

# Neuropsychiatric Adverse Events and Montelukast: Observational Safety Analyses

Veronica V. Sansing-Foster, PhD, MS

Epidemiologist

Division of Epidemiology II (DEPI-II)

September 27, 2019



## Background

- November 2017 FDA received correspondence from patient advocacy groups
  - Incidence of neuropsychiatric adverse events (NAE) is more common than reported, particularly in children
  - A self-sponsored survey of a Facebook Group and a survey study by Bénard et al. (2017)
- DEPI-II investigated the association between montelukast (MON) and NAEs
  - Observational literature review
  - Sentinel Distributed Database (SDD) analysis



Parents have reported to *Parents United for Pharmaceutical Safety and Accountability* that their children began experiencing side effects days, weeks, months, and even years after treatment with montelukast began. Some parents reported they observed side effects only after a dosage increase. Parents have also reported that side effects worsened, and/or new side effects happened after a dosage increase. Some reported side effects only after stopping and restarting the medication.

https://www.parentsforsafety.org/17601/10794.html





# Observational Literature Review

## Four Observational Studies Reviewed

# FDA

#### Literature Review Methods

- December 2017, January 2018, July 2019
- National Library of Medicine's Pub Med, Web of Science, EBSCOHost, Google Scholar
  - Asthma
  - Neuropsychia\* OR depressi\* OR suicid\* OR mental OR violen\* OR psychiatric or anx\* or tremor or behav\*
  - Singulair or Montelukast or LTRA or "Leukotriene Receptor Antagonist" or LTMA or "Leukotriene Modifying Agent"
  - Years 2012 2019
- Review of references for frequently cited articles





### Two Articles Showed No Association

- Schumock et al. (2012) LTMA and suicide attempt (adjusted odds ratio [adj. OR]: 0.74: CI 0.46-1.20)
  - Nested case-control study of LifeLink claims data of asthma patients age 5-24 yrs
  - Positive association with montelukast (MON) for pts age 19-24 (adj. OR: 5.15; Cl 1.16-22.86)
  - Suicide attempt definition may capture suicidal ideation
- Ali et al. (2019) MON and neuropsychiatric events, incl. suicide (adj. OR: 1.02; CI 0.82-1.26)
  - Nested case-control study of LifeLink claims data of asthma patients <18 years old</li>
  - Did not control for multiple comparisons increased risk for false positives (Type I errors)



## Two Articles Reported an Association

- Bénard et al. (2017) Risk of NAEs for MON vs. ICS (adj. relative risk: 9.00; CI 1.2 69.5)
  - Surveyed parents of 84 children exposed to MON and 84 exposed to ICS
  - Risk probably overestimated since survey was conducted after MON labeling changes and 3 years after drug initiation (recall bias)
  - Results are imprecise due low number of events (n=12) and noted by the wide confidence intervals
- Glockler-Lauf et al. (2019) MON and NAEs (adj. OR: 1.91; Cl 1.15 3.18)
  - Case-control study: Cases may have included psychiatric conditions that existed before asthma medication exposure
  - NAEs ascertained from hospitalization, same day surgery, and emergency room visits regardless of position, and may not always reflect the initial diagnosis



# Sentinel Analysis



# Sentinel Analysis Objectives

- Compared to ICS, is there an increased risk of depressive disorders, self-harm, and completed suicides associated with MON use?
- Is the risk of NAEs with MON compared to ICS modified by the 2008 Drug Safety Communications (DSC) and MON labeling changes, age, sex, and psychiatric history?

## Observational Safety Analysis Methods



- Data Source: Sentinel Distributed Database (SDD)
  - January 1, 2000 September 30, 2015
  - 17 data partner (DP) sites that are large national insurers and integrated delivery care networks
  - Medical and pharmacy data, inpatient and outpatient diagnoses and procedures, and prescription records
- Exposure: Incident MON or IC defined as no exposure to ICS, MON, LABA, LTRAs 183 days prior

#### Outcomes:

- 1. Inpatient depressive disorder in primary position
- 2. Outpatient depressive disorder in any position, treated with psychotherapy or antidepressant use within 30 days not validated
- 3. Hospitalization due to self-harm Patrick et. al algorithm
- 4. Hospitalization due to self-harm with E-codes
- 5. Death by completed suicide Swain et. al algorithm within six DPs





#### Continued

#### Covariates:

- Age (continuous)
- Sex
- Year
- Comorbidity score
- History of psych disorder
- Psychiatric and psychotropic drugs
- Self harm (inpatient)
- Any other psychiatric event
- Substance abuse
- Allergic rhinitis

