

On February 2, 2024, FDA published the final rule to amend the Quality System (QS) regulation in 21 CFR part 820 ([89 FR 7496](#), effective February 2, 2026). The revised 21 CFR part 820 is now titled the Quality Management System Regulation (QMSR). The QMSR harmonizes quality management system requirements by incorporating by reference the international standard specific for medical device quality management systems set by the International Organization for Standardization (ISO), ISO 13485:2016. The FDA has determined that the requirements in ISO 13485 are, when taken in totality, substantially similar to the requirements of the QS regulation, providing a similar level of assurance in a firm's quality management system and ability to consistently manufacture devices that are safe and effective and otherwise in compliance with the Federal Food, Drug, and Cosmetic Act (FD&C Act).

This guidance document was issued prior to the effective date of the final rule. FDA encourages manufacturers to review the current QMSR to ensure compliance with the relevant regulatory requirements.

Transdermal and Topical Delivery Systems - Product Development and Quality Considerations

Guidance for Industry

DRAFT GUIDANCE

This guidance document is being distributed for comment purposes only.

Comments and suggestions regarding this draft document should be submitted within 90 days of publication in the *Federal Register* of the notice announcing the availability of the draft guidance. Submit electronic comments to <https://www.regulations.gov>. Submit written comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the *Federal Register*.

For questions regarding this draft document, contact (CDER) Mohamed Ghorab 240-402-8940.

**U.S. Department of Health and Human Services
Food and Drug Administration
Center for Drug Evaluation and Research (CDER)**

**November 2019
Pharmaceutical Quality/CMC**

Transdermal and Topical Delivery Systems - Product Development and Quality Considerations

Guidance for Industry

Additional copies are available from:
Office of Communications, Division of Drug Information
Center for Drug Evaluation and Research
Food and Drug Administration
10001 New Hampshire Ave., Hillandale Bldg., 4th Floor
Silver Spring, MD 20993-0002
Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353
Email: druginfo@fda.hhs.gov
<https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm>

**U.S. Department of Health and Human Services
Food and Drug Administration
Center for Drug Evaluation and Research (CDER)**

**November 2019
Pharmaceutical Quality/CMC**

Contains Nonbinding Recommendations

Draft — Not for Implementation

TABLE OF CONTENTS

I.	INTRODUCTION.....	1
II.	BACKGROUND	1
A.	General.....	1
B.	Regulatory Status.....	3
III.	TDS PRODUCT DEVELOPMENT.....	4
A.	Quality Target Product Profile.....	4
B.	Critical Quality Attributes.....	5
1.	<i>TDS Product</i>	5
2.	<i>Drug Substance</i>	5
3.	<i>Excipients and Components</i>	6
4.	<i>Identifying Labeling</i>	7
C.	Product and Process Development	7
IV.	INFORMATION TO BE SUBMITTED IN AN APPLICATION	8
A.	Pharmaceutical Development	8
1.	<i>Batch Formula</i>	10
2.	<i>Expectations for Registration/Exhibit Batches</i>	10
3.	<i>Product Characterization Studies</i>	11
4.	<i>Proposed Manufacturing Changes</i>	16
B.	Manufacture	17
C.	Control of TDS Product	19
D.	Additional Stability Studies	24
V.	SPECIAL TOPICS	24
A.	Product Adhesion Considerations	24
B.	Product Storage and Disposal – Labeling Considerations	25

1 **Transdermal and Topical Delivery Systems - Product Development** 2 **and Quality Considerations** 3 **Guidance for Industry¹** 4

5 This draft guidance, when finalized, will represent the current thinking of the Food and Drug
6 Administration (FDA or Agency) on this topic. It does not establish any rights for any person and is not
7 binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the
8 applicable statutes and regulations. To discuss an alternative approach, contact the FDA staff responsible
9 for this guidance as listed on the title page.
10

12 **I. INTRODUCTION** 13

14 This guidance provides recommendations to applicants and manufacturers of transdermal and
15 topical delivery systems (TDS)² regarding the pharmaceutical development and quality
16 information to include in new drug applications (NDAs) and abbreviated new drug applications
17 (ANDAs).^{3,4} Specifically, the guidance discusses FDA's current thinking on product design and
18 pharmaceutical development, manufacturing process and control, and finished product control. It
19 also addresses special considerations for areas where quality is closely tied to product
20 performance and potential safety issues, such as adhesion failure and the impact of applied heat
21 on drug delivery.
22

23 In general, FDA's guidance documents do not establish legally enforceable responsibilities.
24 Instead, guidances describe the Agency's current thinking on a topic and should be viewed only
25 as recommendations, unless specific regulatory or statutory requirements are cited. The use of
26 the word *should* in Agency guidances means that something is suggested or recommended, but
27 not required.
28

29 **II. BACKGROUND** 30

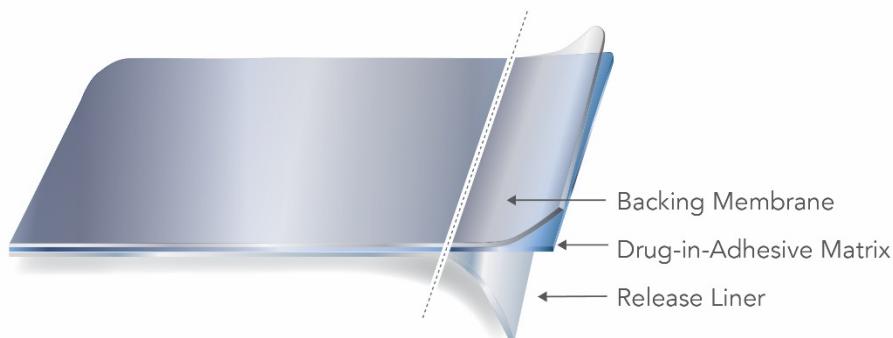
31 **A. General** 32

¹ This guidance has been prepared by the Office of Pharmaceutical Quality and Office of Generic Drugs in the Center for Drug Evaluation and Research, in consultation with the Center for Devices and Radiological Health, and the Office of Combination Products, at the Food and Drug Administration.

² For the purpose of this guidance, both *transdermal* and *topical delivery systems* are referred to by the acronym "TDS."

³ Some TDS (such as microneedles, active transport TDS, reservoir TDS, and TDS applied to broken skin) have other considerations that are not addressed in this guidance.

⁴ The general principles in this guidance can also be applied to nonapplication drug products; for example, over-the-counter drugs products marketed under the monograph regulatory construct (see 21 CFR part 330).

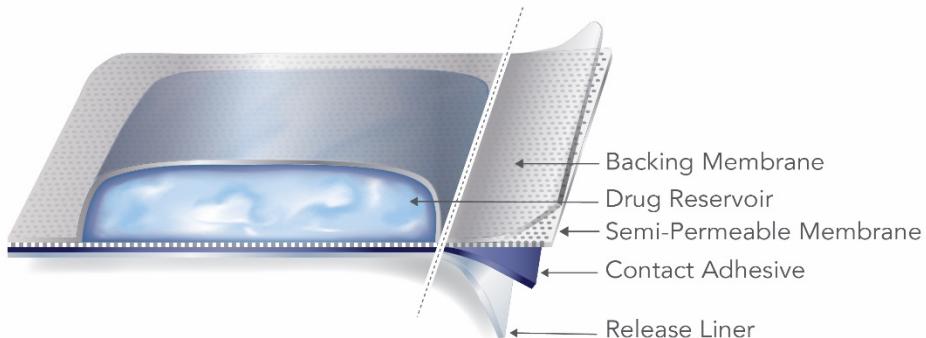

Contains Nonbinding Recommendations

Draft — Not for Implementation

35 Transdermal delivery systems are designed to deliver an active ingredient (drug substance)
36 across the skin and into systemic circulation, while topical delivery systems are designed to
37 deliver the active ingredient to local tissue.⁵ Both delivery systems present similar manufacturing
38 and quality control concerns and similar risks to patients. TDS can be broadly divided into
39 matrix type and liquid or gel reservoir type delivery systems.

40
41 Matrix type TDS contain one or more active ingredients dissolved or partially suspended in a
42 mixture of various components, including adhesives, penetration enhancers, softeners, and
43 preservatives, and are typically manufactured using solvent, hydrogel, or hot melt-based
44 practices. An example of a matrix type TDS is shown in Figure 1, but matrix TDS may include
45 additional layers and/or more complex designs.

