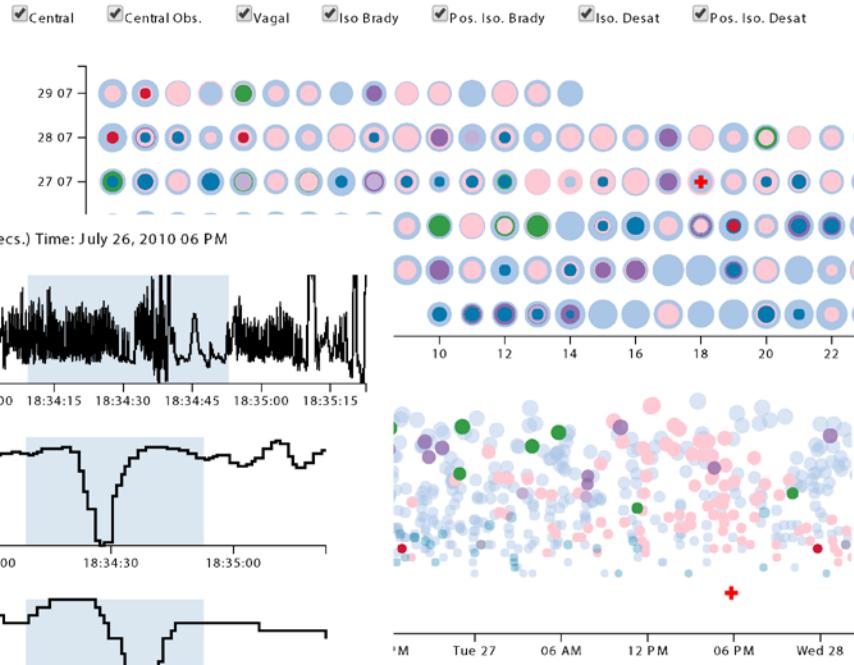
Heart Rate Flux Graph



Oxygen Flux Graph



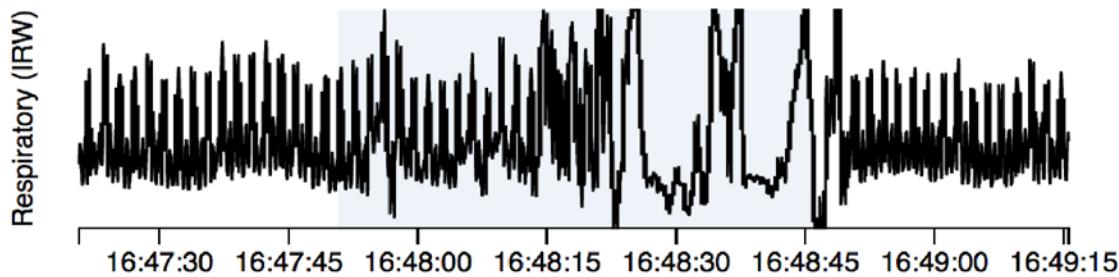
Spells Classification



[6] Kamaleswaran, Rishikesan, et al. "PhysioEx: visual analysis of physiological event streams." *Computer Graphics Forum*. Vol. 35. No. 3. 2016.