- Respiratory disorder (≥ 2 codes)
- Asthma (emergency department)
- Asthma (inpatient primary position)
- Asthma (outpatient)
- Asthma exacerbations/status asthmaticus
- Oral corticosteroids
- Short acting beta-agonists
- Anticholinergic agents
- Phosphodiesterase inhibitors

### **Methods Diagram**

Cohort Entry Date (Day 0)
(1st dispensation of MON vs ICS in a treatment episode a)

**Query End Date (Day X)** 



<sup>a</sup> Treatment episode

- 15-day gap & extension period for inpatient depression and self-harm
- 30-day gap & extension period for outpatient depression

Washout Window (ICS, MON, LTRA, LABA)
Days [-183, -1]

Exclusion Assessment Window (EXCL) (>45 day gap medical/drug coverage, COPD)

Days [-183, 0]

EXCL
(age <6 yrs, comparator dispensing, outcome)
Days [0, 0]

Covariate Assessment Window Days [-183, 0]

Covariate Assessment Window (age, sex, year)

Days [0, 0]

#### <sup>b</sup> Censoring

- Outcome
- Dispensing of ICS monotherapy, LABAs, ICS combination therapies or LTRAs
- Dispensing of oral corticosteroid
- Asthma related hospitalization: 1° position
- Death
- Data partner end date
- Query end date
- Disenrollment
- End of treatment episode

Follow-up Window Days [1, Censor <sup>b</sup>]

Time



### **Statistics**

- Standard mean differences for baseline characteristics
- 1:1 Propensity score matching between MON and ICS patients
  - 0.05 calipers within each data partner
- Cox proportional hazards regression to estimate hazard ratios (HRs) and 95% confidence intervals (CIs)
  - Unconditional analysis



# Additional Analyses

- Subgroup analyses
  - History of any psychiatric disorder or psychiatric/psychotropic drug use (yes, no)
  - Sex (female, male)
  - Age category (6-11, 12-17, 18+ years)
  - Time before and after MON Drug Safety Communications and labeling changes (years 2000-2007, 2008-2015)
- Sensitivity analyses with inpatient depression
  - Analysis with 0-day episode extension period to examine whether risk attenuated
  - To control for poor adherence to ICS, we compared ICS with a 30-day episode gap and extension period to MON with a 15-day episode gap and extension period



# Results





- In unmatched cohorts:
  - MON users more likely to have:
    - History of psych disorder
    - Allergic rhinitis
    - Other respiratory disorder (2+ codes)
    - Outpatient asthma dx
    - History of psychiatric/psychotropic drugs
    - History of oral corticosteroids
  - ICS users more likely to have:
    - History of SABA use

- In 1:1 matched cohorts, all covariates were balanced
  - 89.1% of MON and 34.3% of ICS patients



# Baseline Characteristics: Matched MON & ICS Pts

Depression & Self-Harm



# Outpatient Depression is the Most Frequent Outcome



Events are not mutually exclusive

| Outcome                | Overall<br>N |
|------------------------|--------------|
| Outpatient depression  | 37,740       |
| Inpatient depression   | 647          |
| Self-harm              | 219          |
| Self-harm with E-codes | 264          |

# Most Events are NAEs with a Previous Psychiatric Diagnosis

Events are not mutually exclusive

| Outcome                | Overall<br>N | No Psych Hx<br>N | Psych Hx<br>N |
|------------------------|--------------|------------------|---------------|
| Outpatient depression  | 37,740       | 2,178            | 35,182        |
| Inpatient depression   | 647          | 58               | 581           |
| Self-harm              | 219          | 11               | 205           |
| Self-harm with E-codes | 264          | 19               | 242           |



# Shorter Average Follow-up (F/U) Days for ICS Pts

| Outcome                | Overall<br>N | No Psych Hx<br>N | Psych Hx<br>N | ICS<br>F/U Days | MON<br>F/U Days |
|------------------------|--------------|------------------|---------------|-----------------|-----------------|
| Outpatient depression  | 37,740       | 2,178            | 35,182        | 69.7            | 100.0           |
| Inpatient depression   | 647          | 58               | 581           | 54.0            | 81.5            |
| Self-harm              | 219          | 11               | 205           | 54.1            | 81.5            |
| Self-harm with E-codes | 264          | 19               | 242           | 54.1            | 81.5            |







# MON: No Association with Inpatient Depression





<sup>\*</sup>Sensitivity analysis 0-day gap/extension period: 1.07 (0.89, 1.28); 30-day gap/extension period: 1.04 (0.90, 1.20)