46
47 **Figure 1. Matrix Type Transdermal or Topical Delivery System**
48
49


50
51 Reservoir type TDS similarly contain a variety of components in liquid or semi-solid form;
52 however, reservoir type TDS utilize a heat-sealed area to entrap the active gel between the
53 backing membrane and a microporous membrane. An example of a reservoir type TDS is shown
54 in Figure 2. Because of the inherent failure modes and safety risks associated with the reservoir
55 TDS, FDA recommends TDS manufacturers and applicants focus development efforts on matrix
56 type TDS.⁶
57

⁵ Topically administered liquid and semi-solid drug products without a carrier device (e.g., gels, creams, lotions, foams, ointments, or sprays) are not considered to be TDS and are not covered by this guidance, even though they can be formulated to provide local, or in some cases, transdermal delivery of the drug.

⁶ Applicants are strongly encouraged to consult the Office of Pharmaceutical Quality early in the development process prior to pursuing a reservoir design.

58 **Figure 2. Reservoir Type Transdermal or Topical Delivery System**

59

60

61 **B. Regulatory Status**

62

63 Transdermal and topical delivery systems are combination products as defined by 21 CFR part 3,
64 and must comply with 21 CFR part 4 subpart A (Current Good Manufacturing Practice
65 Requirements for Combination Products). Within 21 CFR part 4, there is description of how
66 requirements from 21 CFR parts 210 and 211 (drug CGMPs) and 21 CFR part 820 (device
67 Quality System regulation) apply to combination products.⁷

68

69 In particular, design controls (21 CFR part 820.30) apply to drug-device combination products
70 including TDS.⁸ Essentially, design control activities should confirm that there are no negative
71 interactions between constituent parts and assure that their combined use results in a combination
72 product that is safe and effective and performs as expected. Guidance for industry on
73 pharmaceutical development also addresses product design and development procedures,

⁷ For related guidance, see FDA guidance for industry and staff *Current Good Manufacturing Practice Requirements for Combination Products* (January 2017). We update guidances periodically. For the most recent version of a guidance, check the FDA guidance web page at

<https://www.fda.gov/RegulatoryInformation/Guidances/default.htm>.⁸ As can be the case for components of other single-entity combination products, some components of TDS may be treated as components of both the drug and device constituent parts of the combination product. Because the purpose of this guidance is to offer technical recommendations relating to product development and assessment, we use the general term “component(s)” throughout the guidance to avoid unnecessary complexity regarding such incidental regulatory issues.⁹ See FDA guidance for industry *Q8(R2) Pharmaceutical Development* (November 2009). We reference International Conference for Harmonisation (ICH) guidelines, which address complex scientific issues or set forth first interpretations of regulatory requirements, and correspond to FDA draft and final guidance documents, respectively.

⁸ As can be the case for components of other single-entity combination products, some components of TDS may be treated as components of both the drug and device constituent parts of the combination product. Because the purpose of this guidance is to offer technical recommendations relating to product development and assessment, we use the general term “component(s)” throughout the guidance to avoid unnecessary complexity regarding such incidental regulatory issues.⁹ See FDA guidance for industry *Q8(R2) Pharmaceutical Development* (November 2009). We reference International Conference for Harmonisation (ICH) guidelines, which address complex scientific issues or set forth first interpretations of regulatory requirements, and correspond to FDA draft and final guidance documents, respectively.

Contains Nonbinding Recommendations

Draft — Not for Implementation

74 reflecting quality by design principles.⁹ While quality by design and design controls share
75 similar characteristics and goals, the device Quality System regulation (21 CFR part 820)
76 includes specific requirements for design development that manufacturers must satisfy.¹⁰
77

78 It may be possible to leverage many aspects of pharmaceutical development as described in
79 International Conference for Harmonisation ICH Q8(R2)¹¹ to achieve compliance with design
80 controls. For example, the Quality Target Product Profile (QTPP) (see section III.A. below) is
81 similar to “design inputs” (21 CFR part 820.30(c)), which ensure that design requirements are
82 appropriate to address the intended use of the product. Further, studies conducted to verify that
83 the critical quality attributes (CQAs) are met in the finished product may also address
84 requirements for design “verification” and “validation” (21 CFR part 820.30(f), (g)), which
85 ensure that the product’s “design outputs” (21 CFR part 820.30(d)) result in a product that safely
86 and effectively achieves its intended effects.¹²
87

III. TDS PRODUCT DEVELOPMENT

88 The following section provides an overview of considerations for product and process
89 development, described from a pharmaceutical development perspective. As described above,
90 development of a TDS product must also be compliant with design controls (21 CFR part
91 820.30). We recognize that the terminology used in 21 CFR part 820.30 can differ from that used
92 in a particular pharmaceutical development program. Where pharmaceutical development
93 practices are leveraged and built upon to demonstrate compliance with design controls for a TDS
94 product, applicants should be able to communicate to FDA how the terminology they use relates
95 to design control principles and requirements.
96

A. Quality Target Product Profile

97 Prior to TDS development, the applicant should establish the desired quality target product
98 profile (QTPP). The QTPP is a prospective summary of the quality characteristics of the TDS
99 product that ideally will be achieved to ensure the desired quality, taking into account safety and
100 efficacy of the product (ICH Q8(R2)). In general, QTPP elements and their quality
101 considerations for TDS may include:
102

⁹ See FDA guidance for industry *Q8(R2) Pharmaceutical Development* (November 2009). We reference International Conference for Harmonisation (ICH) guidelines, which address complex scientific issues or set forth first interpretations of regulatory requirements, and correspond to FDA draft and final guidance documents, respectively.

¹⁰ For example, requirements under 21 CFR part 820 for design control, purchasing controls, management responsibility and corrective and preventive action must be met. See FDA guidance for industry *Current Good Manufacturing Requirements for Combination Products* (January 2017) for additional information regarding options for complying with the requirements of 21 CFR part 820 for a combination product.

¹¹ See footnote 9.

¹² Additional requirements for design control include preparation of a design plan (21 CFR part 820.30(b)) and holding review meetings with specified personnel in attendance (21 CFR part 820.30(e)). See *Current Good Manufacturing Requirements for Combination Products* for additional information regarding design control requirements for combination products and other CGMP requirements for combination products that include a device constituent part.

Contains Nonbinding Recommendations

Draft — Not for Implementation

QTPP Element	Quality Considerations
In vivo delivery of active ingredient to achieve therapeutic effect	Formulation design and manufacturing control
Minimization of residual drug	Formulation design
Adherence for duration of wear period	Excipient selection, component control, physical design (shape, dimensions, etc.), and manufacturing control
Minimization of irritation	Formulation design
Chemical and physical stability for shelf life	Formulation design, container closure attributes, storage conditions
Non-drug substance-related impurities	Excipient selection and manufacturing control

107
108 Other QTPP elements may exist depending on therapeutic need, patient population, or other
109 functional property requirements. For example, the size of the finished product may be a QTPP
110 element depending on the location on the body where the product is to be applied or if the patient
111 population is pediatric.

112
113 **B. Critical Quality Attributes**

114
115 *1. TDS Product*

116
117 Early in the TDS development process, the applicant should generate a list of potential CQAs. A
118 CQA is a physical, chemical, biological, or microbiological property or characteristic that should
119 be within an appropriate limit, range, or distribution to ensure the desired product quality (ICH
120 Q8(R2)). Knowledge of the QTPP for the product, in combination with prior knowledge, risk
121 assessments, and/or experimentation, can be used to develop the list of product CQAs. Each
122 CQA, either alone or in concert with one or more other CQAs, should relate to one or more
123 elements of the TDS product QTPP. The list of product CQAs can be modified as product
124 development progresses and new knowledge is gained. The CQAs of the drug substance(s),
125 excipients, components and container closure system should also be identified in the application.

126
127 For TDS, CQAs typically include appearance (such as lack of visible crystals), dimensions,
128 uniformity of dosage units, assay, permeation enhancer content, impurities and degradants, in
129 vitro drug release profile, preservative/antioxidant content (if present), peel adhesion, tack,
130 release liner peel strength, shear strength, cold flow, residual solvents, residual monomers,
131 microbial limits, and package integrity.