Central (56 Secs.) Time: July 25, 2010 04 PM

3



1

2

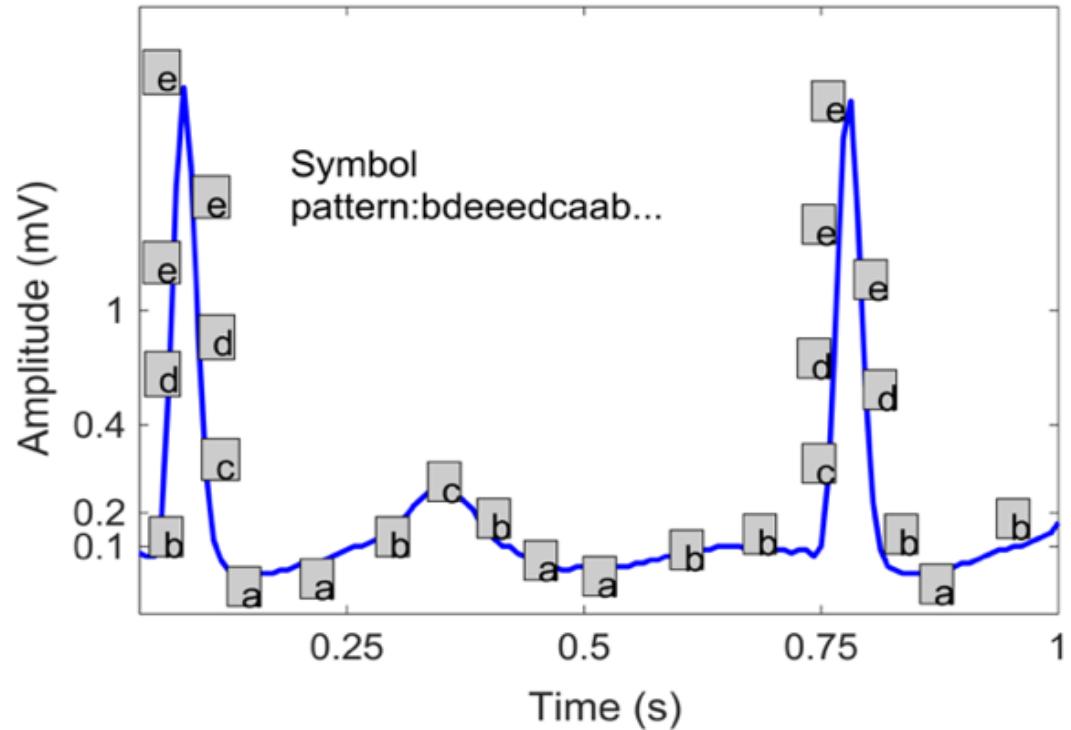


Data-driven Approaches: Current Work

Knowledge Discovery for Point of Care Applications

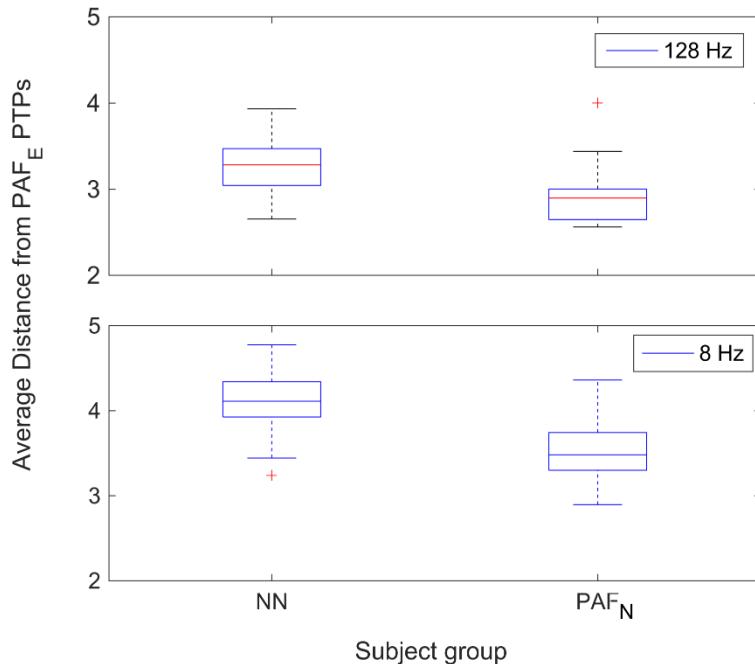
Continuous feature extraction: Probabilistic Symbolic Pattern Recognition (PSPR) [7]

