H$_2$O$_2$ Industrial Sterilization

November 6-7, 2019: General Hospital and Personal Use Devices Panel of the Medical Devices Advisory Committee Meeting

Sylvie Dufresne, Ph.D.

sdufresne@im3consultinggroup.com

www.im3consultinggroup.com
Agenda

• H$_2$O$_2$ Sterilization Technology
 • Typical H$_2$O$_2$ sterilization cycle
 • Gas vs liquid state
• Material compatibility
• Industrial Application
• Conclusion
Generic H$_2$O$_2$ Sterilization Cycle

Sterilization phases, repeated 1 to 3 times

- Vacuum
- H$_2$O$_2$ injection and dwell
- Air or O$_3$ injection and dwell
- Ventilation/ aeration

Pressure vs. Time Graph

www.im3consultinggroup.com
H₂O₂ Sterilization Technology - Sterilant

Sterilant: H₂O₂ solution

- 50 to 59% (w/w)
- Stabilizing agent(s) to improved shelf-life
- Liquid at normal temperature and atmospheric pressure
- **Boiling point:**
 - Water: 100ºC
 - H₂O₂: 150.2ºC

Sterilizing agent

- H₂O₂/H₂O is vaporized to form the sterilizing agent (VH₂O₂)
- Using heat and low pressure (similar to water)

VH₂O₂

- Sterilize in gas and liquid form
- Physical state: depend on temperature and pressure
- Predicted by Isotherm diagram

![Isotherm Diagram](image)

Working zone of a low temperature sterilization process
Micro-condensation of a 50% H₂O₂ solution with a load at 26 °C

In practice

Dew pressure for 50% H₂O₂ at 26 °C

What is micro-condensation?
Impact of temperature

Dew pressure (Torr) for different temperature

<table>
<thead>
<tr>
<th>Temperature</th>
<th>0% H_2O_2 (100% water)</th>
<th>50% H_2O_2</th>
<th>59% H_2O_2</th>
<th>100% H_2O_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>9.2</td>
<td>1.6</td>
<td>1.4</td>
<td>0.6</td>
</tr>
<tr>
<td>20</td>
<td>17.6</td>
<td>3.5</td>
<td>2.9</td>
<td>1.4</td>
</tr>
<tr>
<td>25</td>
<td>23.8</td>
<td>4.9</td>
<td>4.2</td>
<td>2.0</td>
</tr>
<tr>
<td>30</td>
<td>31.9</td>
<td>6.9</td>
<td>5.9</td>
<td>2.8</td>
</tr>
<tr>
<td>40</td>
<td>55.4</td>
<td>13.1</td>
<td>11.2</td>
<td>5.4</td>
</tr>
<tr>
<td>50</td>
<td>92.6</td>
<td>23.8</td>
<td>20.4</td>
<td>10.0</td>
</tr>
</tbody>
</table>

H_2O_2 is condensing first.
Vapor process doesn’t mean 100% vapor

Hydrogen peroxide needs to stay in gas state long enough to penetrate packaging and reach the device to be sterilized
Material compatibility

- VH2O2 is an oxidizing process
 - May oxidize organic material or non-oxidizing resistant materials
 - Butyl, Natal rubber, silver, bioabsorbable, cellulose
 - Compatibility for 1-2 cycles is good for most material
 - See AAMI TIR 17 Annex E (H₂O₂) and I (H₂O₂ +O₃)
 - May be different if plasma or ozone are part of the process
 - Plasma: limited compatibility with Polyacrylate
 - Ozone: EPDM (grade-dependent)
 - Specific metals (e.g. iron, copper, platinum) catalyze the decomposition of H₂O₂
 - Number of cycle minimum for industrial sterilization (1 or 2 cycles), thus less impact on adhesive

∴ Most materials are compatible
Material compatibility - Packaging

• VH2O2 cannot penetrate through non-porous material
 • Packaging used need to have a porous membrane
 • Not compatible with aluminium pouch

• VH2O2 will be adsorbed by cellulosic material ⇒ failed cycles
 • Not compatible with paper pouch
 • Not compatible with cardboard boxes

• VH2O2 compatible with:
 • high-density polyethylene (HDPE) membrane such as Tyvek®
Material compatibility – Residual H_2O_2

- H_2O_2 is adsorbed by porous material
 - Ex: Polyurethane, polyester, polyoxymethacrylate, polysulfone
- H_2O_2 residues causes cytotoxicity at a very low level (around 0.001%)
 - Positive cytotoxicity ≠ in vivo reaction
- H_2O_2 residual concentration will decrease over time
 - H_2O_2 half-life in air: 10-20 hours
 - Will be below the cytotoxic level before the use of the medical device

∴ Residual H_2O_2 is not an issue if materials are compatible
H₂O₂ Industrial Application – Current use

- Low volume, high-margin devices such as custom made implants (3D print)

- Exterior sterilization of single-packaged vials (injectable drug), pre-filled syringe assembly

(Juha Mattila. 2014. STERIS VHP Low Temperature Surfaces Sterilization: Product feasibility testing, cycle development and validation guidance)

H$_2$O$_2$ Industrial Application - Limitations

Non-linear inactivation

![Graph showing non-linear inactivation](image)

Loading Capacity: claims

- Hospital based sterilizers not designed for high volume product
- Limited weight per load: depend on device material (porous or not)
- Load conditioning: temperature of load will affect the physical state of the vaporized H$_2$O$_2$

Lumen claims

- Based on type (rigid vs flexible) and material (Teflon vs silicone or other polymer)
- Quantity per load
- Currently: no claims for single-use catheter type devices

Liquid

- **Open**
- **Vacuum resistant**

Can hydrogen peroxide sterilization serve as an alternative for industrial EtO sterilization of medical devices in the short or long term?

YES: for many specific devices, mostly surface devices package using a permeable membrane such as Tyvek®

PROBABLY NOT: for flexible lumens with ID < 0.7 mm