132
133 *2. Drug Substance*

134
135 Selection of a drug substance should be justified based on the physicochemical and biological
136 properties of the drug substance that can influence the performance of the TDS product and its
137 manufacturability. In particular, properties that influence the rate of delivery, such as molecular
138 weight, melting point, partition coefficient, pKa, aqueous solubility, and pH, should be
139 considered. Other characteristics of the drug substance such as particle size, crystal form, and
140 polymorphism should be evaluated and justified in terms of product performance.

Contains Nonbinding Recommendations

Draft — Not for Implementation

141

142 3. *Excipients and Components*

143

144 Excipients and components used in TDS can include various adhesives, permeation enhancers,
145 rate controlling or non-rate controlling membranes, solubilizers, plasticizers/softeners, or
146 tackifiers, all of which can influence the quality and performance attributes of TDS.

147

148 Rigorous qualification of key excipients and components is important to ensure optimum product
149 quality attributes in transdermal and topical formulations, and facilitates the postapproval change
150 process for changes in the raw materials, manufacturing process, or suppliers.

151

152 For example, when qualifying the adhesives in a TDS product, an applicant should consider the
153 following attributes:

154

- 155 • For adhesive polymer(s) as raw material(s): molecular weight, polydispersity,
156 spectroscopic analysis (e.g., infrared radiation (IR) absorption), thermal analysis, intrinsic
157 or complex viscosity, and measurement of residual monomers, dimers, solvents, heavy
158 metals, catalysts, and initiators.
- 159 • For adhesive as a laminate (in the absence of the active ingredient and other excipients):
160 residual solvents, peel, tack, shear, and adhesion.
- 161 • For adhesive in the final product (along with drug substance and other excipients and
162 components): identification, residual monomers, dimers, and solvents; impurities; loss on
163 drying; and uniformity. Other properties to be considered include the viscoelastic
164 properties (such as elastic modulus (G'), viscous modulus (G''), and creep compliance
165 (J)), and functional properties including, but not limited to, peel, shear, adhesion, tack, in
166 vitro drug release, and in vitro drug permeation.

167

168 The properties of an adhesive as raw material (e.g., rheology, including intrinsic viscosity and
169 complex viscosity) can impact the final product quality attributes. Adhesive suppliers'
170 specifications are often wide; thus, adhesive raw material received throughout the life cycle of
171 the product may vary greatly within the adhesive suppliers' specifications. For example, the
172 rheological properties of the adhesive lots used in the pivotal in vivo trial for TDS (e.g.,
173 bioequivalence (BE), Pharmacokinetic (PK), adhesion studies) may not be consistent with the
174 supplier's previously manufactured adhesive lots or their future adhesive lots. Therefore,
175 applicants should request historical rheology values from the adhesive manufacturer to better
176 understand their process capabilities and the potential influence of variability in the adhesive

Contains Nonbinding Recommendations

Draft — Not for Implementation

179 rheology on the final product. This can further assist applicants in assessing the need to establish
180 or tighten internal controls for the raw material.

181
182 Identifying, evaluating, and properly controlling similar quality attributes of other key
183 components of TDS products will enhance product and process understanding of the TDS
184 throughout its life cycle.

185
186 4. *Identifying Labeling*
187

188 Applicants are encouraged to incorporate a representative label early in development to assure
189 the labeling process or inks utilized for printing do not interact with the TDS product, and to
190 properly assess inks during extractable and leachable studies. The identifying label is typically
191 placed on the backing membrane of TDS and should, at minimum, include the product name and
192 strength.

193
194 Transdermal and topical systems that are clear, translucent, or colored to match human skin tones
195 can make it difficult to find the TDS on the patient, and have led to medication administration
196 errors when patients or caregivers fail to remove old systems and apply more than one system at
197 a time. Clear or translucent TDS may also be difficult to find if they detach prematurely from a
198 patient, thereby increasing the potential for secondary or accidental exposure of the drug to a
199 health care provider, caregiver, or child. Therefore, we recommend the backing membrane be
200 printed with ink that has adequate contrast and remains visible for the duration of system wear
201 and after disposal.

202
203 C. **Product and Process Development**
204

205 The principles of quality by design (QbD) and elements of pharmaceutical development
206 discussed in ICH Q8(R2), Q9, and Q10¹³ should be applied throughout the TDS life cycle to
207 ensure TDS products have the identity and strength, and meet the quality and purity
208 characteristics required under section 501(a)(2)(B) of the Federal Food, Drug, and Cosmetic Act
209 (FD&C Act).

210
211 TDS can be as simple as a single drug substance dissolved in a single adhesive, or highly
212 complex, multi-component, multi-adhesive, multi-laminate matrices. Excipients and components
213 in TDS can include various adhesive systems, permeation enhancers, rate controlling or non-rate
214 controlling membranes, solubilizers, plasticizers/softeners, or tackifiers.

215
216 As a general principle, product development strategies should seek to minimize product
217 complexity while still achieving the QTPP. Less complex products are likely to have fewer
218 potential failure modes than more complex products. Product and process controls can be
219 simplified as product complexity decreases, which can reduce the risk of manufacturing
220 problems occurring during routine commercial manufacture.

221

¹³ See FDA guidances for industry *Q8(R2) Pharmaceutical Development* (November 2009), *Q9 Quality Risk Management* (June 2006), and *Q10 Pharmaceutical Quality System* (April 2009).

Contains Nonbinding Recommendations

Draft — Not for Implementation

222 Systematic quality risk assessments and process characterizations can support the identification
223 of appropriate controls for manufacturing process variables, in order to produce TDS products
224 with acceptable CQAs. Risk assessments can also help define the robustness of certain critical
225 material attributes (CMAs) and critical process parameters (CPPs), such as raw material
226 characteristics, hold times and equilibration periods.
227

IV. INFORMATION TO BE SUBMITTED IN AN APPLICATION

230 An applicant must provide technical data and information in sufficient detail to permit the
231 Agency to make a knowledgeable judgment about whether to approve the application or whether
232 grounds exist under section 505(d)¹⁴ or 505(j)¹⁵ of the FD&C Act to refuse to approve the
233 application. This includes information about the drug substance¹⁶ and information about the TDS
234 product.¹⁷
235

236 The following sections provide recommendations to applicants about pharmaceutical
237 development and quality information to be included in the application sections described in ICH
238 M4Q.¹⁸
239

A. Pharmaceutical Development

242 As described in ICH M4Q, section 3.2.P.2 of the application should contain information on
243 studies conducted to establish that the dosage form, formulation, manufacturing process,
244 container closure system, microbiological attributes, and usage instructions specified in the
245 application are appropriate for the intended use of the TDS product. The applicant should
246 address the following:
247

- 248 • A description of the QTPP.
- 249
- 250 • A list of the CQAs of the TDS product, along with the limit, range, or distribution
251 associated with each CQA and appropriate justification.
- 252
- 253 • Identification of those aspects of the drug substance, excipients, container closure system,
254 and manufacturing processes important to attaining product quality.
- 255
- 256 ○ In particular, the selection of excipients and components, their concentrations (as
257 appropriate), and their functional characteristics affecting TDS performance
258 should be discussed. For example, the applicant should describe the impact of
259 penetration enhancers on the adhesive properties of the TDS, solubility of the
260 drug substance in the blend, and skin permeation.

¹⁴ See 21 CFR part 314.50(d).

¹⁵ See 21 CFR part 314.94(a)(9).

¹⁶ See 21 CFR parts 314.50(d)(1)(i) and 314.94(a)(9).

¹⁷ See 21 CFR parts 314.50(d)(1)(ii) and 314.94(a)(9). Please note information about the combination product as a
whole (referred to as TDS product in this guidance) should be provided in those eCTD sections intended for the drug
product alone.

¹⁸ See FDA guidance for industry *M4Q: CTD — Quality* (August 2001).

