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outline
 

•	 

•	 

Visual tools for exploring clinical data support unearthing insights 
from clinical records 

•	 CareFlow 

Beyond exploration, clinical researchers often want predictions, too. 


•	 Coquito, Prospector 



CareFlow
 

IBM WatsonHealth
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Heart designed by Catherine Please from The Noun Project

heart failure
 

• Potentially fatal disease that affects 2% of 
adults in developed countries 

•

•

•

 Difficult to manage 

 No systematic clinical guidelines for
treating Heart Failure 





 Presence of co-morbidities affects
treatment recommendations.
 

 




population 
•	 Hundreds of Thousands of Patients 

diagnosed with Congestive Heart Failure 

EMR Database 

Demographics 

Treatments 

Lab T ests 

Diagnoses 

Symptoms 

 



aggregation 
• 

• 

Start with target patient 

Find similar patients 

• Using our similarity analytics on relevant data 

• Features include medications, symptoms, and diagnoses, and lab tests 

• Align all patients by disease diagnosis 

What are the    
treatment pathways  

after diagnosis? 



aggregation 
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Care Pathways of 300 similar patients   
 



Optimal Care Pathway   

 among 300 similar patients  
 



other tools for clinical exploration    
 

Videos and Papers at http://perer.org
 

http://perer.org/
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the role
 
of  visualization
 

in  prediction
 



what can visualization do?  
 

START

Cohort Definition 

coquito 

 END 

Model Interpretability 
 

prospector 



coquito 
cohort  queries with  iterative  overviews 

Cohort 
Construction 1 

Josua Krause, Adam Perer, and Harry Stavropolous. Supporting
Iterative Cohort Construction with Visual Temporal Queries. IEEE 
Visual Analytics Science and Technology (VAST 2015). 

http://perer.org/papers/adamPerer-COQUITO-VAST2015.pdf


defining cohorts 
• Typically, defining cohorts is a slow process: 

• 

• 

• 

First, medical researchers define requirements.  

Then, Technologists write SQL queries and deliver them to medical researchers. 

But, often too many patients or too few patients, and the process must restart.
 



defining cohorts with coquito   
 

drag and drop constraints 
with immediate feedback 

and hints for query 
refinement 

supports using complex 
temporal logic 

support for multiple 
queries side-by-side (for

cases and controls) 







coquito lessons 
 
▪	 Easy and interactive query formulation lets domain experts explore the 

data  

▪	 

▪	 

Visible intermediate results provide critical feedback 

Hints for query refinements are helpful in improving queries 



predictive model  
prospector Model Interpretability  

Josua Krause, Adam Perer, and Kenney Ng. Interacting with Predictions: Visual 
Inspection of Black-box Machine Learning Models. ACM Conference on Human 


Factors in Computing Systems (CHI 2016). San Jose, California. (2016).
 

http://perer.org/papers/adamPerer-Prospector-CHI2016.pdf


typical predictive model report
    
Typically simply a list of top   
 
features and their weights  


Why?  
Difficult to summarize    
complex models 

Issues 
One cannot interpret how    
the values of each feature     
impact the prediction    

One cannot interact with     
the model to test     
hypotheses 



partial dependence 
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localized inspection 
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• 

• 

• 

predicting onset of diabetes for 4000 patients     

4 month long term case study with 5 data scientists         
 

stories of visualization-driven insights in the p     aper 







take-aways
 

Clinical Data is complex and messy.  


Exploratory visual analytics tools fill a much needed gap. 


However, exploratory tools alone do not address their 

predictive desires. 


There is a strong role for visualization in predictive tasks. 

Adam Perer 
[ papers and videos at http://perer.org ] 

CareFlow (CHI 2013) 

COQUITO (VAST 2015) 

Prospector (CHI 2016) 

http://perer.org/
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