To encourage the development and improvement of Infectious disease next-generation sequencing (ID-NGS) analytical methods, precisionFDA recently launched the ID-NGS Biothreat Challenge! Be a part of the Challenge and test your algorithms on blinded mock-clinical and in silico metagenomics samples. Visit precision.fda.gov/challenges/3 to learn more and join today!
Reference Genomes
For Diagnostic Use

- Support for *in silico* validation

Proposed Quality Metrics
- Identified by orthogonal reference method
- Sequenced and de-novo assembled using 2 sequencing methodologies
- High depth of sequencing coverage
- Minimum of 20X over 95 percent of the assembled and polished core genome
- Taxonomy-specific ANI thresholds that are sufficient for identification
- Placed within a pre-established phylogenetic tree
- Sample specific metadata, raw reads, assemblies, annotation and details of the bioinformatics pipeline are available
FDA-ARGOS
DIAGNOSTIC DATABASE EFFORT

Latest Accomplishments and Next Steps
FDA established a government-academic-clinical partnership with 35+ collaborators

<table>
<thead>
<tr>
<th>American Type Culture Collection/ BEI</th>
<th>Bernard Nocht Institute for Tropical Medicine, Germany</th>
<th>Biodefense and Emerging Infections Research Repository</th>
<th>British Columbia Centre for Disease Control (BCCDC)</th>
<th>Children’s National Medical Center</th>
<th>Defense Threat Reduction Agency (DTRA)</th>
<th>George Washington University</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMMSA Consortium</td>
<td>Joint Program Executive Office for Chemical and Biological Defense (JPEO-CBD)</td>
<td>Lawrence Livermore National Lab (LLNL)</td>
<td>Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures</td>
<td>Los Alamos National Lab (LANL)</td>
<td>Mayo Clinic</td>
<td>National Biodefense Analysis and Countermeasures Center</td>
</tr>
<tr>
<td>National Center for Biotechnology Information (NCBI)</td>
<td>National Institute of Allergy and Infectious Diseases (NIH-NIAID)</td>
<td>New York State Wadsworth Laboratories</td>
<td>Public Health Agency Canada (PHAC)</td>
<td>Public Health England (PHE)</td>
<td>Rockefeller University</td>
<td>Rutgers University</td>
</tr>
<tr>
<td>Stanford University Medical Center</td>
<td>University of California, San Francisco (UCSF)</td>
<td>University of Colorado Denver</td>
<td>University of Ibadan, Nigeria</td>
<td>University of Louisville</td>
<td>University of Maryland School of Medicine (UMD)/ Institute for Genome Sciences (IGS)</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>University of North Carolina at Chapel Hill</td>
<td>University of Texas Medical Branch (UTMB)</td>
<td>University of Washington School of Medicine</td>
<td>U.S. Army Edgewood Chemical Biological Center (ECBC)</td>
<td>U.S. Army Medical Research Institute for Infectious Diseases (USAMRIID)</td>
<td>U.S. Food and Drug Administration (CDRH, CBER, CFSAN, CVM)</td>
<td>Weill Cornell Medicine</td>
</tr>
</tbody>
</table>
Optimized Collaborator and Microbe Specific Sample Collection Protocols

FDA-ARGOS reference genomes are generated in 3 phases:
Phase 1- collection of a previously identified microbe and nucleic acid extraction
Phase 2- sequencing and de novo assembly at UMD (workflows below)
Phase 3- Recognition and data deposit in NCBI databases
FDA-ARGOS Sample Status

- 1814 samples have been received to date
- 1180 samples have passed sample QC
 - 988 bacterial samples
 - 734 registered with NCBI
 - 53 assembled/in annotation
 - 131 sequencing pipeline
 - 70 abandoned (mixed samples, contamination)
 - 192 viral samples
 - 120 registered with NCBI
 - 29 assembled/waiting on NCBI for annotations
 - 43 sequencing pipeline
Developed Regulatory-Grade Reference Genomes for Microbial Standards Efforts

- **Ebola**
 - National Institute of Allergy and Infectious Diseases (NIH-NIAID)
 - Public Health Agency Canada (PHAC)
 - Public Health England (PHE)
 - U.S. Army Medical Research Institute for Infectious Diseases (USAMRIID)