Contains Nonbinding Recommendations

Draft — Not for Implementation

- 261
- 262 ○ Applicants should specify the allowable ranges around the process parameters and
- 263 material attributes that have a potential to impact TDS product CQAs with
- 264 justification and describe how they will be monitored.
- 265
- 266 ● A description of the quality risk assessments, potential failure modes, and product and
- 267 process control strategies.
- 268

Contains Nonbinding Recommendations

Draft — Not for Implementation

269

270 1. *Batch Formula*

271

272 For processes that use solvated raw materials, batch formulas should be designed to tolerate
273 variation in the solvent content of raw materials. Drug substance overages and excipient excesses
274 can be added to a batch to account for evaporation during drying, but the amount of overage or
275 excess should be controlled and justified by process development studies. Applicants should
276 describe any cross-linking reactions since these reactions impact the chemical composition and
277 quality of the finished product.

278

279 2. *Expectations for Registration/Exhibit Batches*

280

281 Applicants should submit data for registration/exhibit batches manufactured from three distinct
282 laminates, where each laminate is made using different lots of drug substance, adhesives,
283 backing, and/or other critical elements in the TDS product. Release and stability sampling should
284 be representative of the full length and width of the laminates to demonstrate that the
285 manufacturing process is robust.

286

287 Any clinical batch (e.g., those used in phase 3, PK, BE, adhesion, or irritation and sensitization
288 studies) should be included in the formal stability program.^{19,20} Applicants should provide the
289 executed batch records and certificates of analysis for all batches used in clinical and BE studies,
290 including placebo batches. Placebo batches should include all inactive ingredients and
291 components and representative printing.

292

293 Applicants should report the actual yields, theoretical yield, and percentages of theoretical yield
294 from the conclusion of each appropriate phase of manufacturing, processing, packaging, and
295 holding. The theoretical yield should be calculated for each batch prospectively. For example, if
296 a coating process is stopped due to a manufacturing issue, the theoretical yield should be based
297 on the mass that was intended to be coated rather than the mass that was actually coated. The
298 yield for TDS processes may be lower than the usual yield for many other drug manufacturing
299 processes. However, abnormally low yields in the TDS submission batches should be explained
300 in the application.

301

302 Because of the sensitivity of TDS products to small differences in manufacturing process, a
303 master table comparing the clinical, BE, registration/exhibit, and proposed commercial batches
304 should be included in section 3.2.P.2.3 of the application. For each batch, this table should
305 specify the manufacturing process used (including equipment, and manufacturing scale, and
306 those parameters that could directly or indirectly impact a CQA), and the results of critical in-
307 process tests (specifying the test procedure and acceptance criteria), yield, and reconciliation
308 data. The table should also include links to any information referenced from other parts of the
309 submission. It should also clarify whether these batches were packaged to completion at the die
310 cutting and pouching stage.

311

¹⁹ See FDA guidance for industry *Q1A(R2) Stability Testing of New Drug Substances and Products*.

²⁰ See FDA guidance for industry *ANDAs: Stability Testing of Drug Substances and Products: Questions and Answers* (May 2014).

Contains Nonbinding Recommendations

Draft — Not for Implementation

312 3. *Product Characterization Studies*

313

314 Because of the uniqueness of the TDS dosage form, specialized developmental studies and
315 evaluations are recommended to demonstrate full product understanding in both new and
316 abbreviated new drug applications. Several such studies/evaluations are discussed below.

317

318 a. *Skin Permeability*

319

320 Skin permeability is a function of permeant thermodynamic activity and degree of saturation of
321 the drug substance in the TDS. The solubility and degree of saturation of the drug substance in
322 the TDS should be evaluated, and their impact on the performance of the TDS understood.

323

324 b. *Crystallization*

325

326 Generally, crystallization of the drug substance in the TDS product should be avoided. If
327 crystallization occurs, studies should be conducted to assess its impact on the *in vivo*
328 performance and adhesion of TDS.

329

330 c. *Thermodynamic Stability of Drug Substance*

331

332 To confirm thermodynamic stability of the drug substance, the risk of precipitation or salt
333 formation during manufacturing and storage should be evaluated. If there is an equilibrium
334 between different salt forms, the kinetics to reach this equilibrium should be thoroughly
335 characterized. The impact of this equilibrium on TDS performance should be evaluated with
336 relevant *in vitro* drug release, permeation, and/or clinical data.

337

338 d. *Strength*

339

340 The strength of a transdermal system should be expressed as a rate (e.g., XX mg/day), whereas
341 the strength of a topical system should be expressed as a percent total drug load. For transdermal
342 systems, the strength can be derived from and supported by either PK data or by residual drug
343 analysis performed on used transdermal systems. The first approach involves the derivation of a
344 clearance (Cl) value from absolute bioavailability of the drug and multiplying that by the
345 concentration (C_{ss}) at the steady state. The second approach involves the measurement of the
346 amount of drug left in the transdermal systems at the end of the wear period and dividing the
347 “consumed amount” by the wear period.

348

349 Although the strength of a topical system is expressed as percent total drug load, a residual drug
350 analysis should still be conducted.

351

352 e. *Residual Drug*

353

354 Consistent with FDA guidance for industry *Residual Drug in Transdermal and Related Drug*
355 *Delivery Systems* (August 2011), scientific justification sufficient to support the amount of
356 residual drug in a TDS should be included in the pharmaceutical development section of the
357 application. To provide a robust analysis of the residual drug, we recommend the following:

Contains Nonbinding Recommendations

Draft — Not for Implementation

- 358
- 359 1. Data should be based on analysis of the used TDS and not on a theoretical
- 360 calculation.
- 361 2. The amount of drug left on the skin surface should be assessed. Any drug that may
- 362 have been transferred to packaging or other components of the TDS during storage or
- 363 use should be accounted for in an attempt to perform a mass balance.
- 364 3. Tape or overlays should not be used in studies where the TDS is used to calculate
- 365 residual drug.
- 366 4. TDS adhesion assessments should be conducted over the entire period of wear to
- 367 determine whether the TDS diffusional surface area remains in full contact with the
- 368 skin during the entire period of the study.
- 369 5. A control study should be performed to provide an estimate of drug load, rather than
- 370 simply using the expressed label claim. This study should include analysis of a
- 371 minimum of three unused products from the same lot of product used in the study.
- 372 6. Sample storage conditions before and after application of the TDS on the skin should
- 373 be validated. Photostability and thermal stability of the active ingredient(s) in the
- 374 TDS should also be considered when selecting the appropriate storage conditions.
- 375 7. Appropriately sensitive and valid analytical methods should be used to assay the
- 376 residual drug content for the purpose of calculating drug depletion and delivery.
- 377 When estimating the amount of residual drug in the TDS, a drug extraction method
- 378 with a target extraction efficiency close to 100 percent should be utilized to minimize
- 379 error.

380

381 f. In Vitro Permeation Testing

382

383 In vitro permeation testing (IVPT) with the use of excised human skin may be utilized to

384 characterize the rate and extent of transdermal or topical drug delivery, and the study protocols

385 and results should be described in the application. The following factors should be considered

386 during IVPT model development:

- 387
- 388 • Selection of the diffusion apparatus and the operating conditions like stirring rate or flow
- 389 rate, as well as temperature control to maintain the under-normal-conditions skin surface
- 390 temperature ($32^{\circ}\text{C} \pm 1^{\circ}\text{C}$)
- 391
- 392 • Source of the skin, skin storage conditions, choice of skin type (i.e., age range, sex, race,
- 393 and consistent anatomical region) and the skin preparation technique (e.g., full-thickness,
- 394 dermatomed, isolated epidermis)

395

396 The IVPT protocol should specify the nominal skin thickness and its range, details of the skin

397 barrier integrity test, and any occlusion of the product during the IVPT. Visual observations

398 alone are not sufficient to characterize the barrier integrity of the skin. Acceptable barrier

399 integrity tests may be based on tritiated water permeation, trans-epidermal water loss (TEWL),

400 or electrical impedance/conductance measured across the skin. The test parameters and

401 acceptance criteria used for the skin barrier integrity test should be justified based on relevant

402 literature references or other information.

