Electron and X-ray Sterilization of Medical Devices

Thomas Kroc, PhD
FDA Medical Device Advisory Meeting
6 November 2019
Electrons and X-rays

- Overview of x-ray and e-beam; how is it different from gamma?
- Typical or representative devices sterilized with these modalities and material compatibility with this modality
- Description of the industrial infrastructure needed for e-beam and x-ray?
- What is the potential of accelerator technology in this area?
- Can x-ray/e-beam be an alternative to ethylene oxide sterilization?
What are we talking about?

- Ionizing Radiation
 - Electrons – directly ionizing radiation
 - Electrons do ~99.5% of the killing
 - Photons – indirectly ionizing radiation
 - X-ray and γ refer to how the photon is produced
 - But once produced, they are just photons
 - Photons have the penetration power, but electrons do the work
 - Compton Scattering
Photons – X-ray vs γ

• γ rays originate from the nucleus of an atom

• X-rays originate from transitions in the electrons from an atom or Bremsstrahlung

• Both are electro-magnetic energy
Photons – X-ray vs γ

• Caveat
 – γ rays are more monoenergetic
 – X-rays (Bremsstrahlung) have a spectra of energies

• Fundamentally, a photon is a photon
• (and an electron is an electron)
Remember – the electrons are the active ingredient!
The penetration characteristics of x-ray can be exploited to give better DUR.
Generating x-rays will always incur a significant inefficiency. Overcoming this requires high-power electron beams.
Generating X-rays

Much more directed than gammas from a cobalt array. Better utilization.
(Only ~ 30% of gamma rays are utilized)
What can be sterilized with E-beam and X-ray?

- Overview of x-ray and e-beam; how is it different from gamma?
- Typical or representative devices sterilized with these modalities and material compatibility with this modality
- Description of the industrial infrastructure needed for e-beam and x-ray?
- What is the potential of accelerator technology in this area?
- Can x-ray/e-beam be an alternative to ethylene oxide sterilization?
Transitioning from Cobalt-60 to E-beam or X-ray for Sterilization – a Model for Collaboration

Presented at Fermilab on September 19, 2019

Mark Murphy, Leo Fifield, Tony Faucette, James McCoy, Rod Parker, Suresh Pillai, Matt Pharr, David Staack, Larry Nichols, Emily Craven, Christophe Malice, Jeremy Brison, John Logar, and Kevin O’Hara

1Pacific Northwest National Laboratory, Richland, WA, USA
2Becton-Dickinson Corp., Franklin Lakes, NJ, USA
3Stryker Corp., Kalamazoo, MI, USA
4Texas A&M University, College Station, TX, USA
5Steri-Tek Corp., Fremont, CA, USA
6Mevex Corp., Stittsville, Ontario, CANADA
7IBA Corp., Louvain-La-Neuve, Belgium
8Johnson & Johnson, Raritan, NJ, USA
9Sterigenics Corp., Stittsville, Ontario, CANADA
Project Goals

- **Identify specific polymers/elastomers** used in medical products that present the greatest data gaps for radiation effects and would be of greatest industry impact if transitioned to e-beam or X-ray.
- **Measure any physical effects** that these materials exhibit when they are given sterilization-level radiation doses from e-beam or X-ray.
- Determine **whether these effects would preclude the use of E-beam or X-ray** for associated medical products.
- **Execute an industry and public outreach** component that will identify and fill knowledge and education gaps that impede the transition to E-beam and X-ray sterilization.
- **Encourage increased use of E-beam and X-ray** for sterilization of single-use medical products.
Five Selected Medical Products

- **#1**: Becton-Dickinson *Vacutainer™* tube.
 - Ultrahigh production volumes for the blood collection market at >5B products/year.

- **#2**: Becton-Dickinson *Vacutainer™* “Push Button” blood collection set.
 - Significant production volume for the blood collection market at ~260M products/year using multiple polymer families.

- These BD products involve over 6 separate polymers.

- All test measurements recently completed for these BD products.
The data indicate that Yellowness Index changed as much as 20 units for some polymers for the 0-90 kGy dose spread in the study; however, there was little to no discernible trend in the yellowness index between Cobalt-60, E-beam and X-ray samples.

Yellowness Index vs. dose for all 3 irradiation modalities.
Infrastructure

• Overview of x-ray and e-beam; how is it different from gamma?
• Typical or representative devices sterilized with these modalities and material compatibility with this modality
• Description of the industrial infrastructure needed for e-beam and x-ray?
• What is the potential of accelerator technology in this area?
• Can x-ray/e-beam be an alternative to ethylene oxide sterilization?
Required Infrastructure

• Reliable electrical power
• Material handling systems are very similar
• Dosimetry, process control, etc. very similar
• Accelerator manufacturers report that on-site technical staff requirements are not significantly higher than gamma facilities
 – Technical skills required similar to well qualified auto mechanic
• Similar or slightly thicker shielding
 – But volume of irradiation room can be much less
 – Less total concrete?
• Less attractive target
Contract Electron Beam Facilities
Future potential

• Overview of x-ray and e-beam; how is it different from gamma?
• Typical or representative devices sterilized with these modalities and material compatibility with this modality
• Description of the industrial infrastructure needed for e-beam and x-ray?
• What is the potential of accelerator technology in this area?
• Can x-ray/e-beam be an alternative to ethylene oxide sterilization?
Power

• 1 Mci = \(3.7 \times 10^{16}\) decays/second
 – Total energy released – 2.505 MeV/decay
 – 15 kW
 – Typical irradiation bunker – 30-60 kW of “beam” power

• Electron beam machines can provide this easily

• X-ray must overcome inefficiency of Bremsstrahlung process
 – 200 – 400 kW of electron beam power
 – Then must include efficiency of electron beam production
Capacity comparisons

• Gamma
 – ~10 kGy/hr
 – 3.4 m3/h/MCi @ 25 kGy

• Electron Beam
 – ~20 MGy/hr

• X-ray
 – ~60 kGy/hr
 – 2.8 m3/h/100 kW @ 25 kGy (including target losses)

1 MCi gamma ≈ 120 kW electron beam power to provide equivalent X-ray dose
Potential Accelerator Technology

- Linacs 10 – 50 kW
 - New machines being designed to > 100 kW
- Cyclotrons and Rhodotrons 50 - 350 kW
- Superconducting Linacs in development
 - 250 kW +
 - Direct equivalency to panoramic gamma irradiators
Alternative to EO?

- Overview of x-ray and e-beam; how is it different from gamma?
- Typical or representative devices sterilized with these modalities and material compatibility with this modality
- Description of the industrial infrastructure needed for e-beam and x-ray?
- What is the potential of accelerator technology in this area?
- Can x-ray/e-beam be an alternative to ethylene oxide sterilization?
E-beam and X-ray as an alternative to EO

• Very similar to gamma as an alternative to EO
• Difference
 – Irradiation times are shorter with E-beam and X-ray
 – Less time for oxidative processes to occur

• Device manufacturers decide on sterilization modality
 – Education
 – Early planning in device design process can facilitate the use of alternative modalities
 – More “difficult” for established devices
Thank you
All materials have the same stopping power (scaled by density) between 1 and 10 MeV.