Symbol	Range
a	$[-\infty, 0.10]$
b	$[0.10, 0.20]$
c	$[0.20, 0.40]$
d	$[0.40, 1.0]$
e	$[1.0, \infty]$



[7] Mahajan, R., Kamaleswaran, R., & Akbilgic, O. (2017). Paroxysmal Atrial Fibrillation Screening at Different ECG Sampling Frequencies Using Probabilistic Symbolic Pattern Recognition. In *IEEE International Conference on Biomedical and Health Informatics 2017*. Orlando, FL

Paroxysmal Atrial Fibrillation (PAF) Prediction

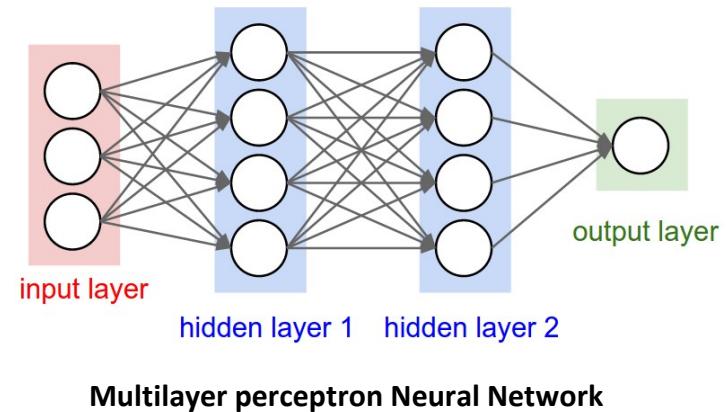
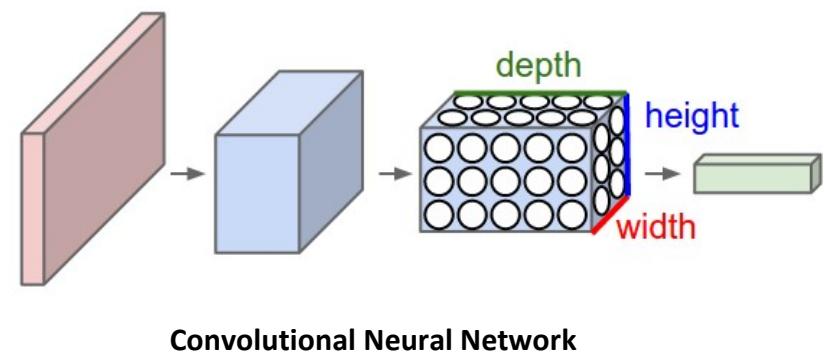


Sampling frequency, f_s (Hz)	Accuracy (%)	
	<i>Training data</i>	<i>Test data</i>
128	76.67	73.33
64	81.67	77.33
32	85	74.67
16	85.33	73.33
8	84.33	82.67

Sampling frequency indicates influence on accuracy of predictive model for PAF prediction

Deep Learning – Convolutional Neural Networks for Sensor Timeseries Analytics

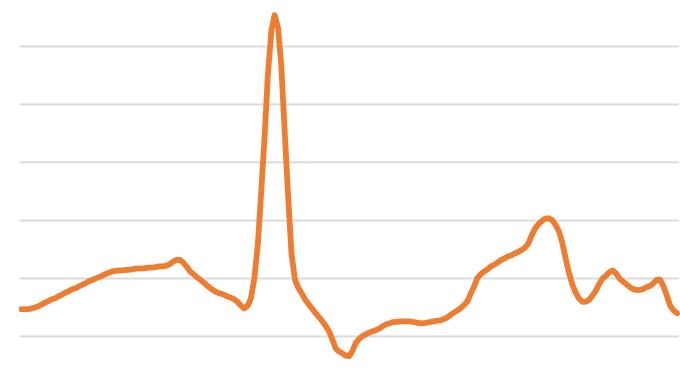
- ConvNets provide a method of automatic feature extraction using a combination of convolutional filters and dimensional reduction
- Accuracies greater than humans have been observed using ConvNets on image data
- Features are extracted using multiple filters applied to the same image