Contains Nonbinding Recommendations

Draft — Not for Implementation

403
404 The IVPT protocol should also include details about the receptor solution, system equilibration,
405 procedures for skin mounting and application of the TDS, as well as any measures to secure the
406 TDS on the skin surface to prevent lifting. We recommend that an antimicrobial agent be
407 included in the receptor solution (e.g., ~0.1 percent sodium azide or ~0.01 percent gentamicin
408 sulfate).
409
410 The IVPT study report should include dose duration, sampling duration, sampling time points,
411 concentration of samples, concentration of the antimicrobial component, and the empirical
412 stability (at relevant temperatures) and solubility of the active ingredient in the receptor solution.
413 The study report should also include the number of individuals whose skin was evaluated (i.e.,
414 skin donors) and the number of replicate skin sections per donor per treatment group.
415
416 All treatment groups compared in an IVPT study should be dosed on the skin samples from the
417 same set of donors, with the same number of replicates per donor per treatment group. These
418 treatment groups should also use the skin samples from the same anatomical site from all donors,
419 unless varying these parameters is essential to the design of the study and the evaluation of the
420 TDS. The study report should include the equilibrated skin surface temperature prior to dose
421 application, and the ambient temperature and relative humidity in the laboratory, as well as the
422 extent of qualification of the sample analytical methods (e.g., HPLC).
423

424 g. Extractable and Leachable Testing
425

426 All TDS should be evaluated for potential compounds that could be transferred from the product
427 to the patient. This evaluation should include assessments of extractables and leachables,
428 consistent with USP <1663> and <1664>.
429

430 As defined in United States Pharmacopeia (USP)²¹ General Chapter <1663> *Assessment of*
431 *Extractables Associated with Pharmaceutical Packaging/Delivery Systems*, “extractables are
432 organic and inorganic chemical entities that are released from a pharmaceutical packaging/
433 delivery system, packaging component, or packaging material of construction and into an
434 extraction solvent under laboratory conditions.” The extraction conditions should “accelerate or
435 exaggerate the normal conditions of storage and use for a packaged dosage form.”
436

437 As defined in USP General Chapter <1664> *Assessment of Drug Product Leachables Associated*
438 *with Pharmaceutical Packaging/Delivery Systems*, “leachables are foreign organic and inorganic
439 entities that are present in a packaged drug product because they have leached into the packaged
440 drug product from a packaging/delivery system, packaging component, or packaging material of
441 construction under normal conditions of storage and use or during accelerated drug product
442 stability studies.”
443

444 In the context of this guidance, extractable impurities are chemical entities that can be drawn out
445 of the backing membrane, release liner, pouching material, printed ink, internal membranes, and
446 components other than the drug substance and adhesive matrix by a solvent system.
447 Additionally, an extraction study can detect compounds introduced into the TDS from the

²¹ USP references in this guidance refer to USP 41–NF 36.

Contains Nonbinding Recommendations

Draft — Not for Implementation

448 manufacturing process, which can impact the final impurity profile of the TDS product. In the
449 context of this guidance, leachables are chemical entities present in a packaged TDS because
450 they leached into the adhesive matrix (or where applicable, reservoir) under normal conditions of
451 storage or during accelerated stability studies. These compounds may transfer from the adhesive
452 matrix (or reservoir) to the patient during use.

453

454 Extractable studies are used to inform the leachable study design. The leachable data should be
455 correlated, if possible, with the extractables profile(s) determined under the various control
456 extraction study conditions. Both extractable and leachable studies should have adequate
457 sensitivity to detect compounds potentially released at a level associated with patient exposure
458 when a product is used at the maximum daily dose (e.g., 1.5 mcg/day for standard mutagenic
459 compounds in a chronic-use drug product²²), unless otherwise justified. For some products, the
460 maximum daily dose may require applying more than one TDS.

461

462 Adhesive impurities such as residual monomers, initiator byproducts, and aldehydes are not
463 considered extractables or leachables because these impurities are present at peak concentrations
464 before product manufacture. Control of adhesive impurities is discussed elsewhere in this
465 guidance (see section IV. INFORMATION TO BE SUBMITTED IN AN APPLICATION, C.
466 Control of TDS Product). However, the leachable studies discussed below may be leveraged to
467 justify adhesive impurity limits or as part of the toxicological risk assessment for adhesive
468 impurities because a leachable study is performed on the proposed commercial product.

469

470 To aid in the extractable and leachable analyses described below, applicants should contact raw
471 material suppliers to identify potential extractables of toxicological concern, such as residual
472 monomers from backing materials.

473

i. Extractable Studies

475

476 Extractable studies should be conducted early in the pharmaceutical development process to
477 understand the potential leachables from components of the proposed commercial TDS. These
478 studies should be conducted on components such as backing membrane, release liner, rate
479 controlling or other internal membranes, ink and pouching. The testing components should be
480 extracted in a variety of solvents with a range of polarities under vigorous laboratory extraction
481 conditions to maximize the levels of extractables and identify as many potential leachables as
482 possible. One of the extraction solvents used in the extractable studies should include the solvent
483 of the proposed commercial adhesive(s) platform or the known residual solvents for the finished
484 TDS. The choices of solvents used should be justified.

485

ii. Leachable Studies

487

488 The conditions of the leachable studies should mimic as closely as possible the “worst-case”
489 clinical conditions of the skin (e.g., sweating during rigorous exercise). The solvent/solution
490 selection (such as salt concentrations), temperature, level of agitation, duration of exposure to the
491 solvent, etc., selected for the studies should be justified. The release liner should be removed

²² See FDA guidance for industry *M7(R1) Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals To Limit Potential Carcinogenic Risk* (March 2018).

Contains Nonbinding Recommendations

Draft — Not for Implementation

492 from the system during the study to adequately expose the adhesive layer to the biologically
493 relevant solvent. Applicants should conduct a multi-timepoint leachable analysis (e.g., 0, 6, 12,
494 24 months) to provide a comprehensive leachable profile and identify any trends in leachables as
495 these data could impact the shelf life of the product. At the time of application submission, data
496 should be submitted from a leachable study performed on samples from multiple batches stored
497 at a minimum of 6 months under accelerated and long term conditions. We recommend
498 conducting leachable studies on the same three distinct laminates of TDS placed on stability
499 testing.

500

501 h. Assessing the Effects of Heat

502

503 Heat from external sources such as a heating blanket, and potentially from a rise in internal body
504 temperature due to strenuous exercise or fever, may affect the rate of drug release from the TDS
505 and the absorption of drug into and through the skin. We recommend that applicants study the
506 impact of an elevated TDS/skin surface temperature on the delivery profile of TDS relative to its
507 delivery profile at a normal TDS/skin surface temperature.

508

509 For a TDS product to be submitted in an NDA, we recommend that the heat effect studies be
510 conducted as part of a clinical study using the proposed commercial product. In designing the
511 heat effect studies, critical factors such as appropriate elevated test temperature(s), heat exposure
512 onset time(s), duration(s), and cycles (if any), as well as mechanisms of heat exposure (e.g.,
513 heating lamp, heating pad, etc.) should be identified.

514

515 For a TDS product to be submitted in an ANDA, the applicant should evaluate whether the test
516 TDS, used under elevated temperature conditions, increases drug delivery compared to the
517 reference (R) TDS. The ANDA applicant should provide the results of an IVPT study comparing
518 the drug delivery characteristics for the test TDS and the R TDS at normal and elevated
519 temperatures using skin from multiple individuals (donors), with multiple replicate diffusion
520 cells evaluated per donor, per treatment (test versus R), and per temperature condition. An IVPT
521 study with a sufficient number of donors and replicates per donor per treatment per temperature
522 condition is recommended to obtain meaningful data. A study with fewer than four donors and
523 four replicates per donor per treatment per temperature may be difficult to interpret.

524

525 We recommend a parallel evaluation and comparison of the test and R TDS under the following
526 baseline and elevated temperature conditions:

527

- 528 1. **BASELINE:** Both the test and R products should be maintained at a TDS/skin surface
529 temperature of $32 \pm 1^\circ\text{C}$ for the entire study duration.
- 530 2. **ELEVATED TEMPERATURE:** Both the test and R products should be maintained at
531 a TDS/skin surface temperature of $32 \pm 1^\circ\text{C}$ until a specified time, approximately
532 when the peak flux is observed, and then maintained at a TDS/skin surface
533 temperature of $42 \pm 2^\circ\text{C}$ for a period thereafter, which may be the remainder of the
534 study duration.