## MON: No Association with Self-Harm







# MON: No Association with Modified Self-Harm



# 1 Year Kaplan-Meier Curves of Event Free Survival



#### **Inpatient Depression**



Proportion of ICS patients at risk at 365 days who did not experience inpatient depression

Proportion of MON patients at risk at 365 days who did not experience inpatient depression



## MON: Decreased Risk of Outpatient Depression

1 Year Results

#### **Inpatient Depression**

1-yr HR: 1.06; CI: 0.90 – 1.25



#### **Outpatient Depression**

1-yr HR: 0.91; CI: 0.89 – 0.93





### MON: No Association with Self-Harm Outcomes

1 Year Results

#### **Self-Harm**

1-yr HR: 0.96; CI: 0.72 - 1.26



#### **Modified Self-Harm**

1-yr HR: 0.86; CI: 0.67 - 1.11





## Baseline Characteristics: Matched MON & ICS Pts

Suicide





### Two Suicides in Adult Female MON users

#### 1:1 Matched population

|     | No. of | No. of        |                 |  |
|-----|--------|---------------|-----------------|--|
|     | New    | No. of        | 100,000         |  |
|     | Users  | <b>Events</b> | <b>Patients</b> |  |
| MON | 49,800 | 2             | 4.02            |  |
| ICS | 49,800 | 0             | 0.00            |  |

# Rate is comparable to CDC age-adjusted suicide rates for females between 1999-2015

|                                                                                                                              | To                                                                                                                                                           | otal                                                                                                                         | Male                                                                                                                                                         |                                                                                                                      | Female                                                                                                                                       |                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Year                                                                                                                         | Number                                                                                                                                                       | Deaths per<br>100,000                                                                                                        | Number                                                                                                                                                       | Deaths per<br>100,000                                                                                                | Number                                                                                                                                       | Deaths per<br>100,000                                                                                 |
| 1999<br>2000<br>2001<br>2002<br>2003<br>2004<br>2005<br>2006<br>2007<br>2008<br>2009<br>2010<br>2011<br>2012<br>2013<br>2014 | 29,199<br>29,350<br>30,622<br>31,655<br>31,484<br>32,439<br>32,637<br>33,300<br>34,598<br>36,035<br>36,909<br>38,364<br>39,518<br>40,600<br>41,149<br>42,826 | 10.5<br>10.4<br>10.7<br>10.9<br>10.8<br>11.0<br>10.9<br>11.0<br>11.3<br>11.6<br>11.8<br>12.1<br>12.3<br>12.6<br>12.6<br>13.0 | 23,458<br>23,618<br>24,672<br>25,409<br>25,203<br>25,566<br>25,907<br>26,308<br>27,269<br>28,450<br>29,089<br>30,277<br>31,003<br>31,780<br>32,055<br>33,162 | 17.8<br>17.7<br>18.2<br>18.5<br>18.1<br>18.1<br>18.1<br>18.5<br>19.0<br>19.2<br>19.8<br>20.0<br>20.4<br>20.3<br>20.7 | 5,741<br>5,732<br>5,950<br>6,246<br>6,281<br>6,873<br>6,730<br>6,992<br>7,329<br>7,585<br>7,820<br>8,087<br>8,515<br>8,820<br>9,094<br>9,664 | 4.0<br>4.0<br>4.1<br>4.2<br>4.2<br>4.5<br>4.4<br>4.5<br>4.6<br>4.8<br>4.9<br>5.0<br>5.2<br>5.4<br>5.5 |
| 2015                                                                                                                         | 44,193                                                                                                                                                       | 13.3                                                                                                                         | 33.994                                                                                                                                                       | 21.1                                                                                                                 | 10.199                                                                                                                                       | 6.0                                                                                                   |



# Discussion



# Findings

- No statistical association was observed between montelukast and serious NAEs
  (inpatient depressive disorder & self-harm) in the overall analyses and across age,
  sex, & time strata
  - The absence of risk for these outcomes is consistent with results from clinical trials and well-conducted observational studies (Ali, et al. 2015, Schumock, et al. 2012, Philip et al, 2009)

## Findings

# FDA

#### Continued

- MON patients had decreased risk of outpatient depression compared to ICS patients in those with a psychiatric history
  - Among those without a psychiatric history, we were unable to conclude that there is an increased risk (HR: 1.07; CI: 0.98 1.17)
  - 90% of patients exposed after the 2008 FDA communications; therefore, MON patients may have ceased treatment before depressive symptoms progressed
  - Proportion of patients with ongoing treatment for depression; decreased risk only seen in patients with a psych history