Deep Learning – Convolutional Neural Networks

- ECGs are continuously sampled waveform data most remarkably distinguished by the prominent 'R' peak.
- An ECG signal can be sampled anywhere from a couple of minutes to hours
- We abstract a continuous waveform and segment it by its individual complex

A sample ECG waveform at 300 Hz



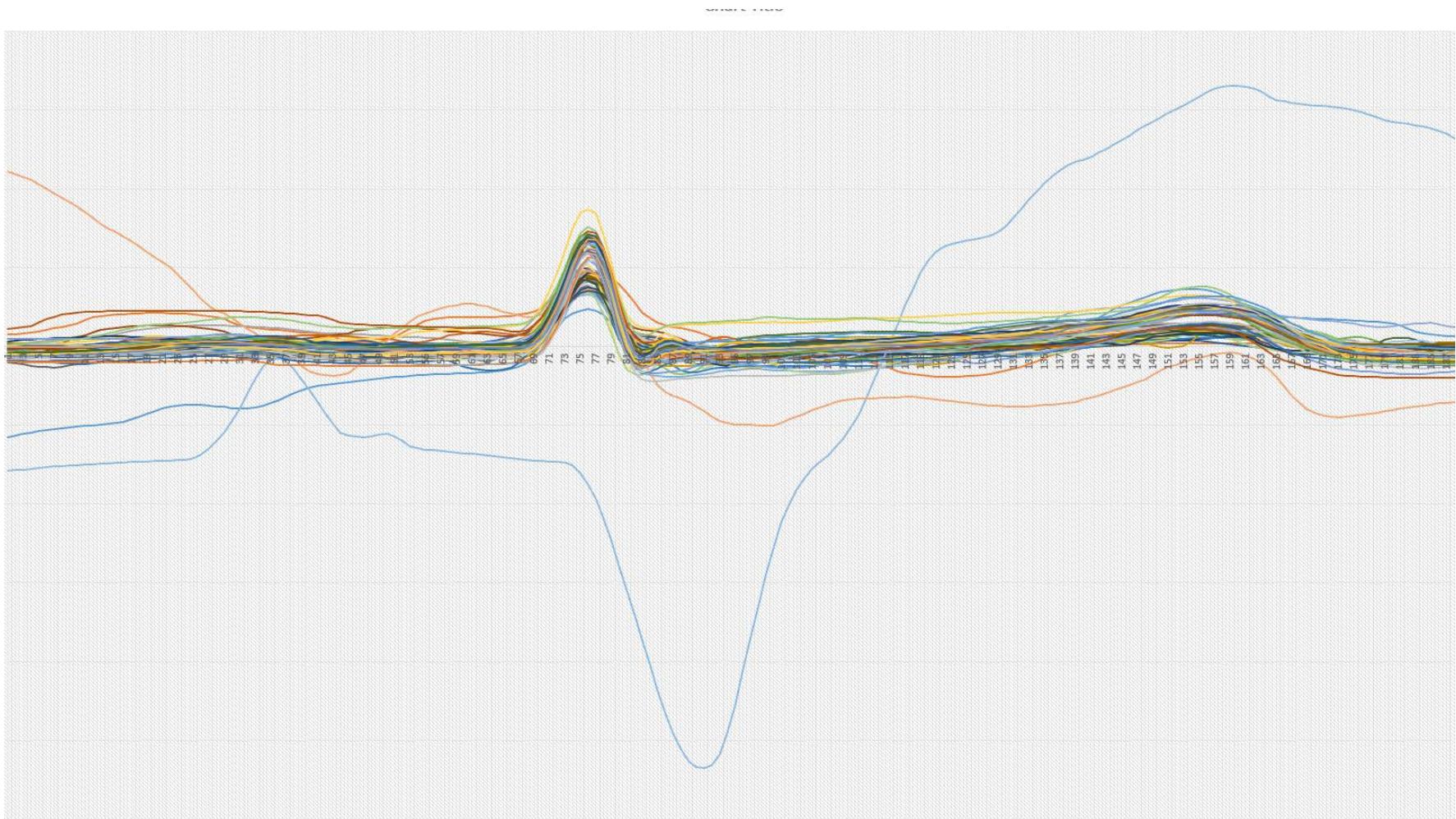
A sample ECG complex at 300 Hz

Deep Learning – Convolutional Neural Networks

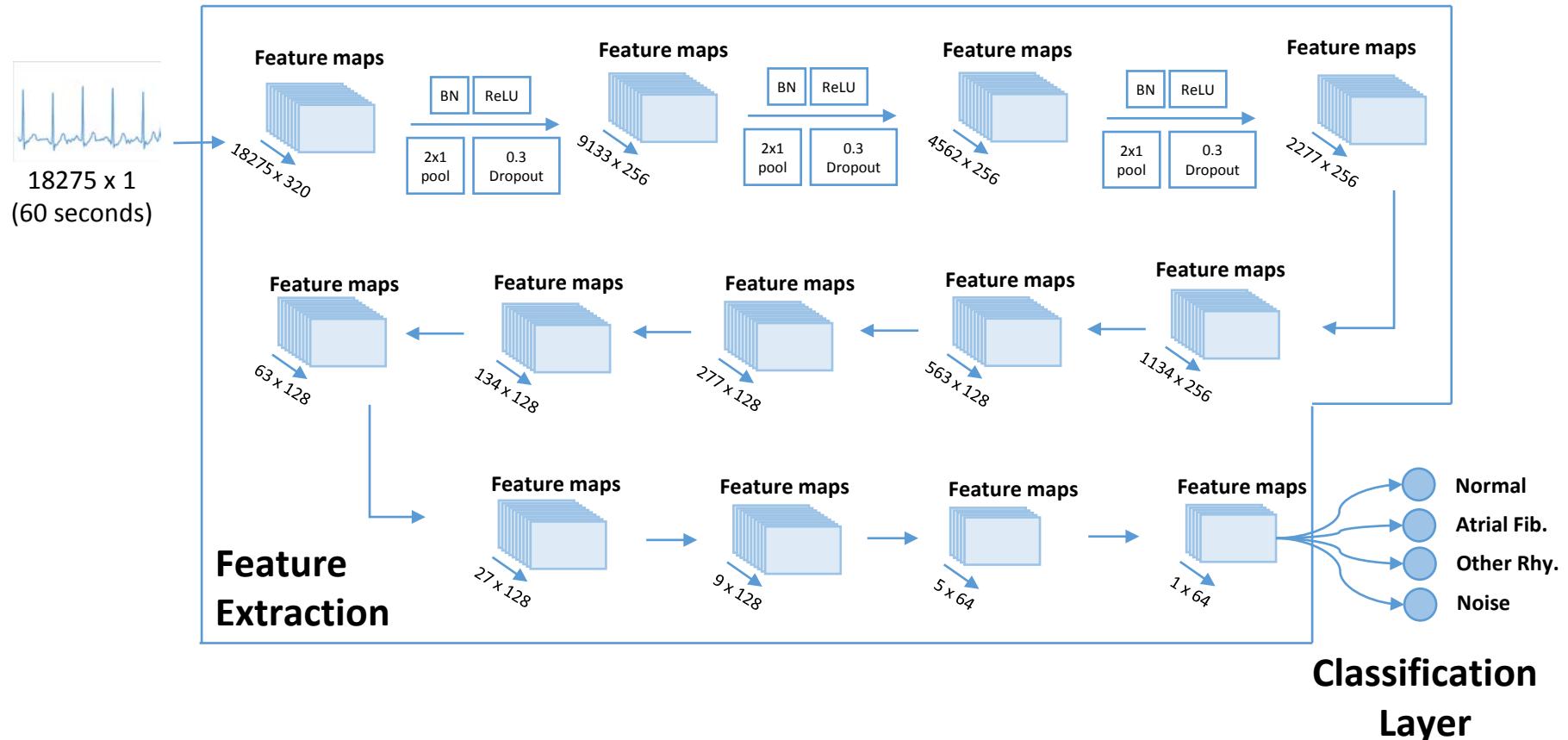
- Each complex is segmented into a square matrix that is then fed into the ConvNet for feature extraction