535

536

Contains Nonbinding Recommendations

Draft — Not for Implementation

537 It should not be assumed that a set temperature for a circulating water bath will provide the target
538 temperature at the TDS/skin surface. The TDS/skin surface temperature should be directly
539 measured using an infrared thermometer or other temperature probe. The study duration for a 7-
540 day wear TDS need not encompass the entire labeled duration of wear. It may be adequate to
541 perform an IVPT study for a 48 or 72 hour duration, if that duration is sufficient to reach the
542 peak drug delivery rate under baseline conditions. Alternatively, an applicant may justify
543 evaluating other conditions or scenarios of exposure to elevated temperatures that represent the
544 worst-case scenario for a given TDS product or indicated patient population.

545

546 i. Microscopic Matrix Evaluation

547

548 Due to complexities of many TDS formulations, adhesive matrices often do not form true
549 solutions, rather they manifest as dispersions. If rearrangements of the dispersed-like system
550 occur over time within the matrix, they can possibly lead to lack of adhesion or changes in drug
551 delivery and release. As such, it is important to have a good understanding of the TDS
552 formulation, the way the drug substance and excipients are dispersed within the adhesive matrix,
553 and the tendency of the matrix to change over time from product release through its expiry
554 period. Therefore, it is informative to assess surface and cross-sectional changes in the TDS
555 matrix throughout the shelf life of the developmental batches using high-powered microscopy,
556 elemental mapping, or other appropriate tools. These tools may not be appropriate for every
557 TDS; applicants should provide a scientific justification for the tools used. These assessments
558 will help achieve comprehensive understanding of product and process, mitigate quality-related
559 risks, and assure that the TDS meets the requisite quality attributes through its expiry period.

560

561 4. *Proposed Manufacturing Changes*

562

563 Scale-up proposals and other process changes may be proposed in an original NDA or ANDA,
564 but the level of additional information needed to support these changes will generally be
565 commensurate with the risk of the change to adversely impact product quality. In general,
566 changes to TDS after the conduct of pivotal clinical studies should be avoided when possible
567 because of the sensitivity of TDS to small changes in formulation and manufacturing process.

568

569 Low-risk changes may be adequately supported with updated master batch records and batch
570 formulas. Examples include scale-up of solvent-based and aqueous mixtures within a factor of 10
571 using equipment of the same design and operating principles, or proposing a change to
572 converting and pouching equipment of the same design and operating principle.

573

574 Moderate-risk changes may warrant additional developmental studies and stability data on
575 commercial scale batches to demonstrate that they will not result in an adverse impact on the
576 quality of the product. Examples of such changes may include scale-up of hot-melt mixtures
577 within a factor of 10, scale-up of screw-based mixing processes, and changes to
578 coating/drying/laminating equipment of the same design and operating principle.

579

580 Changes that pose a high risk to quality may warrant additional in vivo studies. An example is
581 changing the manufacturing process to incorporate equipment of a different design and operating
582 principle.

583

B. Manufacture

584

585 As described in ICH M4Q, section 3.2.P.3 of the application should contain information about
586 where and how the TDS product will be manufactured. The batch formula and a description of
587 the manufacturing process and process controls should be provided. A detailed schematic
588 diagram of the proposed production process, including descriptions of the equipment, operating
589 conditions, and process controls, should also be provided.²³

590

591 During process development, the applicant should identify process variables that have a potential
592 to impact TDS product CQAs. These process development studies inform commercial process
593 qualification and continued process verification later in the product life cycle.

594

595 Typical TDS manufacturing steps/unit operations are listed below (a non-exhaustive list). For
596 processes that incorporate these steps, the applicant should describe how each operation and
597 associated controls were developed, addressing the considerations below, specifically, the CQAs
598 that may be impacted by the operation, and the relevant process parameters and material
599 attributes that may impact the output of each operation:

600

- 601 ○ Mixing: Mixing operations produce bulk mixtures for the coating step. Mixing can
602 impact CQAs such as assay, stability of drug substance and/or excipients, content
603 uniformity, microscopic appearance, and physical properties of the adhesive. The
604 control strategy should address the impact of equipment design, order of material
605 addition, and process parameters (such as mixing speeds, mixing times, temperatures,
606 redisposition or recirculation conditions, and deaeration conditions) on CQAs, and
607 should be justified, as necessary, based on development studies. CMAs that can
608 impact mixing include drug substance particle size, polymorphic form, raw material
609 rheological attributes, and percent solids for materials supplied in solvent-based
610 mixtures.
- 611 ○ Coating, drying, and lamination: Coating is the application of a mixture to a substrate.
612 Depending on the equipment used, coating can impact CQAs such as content
613 uniformity and microscopic appearance. Though CPPs are equipment dependent,
614 firms should demonstrate that the control strategy (e.g., process parameters to be
615 controlled) is adequate to ensure content uniformity and microscopic appearance for
616 the full duration of the coating operation. CMAs that can impact coating include the
617 rheology of the bulk mixture and within-roll uniformity of the substrate to be coated.

618

619

620

621

622

623

624

625

626

Drying involves the removal of solvent from the mixture following the coating
621 process. This process step can impact CQAs such as assay, permeation enhancer
622 content, antioxidant content, water content (for hydrogels), content uniformity,
623 microscopic appearance, drug release, product stability, residual solvents, residual
624 adhesive impurities, and physical properties of the adhesive matrix. Therefore, CPPs
625 for drying that may need to be considered during process development include line
626

²³ See 21 CFR part 314.50(d)(1)(ii)(c).

Contains Nonbinding Recommendations

Draft — Not for Implementation

627 speed, the pump or screw speed, zone temperatures, air flow rates, temperature of the
628 drying air, and humidity of the drying air. Process development should also consider
629 the CMAs that can impact drying such as solvent and adhesive impurity content in the
630 bulk mixture. Applicants should also provide data to justify any drug substance
631 overage or excipient excess that may be needed to compensate for any evaporation
632 during drying.

633
634 Lamination involves the combining of multiple layers of a given transdermal system
635 design into a single common laminate. Applicants should provide development data
636 for corona treatments if such a process is used to bond the adhesive to a backing film
637 or rate-controlling membrane.

- 638
- 639 ○ Slitting and Printing: The bulk product is typically slit longitudinally into narrower
640 rolls of laminate for further processing. Slitting and printing are typically low risk
641 steps; however, if certain aspects of the printing processes, e.g., excessive penetration
642 depth or heat input, can adversely affect product quality, then printing processes
643 should be characterized and controlled.

644

 - 645 ○ Converting and pouching: Converting and pouching typically involve cutting a
646 continuous laminate into individual units and sealing the unit in a heat-sealed pouch.
647 CQAs affected by these processes include usability of the product (e.g., the ability to
648 remove a release liner) and pouch integrity. Common CPPs for these steps include
649 heat sealing temperatures and dwell times.

650

 - 651 ○ Curing: Some TDS have processing steps to complete a curing reaction after drying
652 or pouching. Curing time and curing conditions are common CPPs for this step.
653 Curing should be completed before batch release testing if curing could impact test
654 results.

655

 - 656 ○ Hold times: Hold times must be defined and justified for in-process materials held
657 between unit operations (21 CFR part 211.111). Applicants should use a risk-based
658 approach to determine which CQAs to monitor during hold time studies.

659

 - 660 ○ Other considerations: Tubing and other product-contact equipment must be qualified
661 as non-reactive, non-additive, and non-absorptive (21 CFR part 211.65(a)). The
662 selection of the tubing and certain product-contacting equipment should be risk-
663 based, i.e., dependent on the duration of contact, process temperature, solvent system,
664 material considerations, clearance of leachables during manufacturing, and clinical
665 use considerations.

666
667 In-process controls (IPCs) for TDS are an integral part of the control strategy. The description of
668 the proposed IPCs should address the following:

- 669
- 670 ● At the mixing stage, IPCs can provide assurance of assay, viscosity, uniformity, and
671 pH for aqueous mixtures. If multiple samples are taken from a dispersed mixture,

Contains Nonbinding Recommendations

Draft — Not for Implementation

672 applicants should specify the mean, range for individual samples, and percent relative
673 standard deviation.