- **Zika**
 - US Food and Drug Administration (FDA CBER)
 - Public Health Agency Canada (PHAC)
 - Biodefense and Emerging Infections Research Resources Repository

- **Biothreat**
 - U.S. Army Medical Research Institute for Infectious Diseases (USAMRIID)
 - U.S. Army Edgewood Chemical Biological Center (ECBC)

- **Microbiome**
 - ZYMO RESEARCH

- **Mixed Microbial Reference Materials**
 - National Institute of Standards and Technology (NIST)
Developed Database Access and Outreach Materials

Landing Page for FDA-ARGOS @NCBI BioProject 231221

>> To get all associated genbank entries, select the Nucleotide database and enter this search term: '231221[BioProject]'

GenBank records (annotations, not RefSeq):

BioSamples:
https://www.ncbi.nlm.nih.gov/biosample?Db=biosample&DbFrom=bioproject&Cmd=Link&LinkName=bioproject_biosample&LinkReadableName=BioSample&IdsFromResult=231221

Assemblies:
https://www.ncbi.nlm.nih.gov/assembly?LinkName=bioproject_assembly_all&from_uid=231221

Raw reads:

- http://www.fda.gov/argos
- mailto:FDA-ARGOS@fda.hhs.gov
- FDA-ARGOS: A Public Quality-Controlled Genome Database Resource for Infectious Disease Sequencing Diagnostics and Regulatory Science Research Available on bioRxiv
- National Institute of Standards and Technology (NIST) Report “Standards for Pathogen Detection via Next-Generation Sequencing”
- Decoding Ebola: Next Generation Sequencing of the Ebola Genome for the FDA ARGOS Database
- American Society for Microbiology (ASM) Report "Applications of Clinical Microbial Next-Generation Sequencing"
FDA-ARGOS: A Public Quality-Controlled Genome Database Resource for Infectious Disease Sequencing Diagnostics and Regulatory Science Research

doI: https://doi.org/10.1111/1493049
This article is a preprint and has not been peer-reviewed [what does this mean?].

Abstract

Infectious disease next generation sequencing (ID-NGS) diagnostics are on the cusp of revolutionizing the clinical market. To facilitate this transition, FDA proactively invested in tools to support innovation of emerging technologies. FDA and collaborators established a publicly available database, FDA dBase for Regulatory-Grade microbiological Sequences (FDA-ARGOS), as a tool to fill reference database gaps with quality-controlled genomes. This manuscript discusses quality control metrics for the proposed FDA-ARGOS genomic resource and outlines the need for quality-controlled genome gap filling in the public domain. Here, we also present three case studies showcasing potential applications for FDA-ARGOS in infectious disease diagnostics, specifically assay design, reference database, and in silico sequence comparison.

A. Current FDA Benchmarks

- Reference Standard (STARD)
- Non-Reference Standard

Sample Prep

Library Prep

Sequencing

Clinical Validation

- Assay-Specific Subset
- Microbial Reference Material (MRM)

Raw Sequence Data

In Silico Validation

ID-NGS Device

In-House Database

FDA-ARGOS Database

B. FDA-ARGOS Quality Metrics

a. Organisms identified prior to sequencing by orthogonal reference method
b. Two sequencing methodologies
 - Bacterial - Long read and short read
 - Viral - Shotgun, amplicon and RACE
c. De novo assembly

d. Sample Name (Sample ID)
e. Raw Reads (SRA Accession)
f. Chromosome, Plasmid, WGS Accession
g. Annotations (GenBank Accession)
h. 10-meta data (Biosample Accession)
WORK IN PROGRESS
External Genome Qualification

- Based on FDA-ARGOS Reference Genome Characteristics
- Open-source tool
 - Genome quality (e.g. coverage, ANI, GC, assembly size)
 - Genome continuity (e.g. N50, L50, num contigs)
 - Metadata (e.g. species name, submitter, orthogonal identification method)
- Current work on boundary finding is challenging
- Looking at TCC and NCTC 3000 efforts
External Genome Submission (NCBI, BioSample)

- **Sample Metadata**
 - NCBI BioSample

- **Sequencing Pipeline**
 - Protocols

- **Raw Reads**
 - NCBI SRA

- **Bioinformatics Pipeline**
 - Protocols or BioCompute Object

- **Assemblies**
 - NCBI Assembly

- **Consensus Genome**
 - NCBI GenBank

Submitter → FDA-ARGOS
Acknowledgements

FDA-ARGOS team members include representatives from the:

• U.S. Food and Drug Administration
• U.S. Department of Defense
• National Institutes of Health
• Institute for Genome Sciences at University of Maryland

Funding Agencies

FDA’s Office of Counterterrorism and Emerging Threats
Joint Program Executive Office for Chemical and Biological Defense (JPEO-CBD)
PrecisionFDA CDRH Biothreat Challenge

Provide challenge data sets and reference standards for performance comparison of bioinformatics tools used in the biothreat and infectious disease NGS diagnostics community. The focus of this challenge is to enable tool developers to test their algorithms on blinded mock-clinical and in silico metagenomics samples using provided regulatory-grade reference genomes from the FDA-ARGOS database. This will enable the community to look at bioinformatics pipeline performance using a fixed reference genome data standard. The challenge will help familiarize precisionFDA users with the agency’s innovative FDA-ARGOS database resource (www.fda.gov/argos).

STARTS
2018-08-04 00:00:00 UTC

ENDS
2018-10-19 03:00:00 UTC

View Challenge
FDA ARGOS Team – DoD USAMRIID Collaboration on Biothreat Detection

- The FDA ARGOS database (www.fda.gov/argos) generates and publishes quality-controlled microbial reference genomes for diagnostic use, which enable ID-NGS developers to perform *in silico* validation of their workflows.

- FDA partnered with USAMRID to collect, sequence and publish quality-controlled biothreat reference genomes for diagnostic use.
Biothreat Challenge Motivation

- The Ebola outbreak in West Africa in 2014 used advanced infectious disease (ID) detection technology based on next generation sequencing (NGS) to determine index case and potential novel microbes.
- Current ID-NGS technology is still evolving and typically involves complex laboratory and bioinformatics workflows.
- The use of NGS provides a biased-free, detailed view of infectious microorganisms that promises to enable faster detection, traceback, and selection of therapeutics without prior knowledge of disease cause.

To reach these objectives, ID NGS computational workflows must be independently evaluated and validated.

https://precision.fda.gov/experts/6/blog
A community platform for NGS assay evaluation and regulatory science exploration.
Benchmark your detection algorithm on a task to identify and quantify biothreat organisms in clinically relevant metagenomics next generation sequencing (NGS) samples.

(The reference database is fixed in this challenge.)
precisionFDA
ID-NGS Diagnostics Biothreat Challenge
August 3 through October 18

Challenge Design

Inputs
- Mock Clinical FASTQ
- In silico FASTQ
- FDA ARGOS

Challenge Launch:
August 3, 2018
Input files are made available

Your Pipeline
- Predicted ARGOS Species Identification
- Predicted ARGOS Species Quantification
- Predicted Read-based Taxonomy*

Evaluation
- Known ARGOS Species Identification
- Known ARGOS Species Quantification
- Read-based Taxonomic Origins

Challenge Design

Results

August 3, 2018 – October 18, 2018
Participants run their pipeline on the provided input samples

FDA-ARGOS species, quantitation and read-based taxonomy* revealed
*optional
Data Sets

- 21 metagenomics samples
 - 9 *in silico* Samples (C1-C9)
 - 12 biological samples (C10-21)
- 517 blinded FDA-ARGOS reference genomes
 - CR_1 – CR_517

<table>
<thead>
<tr>
<th>Samples</th>
<th>Microbial Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01, C02, C03</td>
<td>Burkholderia thailandensis</td>
</tr>
<tr>
<td></td>
<td>Burkholderia mallei</td>
</tr>
<tr>
<td></td>
<td>Escherichia coli</td>
</tr>
<tr>
<td></td>
<td>Propionibacterium acnes</td>
</tr>
<tr>
<td>C04, C05, C06</td>
<td>Zika virus</td>
</tr>
<tr>
<td></td>
<td>Chikungunya virus</td>
</tr>
<tr>
<td></td>
<td>Ross River Valley Virus</td>
</tr>
<tr>
<td>C07, C08, C09</td>
<td>Ebola Virus</td>
</tr>
<tr>
<td>C10, C11, C12</td>
<td>Yersinia pestis</td>
</tr>
<tr>
<td></td>
<td>Yersinia pseudotuberculosis</td>
</tr>
<tr>
<td></td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>C13, C14, C15</td>
<td>Burkholderia thailandensis</td>
</tr>
<tr>
<td>C17, C19, C21</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>C16, C18, C20</td>
<td>NA</td>
</tr>
</tbody>
</table>
Expected Results