```
22811 2,"[-185. -193. -200. -207. -212. -214. -217. -219. -222. -224. -226. -228.
22812 -229. -230. -232. -233. -234. -235. -236. -237. -238. -239. -238. -237.
22813 -235. -233. -230. -227. -224. -220. -215. -210. -204. -198. -178. -137.
22814 -101. -74. -60. -49. -50. -68. -92. -127. -160. -184. -199. -213.
22815 -228. -248. -263. -272. -279. -286. -292. -297. -305. -336. -388. -414.
22816 -433. -445. -434. -399. -351. -298. -244. -193. -163. -137. -118. -102.
22817 -90. -81. -72. -62. -51. -43. -35. -28. -21. -15. -9. -3.
22818 3. 10. 16. 23. 30. 36. 40. 44. 47. 50. 53. 57.
22819 61. 66. 71. 76. 82. 89. 99. 109. 118. 126. 134. 143.
22820 152. 161. 169. 176. 183. 190. 196. 202. 209. 216. 223. 231.
22821 241. 254. 266. 278. 286. 292. 298. 302. 304. 304. 301. 296.
22822 290. 282. 273. 259. 242. 224. 206. 187. 171. 156. 138. 117.
22823 87. 71. 61. 53. 47. 42. 36. 31. 28. 25. 22. 19.
22824 14. 8. -2. -12. -21. -24. -26. -28. -30. -32. -34. -37.
22825 -38. -40. -41. -42. -42. -42. -41. -42. -42. -43. -44. -46.
22826 -48. -50. -53. -56. -58. -61. -63. -66. -68. -71. -75. -81.
22827 1"
```