- 674
- 675 • IPCs for coating, drying, and lamination can provide assurance of uniformity across
676 the laminate and throughout the run. For example, measurements for film appearance,
677 coat weight, and/or a test for residual solvents may be applicable IPCs for coating and
678 drying. Film appearance measurements that allow detection and rejection of defects
679 affecting continuity of an adhesive laminate (e.g., streaks) should be described in the
680 application. Additionally, for films that are dispersions at the microscopic scale (e.g.,
681 acrylic adhesive dispersed in silicone, povidone dispersed in silicone, or solid drug
682 substance dispersed in adhesive), applicants should describe the IPCs established to
683 monitor uniformity throughout a coating run in the application. Samples for testing
684 coat weight and uniformity should be representative of the full length and width of a
685 laminate. Alternatively, these attributes can be monitored continuously (e.g., by the
686 use of in-line coating measurement tools). In cases where the upstream controls can
687 be used to confirm certain finished TDS specifications, such as residual solvents and
688 residual adhesive impurities, IPC testing can be used in lieu of release testing for
689 these attributes.²⁴

690

 - 691 • For converting and pouching, IPCs can provide assurance of pouch integrity, product
692 placement within the pouch, and product appearance (e.g., adequacy of the printed
693 label, die-cuts, and kiss-cuts). An automated system can perform in-process checks
694 for product appearance in lieu of human operators if the automated system is
695 demonstrated to be suitable for the intended task(s).

C. Control of TDS Product

696 Section 3.2.P.5 of the application should contain the following information on control of the
697 TDS product:

- 701
- 702 • Specification
 - 703 • Analytical procedures
 - 704 • Validation of analytical procedures
 - 705 • Characterization of impurities
 - 706 • Batch analyses
 - 707 • Justification for the proposed specification

708

709 Typical CQAs included in TDS specification:

- 710
- 711 • Description
 - 712 • Identification
 - 713 • Assay

²⁴ See *Questions and Answers on Current Good Manufacturing Practices, Good Guidance Practices, Level 2 Guidance - Records and Reports* at the following site:
<http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm124787.htm>.

Contains Nonbinding Recommendations

Draft — Not for Implementation

- 714 • Impurities and degradation products
715 • Uniformity of dosage units
716 • Permeation enhancer content, when applicable
717 • Adhesion
718 • Release liner peel
719 • Tack
720 • Shear
721 • Cold flow
722 • In vitro drug release
723 • Drug substance crystal presence
724 • Pouch integrity
725 • Microbial limits, when applicable²⁵
726 • Moisture content, when applicable
727 • Residual solvents

728
729 The proposed analytical procedures should be documented in sufficient detail that they can be
730 reviewed and reproduced in FDA laboratories. In some cases, if upstream controls can be used to
731 confirm that a batch of product meets a CQA listed on the specification, that attribute may not
732 need to be tested at release for every batch, but should be indicated as such on the
733 specification.²⁶ Applicants proposing a control strategy using such an approach should provide
734 justification.

735
736 Some of the methods and criteria associated with CQAs typical for TDS are described below.

737
738 a. Adhesive Impurities

739
740 Adhesives may contain residual monomers, initiator byproducts, aldehydes, etc. The safety of
741 these compounds should be assessed, as some of these compounds are classified as neurotoxic
742 (e.g., tetramethylsuccinonitrile) or mutagenic (e.g., crotonaldehyde). Manufacturers are
743 encouraged to contact the raw material suppliers to discuss the selected adhesive raw material
744 and all potential impurities, as some impurities may not be reported on the certificates of analysis
745 provided by the supplier. Applicants should discuss the potential impurities arising from the raw
746 material in the application. A control strategy for any impurity of toxicological relevance should
747 be established and justified. The control strategy may include testing at the raw material stage,
748 demonstrating that the manufacturing process is capable of consistently removing the impurities
749 of concern, testing of the final laminate, or a combination of the above.

750
751 To support a proposed control strategy based on the capability of the manufacturing process to
752 consistently remove any impurities of concern, applicants should provide data to demonstrate a
753 reduction in the level of the impurity in the final laminate (or finished product) compared to the

²⁵ When applicable, we recommend manufacturers assess the risk of microbiological contamination to their TDS in order to establish the appropriate microbiological tests, specification, and manufacturing operations for their product. Based on this risk assessment, manufacturers should leverage existing approaches (ICH guidelines, USP standards, FDA guidance, etc.) to determine the testing necessary for their product.

²⁶ See FDA guidance for industry *Q8(R2) Pharmaceutical Development*.

Contains Nonbinding Recommendations

Draft — Not for Implementation

754 level in the same batch of raw material. These data are necessary to quantitatively demonstrate
755 effectiveness of the manufacturing process in removing the impurity and to establish controls for
756 adhesive impurities based on levels in the raw material rather than on the final product.

757
758 Applicants may consider leveraging the leachable study discussed in the pharmaceutical
759 development section of this guidance by testing adhesive impurities in the leachate. The
760 leachable information can be used to provide toxicological justification for impurity limits or the
761 information can be included as part of the toxicological risk assessment.

762
763 b. Uniformity of Dosage Units

764
765 TDS specifications should include a test and acceptance criterion for content uniformity for the
766 dosage units. If the finished TDS is designed to be cut by the user, uniformity should also be
767 demonstrated among pieces cut from a single unit.

768
769 c. Permeation Enhancer Content

770
771 Products that utilize permeation enhancers to establish or maintain drug delivery should include
772 a test and acceptance criterion for permeation enhancers at release and throughout stability. An
773 acceptance criterion that is wider than the typical range for a particular permeation enhancer may
774 require in vivo justification in the absence of an in vitro in vivo correlation.

775
776 d. Adhesion Testing (Peel Adhesion, Release Liner Peel, Tack, and Shear Tests)

777
778 Using currently available methods, in vitro adhesion testing does not correlate to in vivo
779 adhesion, but in vitro adhesion testing can be useful for quality control (QC) purposes. In vitro
780 adhesion testing should include peel adhesion, release liner removal, tack, and shear (dynamic or
781 static).²⁷ There are multiple methods and different experimental parameters for each of the tests.

782
783 The peel adhesion test measures the force required to remove (peel away) a TDS that has been
784 applied to a standard test panel (e.g., polished stainless steel). The measurement of peel adhesion
785 is influenced by the test parameters such as dwell time, substrate (e.g., stainless steel, high
786 density polyethylene (HDPE)), peel angle, and peel speed.

787
788 A release liner peel test measures the force required to separate a TDS from its release liner. The
789 measurement of release liner peel is influenced by experimental parameters such as peel angle
790 and peel speed.

791
792 The probe tack test measures the force required to separate the test probe from the adhesive of
793 the TDS. Tack measurement is influenced by the test parameters such as the contact area, the
794 contact pressure, the time of contact (or dwell time), and rate of separation.

795
796 There are two categories of shear testing, namely dynamic and static. In the dynamic test, the
797 TDS is pulled from a standard test panel (e.g., polished stainless steel). Dwell time, speed, type
798 of test panel, mode of failure, and sample size are the typical test parameters reported for the

²⁷ See USP 41–NF 35 General Chapter <3> *Topical and Transdermal Drug Products-Product Quality Tests*.

Contains Nonbinding Recommendations

Draft — Not for Implementation

799 dynamic shear test. In the static shear test, the TDS sample is applied to a test panel that is at an
800 angle 2° from the vertical, and the sample is subjected to a shearing force by a means of a given
801 weight (e.g., 1000 g) suspended from the TDS; the time required to detach a standard area of the
802 TDS from a stainless steel test panel under a standard load is measured. Dwell time, weight used,
803 type of test panel, mode of failure, and sample size are the typical test parameters reported for
804 the static shear test. The time taken for the TDS sample to detach from the test panel is also
805 reported.

806
807 e. Cold Flow
808

809 Cold flow is the creeping or oozing of the adhesive matrix beyond the perimeter of the backing
810 membrane or through the release liner slit. Cold flow may be present on the TDS, release liner,
811 pouch, or disposable films (sometimes termed slip sheets or protective films, such as a film over
812 the backing and a film over the release liner). Though a quantitative method of assessing cold
813 flow can provide a meaningful measurement, it may not describe the difficulty in removing the
814 TDS from the pouch or the protective films from the TDS. The most accurate cold flow
815 assessment for TDS will likely come from a combination of product-specific quantitative and
816 qualitative methods.

817
818 The test methods should be discriminating and scientifically justified. Manufacturers should
819 propose product-specific acceptance criteria with justification supported by product development
820 research.