## Strengths

- Large patient population from 17 different DPs of varying insured patient populations
- Powered at 80% to detect HR ≥1.25 for inpatient depression and HR ≥1.46 self-harm outcomes, but possibly underpowered for subgroup analyses
- Study patients exposed to MON before and after the 2008 DSC and labeling changes
- Suicide data was extracted from records Sentinel DPs deemed "excellent," thus ensuring high specificity for this outcome



### Limitations



- ICS has poorer adherence relative to MON (Barnes, 2015)
- Did not adjust for socioeconomic status
- Non-proportional hazards for study outcomes
- Channeling bias due to DSC and labeling changes
- Underpowered to rule out an increased risk of 24% (upper bound of CI)
- Potential systemic absorption of ICS may carry a risk of NAEs (Fardet, 2012)



#### Conclusions

- The Sentinel findings need to be interpreted in light of important limitations
  - We did not find a statistical association between MON and inpatient depression, selfharm, and completed suicide that resulted in medical claims, although a small to modest increase in risk cannot be ruled out
    - Totality of the observational evidence, including well-conducted observational studies, is not suggestive of a risk
  - A decreased risk in treated outpatient depression was observed among patients with psych history of depression
  - Completed suicide was rare and limited to adult, female patients with a psych history
- We welcome discussion from the panel regarding labeling recommendations



### References

Ali MM, O'Brien CE, Cleves MA, Martin BC. Exploring the possible association between montelukast and neuropsychiatric events among children with asthma: a matched nested case-control study. *Pharmacoepidemiol Drug Saf.* 2015;24(4):435-445.

Bårnes CB, Ulrik CS. Asthma and Adherence to Inhaled Corticosteroids: Current Status and Future Perspectives. 2015;60(3):455-468.

Bénard B, Bastien V, Vinet B, Yang R, Krajinovic M, Ducharme FM. Neuropsychiatric adverse drug reactions in children initiated on montelukast in real-life practice. *European Respiratory Journal*. 2017;50(2).

Fardet L, Petersen I, Nazareth I. Suicidal behavior and severe neuropsychiatric disorders following glucocorticoid therapy in primary care. *Am J Psychiatry*. 2012;169(5):491-497.

Glockler-Lauf SD, Finkelstein Y, Zhu JQ, Feldman LY, To T. Montelukast and Neuropsychiatric Events in Children with Asthma: A Nested Case-Control Study. *Journal of Pediatrics*. 2019;209:176-+.

Schumock GT, Stayner LT, Valuck RJ, Joo MJ, Gibbons RD, Lee TA. Risk of suicide attempt in asthmatic children and young adults prescribed leukotriene-modifying agents: a nested case-control study. *J Allergy Clin Immunol*. 2012;130(2):368-375.

Swain RS, Taylor LG, Braver ER, Liu W, Pinheiro SP, Mosholder AD. A systematic review of validated suicide outcome classification in observational studies. Int J Epidemiol. 2019



## Thank You

#### • FDA

Dr. Efe Eworuke: DEPI-II

Dr. Marie Bradley: DEPI-II

Dr. Ivone Kim: DPV

Dr. Yong Ma: DBVII

Dr. Andrew Mosholder: DEPI-I

Dr. Dinci Pennap: DEPI-I

#### Sentinel/Harvard

Dr. Elizabeth Dee

Dr. Noelle Cocoros

Dr. Nicole Haug

Dr. Jennifer Lyons

• Dr. Ella Pestine

Dr. Andrew Petrone

Dr. Sengwee Toh

#### Additional thanks to

- Joanne Berger, FDA/Library
- Dr. Robert Busch, FDA/DPARP
- Dr. Sarah Dutcher, FDA/RSS
- Dr. Judith Maro, Sentinel/Harvard
- Dr. David Moeny, FDA/DEPI-II
- Dr. Lockwood Taylor, FDA/DEPI-II
- Dr. Rajani Rajbhandari, Sentinel/Harvard
- Sentinel Data Partners: Aetna Informatics, Blue Cross Blue Shield of Massachusetts; Department of Population Health Sciences, Duke University School of Medicine; Harvard Pilgrim Health Care Institute; HealthCore, Inc. Government & Academic Research; HealthPartners Institute; HCA Healthcare; Humana, Inc.; Kaiser Permanente Colorado Institute for Health Research; Kaiser Permanente Center for Health Research Hawaii; Kaiser Foundation Health Plan of the Mid-Atlantic States, Inc.; Kaiser Permanente Northern California, Division of Research; Kaiser Permanente Northwest Center for Health Research; Kaiser Permanente Washington Health Research Institute; Meyers Primary Care Institute, a joint endeavor of Fallon Community Health Plan; Optum; Vanderbilt University School of Medicine, Department of Health Policy