1. Development of novel computational algorithms for identifying emerging pathogens in clinical matrix, such as the Ebola virus
2. Independent evaluation of ID NGS computational algorithms with a fixed reference database to aid future developers
3. Greater public and scientific engagement in infectious disease detection and surveillance
The precisionFDA CDRH Biothreat Challenge ran from August 3, 2018 to October 18, 2018.

There were 29 valid entries from 11 participants.
Detection Subchallenge Evaluation

The area under the precision-recall curve (AUPRC) was computed by comparing the predicted normalized confidence scores for identified species to the known species.
Behind the Scenes ... A First Look
Detection Subchallenge Winners

<table>
<thead>
<tr>
<th>Rank</th>
<th>Overall</th>
<th>In Silico</th>
<th>Biological</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jason Simpson Microbiomh MB_FL_Genome_Identification</td>
<td>Jason Simpson Microbiomh MB_FL_Genome_Identification</td>
<td>Richa Agarwala NCBI submit.identification</td>
</tr>
<tr>
<td>2</td>
<td>Jason Simpson Microbiomh MB_S1_UF_Sp_2_Genome_Identification</td>
<td>Chung-Tsai Su Atgenomix m4_Genome_Identification</td>
<td>Jason Simpson Microbiomh MB_FL_Genome_Identification</td>
</tr>
<tr>
<td>3</td>
<td>Jason Simpson Microbiomh MB_S1_UF_Genome_Identification</td>
<td>Jason Simpson Microbiomh MB_S1_UF_Genome_Identification</td>
<td>Jason Simpson Microbiomh MB_S1_UF_Sp_2_Genome_Identification</td>
</tr>
<tr>
<td>4</td>
<td>Nick Greenfield One Codex OCX_2_ARGOS_Reference_Genome_Identification</td>
<td>Chung-Tsai Su Atgenomix m3_Genome_Identification</td>
<td>Jason Simpson Microbiomh MB_S1_UF_Genome_Identification</td>
</tr>
<tr>
<td>5</td>
<td>Jason Simpson Microbiomh MB_S1_UF_Sp_3_Genome_Identification</td>
<td>Chung-Tsai Su Atgenomix m7_Genome_Identification</td>
<td>Nick Greenfield One Codex OCX_2_ARGOS_Reference_Genome_Identification</td>
</tr>
</tbody>
</table>
The species quantifications were evaluated based on their agreement with the species composition of samples C1 to C9. The Bray Curtis Dissimilarity Index (BCDI) was used to evaluate the agreement between the predicted and known species quantifications.
Performance -Quantitation Subchallenge -

Bray Curtis Dissimilarity Index (BCDI)
Quantitation Subchallenge Winners

<table>
<thead>
<tr>
<th>Rank</th>
<th>Overall</th>
</tr>
</thead>
</table>
| 1 | Chung-Tsai Su
Atgenomix
m3_Genome_Quantification |
| 2 | Nick Greenfield
One Codex
OCX_ARGOS_Reference_Genome_Quantification |
| 3 | Jonathan Jacobs
QIAGEN
ARGOS_Reference_Genome_Quantification_vSCJJ1 |
| 4 | Chung-Tsai Su
Atgenomix
m1_Genome_Quantification |
| 5 | Chung-Tsai Su
Atgenomix
m4_Genome_Quantification |
These results offer a first glance at our understanding. We welcome the community to further explore these results and provide insight for the future.

The precisionFDA CDRH Biothreat Challenge team is preparing a scientific manuscript that describes that challenge and challenge results.

Team

- PrecisionFDA: Elaine Johanson, Ruth Bandler
- PrecisionFDA CDRH: Adam Berger (now at NIH), Zivana Tezak
- Booz Allen: Zeke Maier
- DNAnexus: Singer Ma, John Didion
- FDA CDRH: Heike Sichtig, Yi Yan
- USAMRIID: Timothy Minogue, Chris Stefan