821
822 f. In vitro Drug Release
823

824 USP General Chapter <724> describes the apparatuses to use for in vitro release testing and the
825 acceptance criteria for each apparatus; however, method development and validation is not
826 addressed. General recommendations for in vitro release testing of TDS are described below
827 along with considerations for method design and validation.

828
829 In vitro drug release testing of TDS products is typically performed using specific, qualified
830 apparatus such as: Paddle over Disk (Apparatus 5), Cylinder (Apparatus 6), or Reciprocating
831 Holder (Apparatus 7).

832
833 The NDA or ANDA submission for the TDS product should include a method development and
834 validation report with complete information/data supporting the proposed drug release method
835 and acceptance criteria.

836
837 Sufficient detail and data should be included in the method development and validation report so
838 the adequacy of the method for batch release and stability testing can be properly assessed.
839 Examples of parameters to evaluate during method development include selection of USP
840 apparatus/other equipment, drug release medium, rotation or agitation speed, temperature, pH,
841 sink conditions, use of a surfactant, and other technical aspects of the test. An in vitro drug
842 release method should be simple, reliable, reproducible, discriminating, and robust. Applicants
843 should strive to develop a method that releases as much drug as possible.

Contains Nonbinding Recommendations

Draft — Not for Implementation

845 The validation section of the report should include complete information/data regarding: i) the
846 discriminating ability of the selected method, ii) the validation of the drug release methodology,
847 and iii) the validation/verification of the analytical method selected to assay the drug release
848 samples. The selected method should be able to differentiate the release profiles of TDS that are
849 intentionally manufactured with meaningful variations in critical process parameters and
850 formulation components. Validation data should demonstrate the range and sensitivity of the
851 method for proportional drug release across different strengths of the TDS. In addition,
852 validation data should demonstrate reproducibility of the method for drug release across different
853 runs of the same batch and its robustness, i.e., its capacity to remain unaffected by changes in
854 receptor medium temperature, paddle rate, and other method parameters.
855

856 The acceptance criteria for the in vitro drug release test should be based on the proposed TDS
857 product batch release data, including data from bio-batches (e.g., BE, PK, Clinical),
858 registration/exhibit batches, and commercial batches (if available). To set the acceptance criteria
859 for the in vitro drug release test, a complete drug release profile should be established by
860 collecting data until there is no increase in drug release over three consecutive time points
861 (sampling every 2 hours). The drug release profile of TDS products typically encompasses
862 initial, middle, and terminal phases; thus, for setting the acceptance criteria, there should be at
863 least one sampling time point covering each phase. The drug release data should be reported as
864 the cumulative percent of drug being released with time. The acceptance criteria range for each
865 specific timepoint should be based on the mean percentage value of drug released \pm 10 percent
866 using the drug release data generated at these times. The percentage should be determined based
867 on the TDS product's label claim. If less than 100 percent drug is released, but no drug increase
868 is observed over three consecutive sampling timepoints (i.e., incomplete drug release), the
869 amount of drug reached at the plateau should be considered 100 percent for the purposes of
870 estimating the percent of drug release over time.
871

872 Wider acceptance criteria range for the drug release test may be acceptable if they are supported
873 by an approved in-vitro in-vivo correlation model.
874

875 g. Crystal Presence

876 The presence of crystals or crystallization of the drug in the TDS over time can negatively
877 impact the product performance. Therefore, it is important to establish a test and acceptance
878 criteria to confirm the absence of crystals to be used at release and on stability. Microscopic and
879 photometric methods are preferred rather than a simple visual count. It is recognized that some
880 products are designed to be suspensions, however, this design does not preclude the need for a
881 crystal specification. Suspension products should still include tests and acceptance criterion to
882 ensure against crystal propagation, which may impact drug delivery or adhesion properties of the
883 product.
884

885 h. Pouch Integrity

886 The pouch for a TDS is critical to the stability and integrity of the product. Pouch integrity
887 testing should be conducted as part of finished product release unless justification is provided for
888 an alternative approach that assures the finished product specification is met.
889

891

D. Additional Stability Studies

892

893
894 In addition to the standard battery of formal stability and photostability studies for drug
895 substance and drug products discussed in ICH Q1A and ICH Q1B,²⁸ TDS applicants and
896 manufacturers should conduct stability studies under challenge conditions that include
897 temperature excursions, freeze/thaw, and/or crystal seeding. These additional studies are
898 intended to address certain product quality issues such as crystal formation and growth.
899 Moreover, in-use photostability testing may be appropriate to conduct for certain TDS
900 formulations, depending on backing membrane opacity, duration of wear, and its expected
901 exposure to light when in use.

902

V. SPECIAL TOPICS

903

A. Product Adhesion Considerations

904

905 In vivo adhesion studies provide the greatest prediction of adhesion, a CQA, for a proposed
906 commercial product. Applicants should demonstrate that reasonable efforts were made to
907 optimize adhesive characteristics of the TDS. This optimization should balance properties such
908 as adhesiveness, cohesiveness, and stability to ensure a consistent and uniform adhesion of its
909 entire surface area to the skin for the entire duration of wear. Applicants should develop a
910 comprehensive strategy for assessing the adhesive attributes of the TDS. In vivo adhesion studies
911 are necessary to demonstrate adequate adhesion of the TDS. Therefore, when possible, such as in
912 efficacy studies for an NDA, subject diaries describing the actual in-use product adhesion
913 performance should be used. This information bolsters adhesion data collected from the studies
914 described below and in other guidances.²⁹

915

916 Characterization of the adhesive properties of a TDS should demonstrate that the labelled uses
917 are substantiated. For example, if the TDS is intended to be worn during bathing and showering,
918 applicants should demonstrate that the TDS will continue to adhere during and after such
919 incidental exposure to water. Product reinforcement, such as taping the edges or use of overlays,
920 or occluding the product from water during bathing should not be permitted during the in vivo
921 adhesion evaluation.

922

923 We recommend that when assessing the adhesion of a TDS, applicants use a 5-point numerical
924 scale in which each score corresponds to a specified range of adhered surface area of the TDS, as
925 follows:

926

927 0 = ≥ 90% adhered (essentially no lift off the skin)

928

929 1 = ≥ 75% to < 90% adhered (some edges only lifting off the skin)

930

931 2 = ≥ 50% to < 75% adhered (less than half of the TDS lifting off the skin)

²⁸ See FDA guidances for industry *Q1A(R2) Stability Testing of New Drug Substances and Products* (November 2003), and *Q1B Photostability Testing of New Drug Substances and Products* (November 1996).

²⁹ See FDA draft guidance for industry *Assessing Adhesion with Transdermal Delivery Systems and Topical Systems for ANDAs* (October 2018). When final, this guidance will represent the FDA's current thinking on this topic.

Contains Nonbinding Recommendations

Draft — Not for Implementation

932 3 = > 0% to < 50% adhered (not detached, but more than half of the TDS lifting off the
933 skin without falling off)
934 4 = 0% adhered (TDS detached; completely off)

935
936 Additionally, the following information should be collected:
937

- 938 • At each time point when adhesion is assessed on the above described 5-point scale,
939 the scorer should also record their actual percent adherence estimate (e.g., if the
940 observer scores the product as a two on the five point scale and estimates that the
941 product appears to be 60 percent adhered, a score of two and a 60 percent should be
942 recorded for that time point).
- 943 • Photographic evidence showing the extent of TDS adherence to the skin at each time
944 point should be provided.

945
946 **B. Product Storage and Disposal – Labeling Considerations**

947 TDS storage conditions should be supported by stability data and stated in the label. Generally,
948 we recommend controlled room temperature for the storage of TDS. Excursions, if permitted,
949 should be indicated on the label. The label should also state that TDS should not be stored
950 outside of the pouch if that is necessary to preserve the safety, efficacy, and quality of the TDS.
951

952 Transdermal and topical delivery systems often contain post-use residual drug in the delivery
953 system. Considering the therapeutic nature of the drug compound and potential adverse events
954 resulting from unintended exposure, the instruction for product disposal should be clearly
955 outlined in the labeling. It is important that the disposal process prevents exposure of the residual
956 drug to the environment and/or other people. Depending on the nature of the product, special
957 instructions may be required to prevent exposure to children and caregivers, which could result
958 in significant safety-related consequences.
959