Influences of Noise on Sensor Data

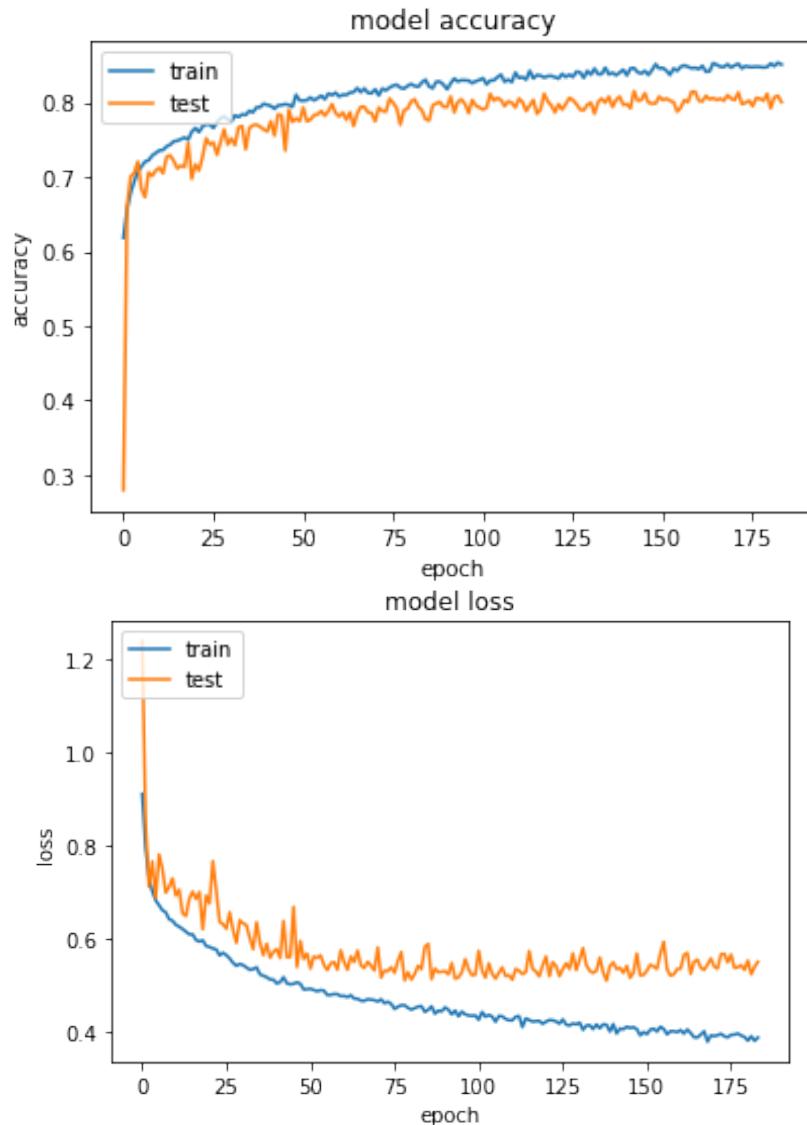
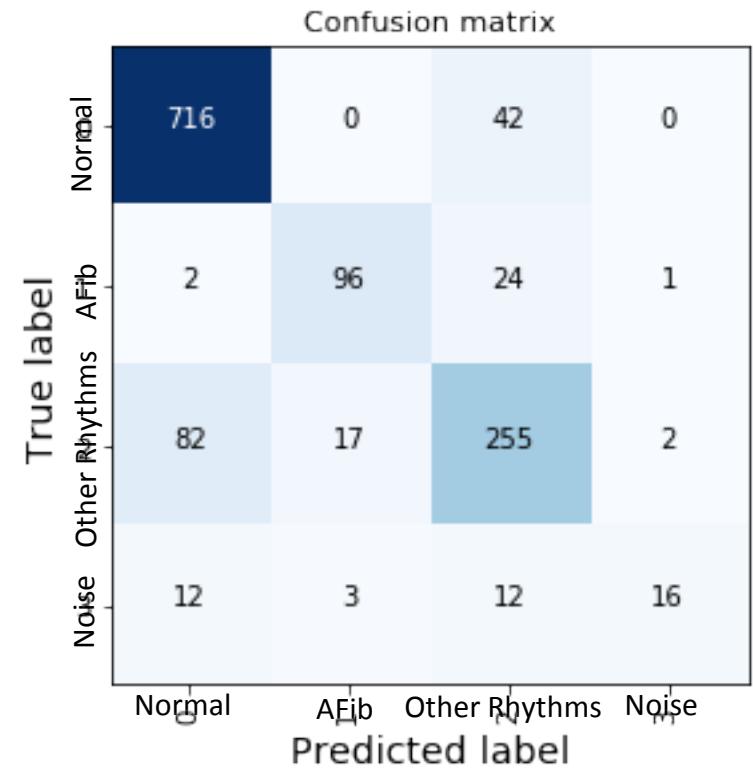


Deep Convolutional Neural Network Topology



Total params: 2,042,820

Deep Convolutional Neural Network Results



Train Score: acc: 89.14% Test Score: acc: 84.69%

Take home message

- Every breath, every beat –Critical Care
 - Event stream processing a potent tool to uncover new knowledge
 - Collection of high quality data is still a pressing challenge
- Not enough to simply “analyze” the data
 - Knowledge is a holistic experience
 - Feedback loop reinforces algorithm learning
- Deep learning methods offer novel means to classify difficult and very noisy ECG sensor data

Thank You!

Rishi Kamaleswaran

rkamales@uthsc.edu

 @rkamaleswaran

