Orthopedic Non-Spinal Metallic Bone Screws and Washers – Performance Criteria for Safety and Performance Based Pathway

Draft Guidance for Industry and Food and Drug Administration Staff

DRAFT GUIDANCE

This draft guidance document is being distributed for comment purposes only.

You should submit comments and suggestions regarding this draft document within 90 days of publication in the Federal Register of the notice announcing the availability of the draft guidance. Submit electronic comments to https://www.regulations.gov. Submit written comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, rm. 1061, Rockville, MD 20852. Identify all comments with the docket number listed in the notice of availability that publishes in the Federal Register.

For questions about this document, contact the DHT6C: Division of Stereotaxic, Trauma and Restorative Devices at 301-796-5650 or Christopher Ferreira at Christopher.Ferreira@fda.hhs.gov.
Preface

Additional Copies

Additional copies are available from the Internet. You may also send an e-mail request to CDRH-Guidance@fda.hhs.gov to receive a copy of the guidance. Please include the document number 19009 and complete title of the guidance in the request.
Orthopedic Non-Spinal Metallic Bone Screws and Washers – Performance Criteria for Safety and Performance Based Pathway

Draft Guidance for Industry and Food and Drug Administration Staff

This draft guidance, when finalized, will represent the current thinking of the Food and Drug Administration (FDA or Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the FDA staff or Office responsible for this guidance as listed on the title page.

I. Introduction

This draft guidance provides performance criteria for non-spinal metallic bone screws and their associated washers in support of the Safety and Performance Based Pathway. Under this framework, submitters planning to submit a 510(k) using the Safety and Performance Based Pathway for non-spinal metallic bone screws and washers will have the option to use the performance criteria proposed in this draft guidance to support substantial equivalence, rather than a direct comparison of the performance of the subject device to that of a predicate device.

For the current edition of the FDA-recognized standard(s) referenced in this document, see the FDA Recognized Consensus Standards Database. For more information regarding use of consensus standards in regulatory submissions, please refer to the FDA guidance titled Appropriate Use of Voluntary Consensus Standards in Premarket Submissions for Medical Devices.

1 Available at https://www.fda.gov/regulatory-information/search-fda-guidance-documents/safety-and-performance-based-pathway
2 Available at https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfStandards/search.cfm
FDA’s guidance documents, including this draft guidance, do not establish legally enforceable responsibilities. Instead, guidances describe the Agency’s current thinking on a topic and should be viewed only as recommendations, unless specific regulatory or statutory requirements are cited. The use of the word “should” in Agency guidance means that something is suggested or recommended, but not required.

II. Scope/Device Description

The devices that are the subject of this guidance are Class II non-spinal metallic bone screws and washers regulated under 21 CFR 888.3040, product codes HWC (screw, fixation, bone) and HTN (washer, bolt nut), respectively.

Intended Use/Indications for Use: The bone screws that fall within the scope of this guidance document are intended for orthopedic non-spinal fracture fixation, osteotomy, or small joint fusion or arthrodesis. The washers that fall within the scope of this guidance document are intended for use with bone screws only to aid in load distribution at the screw head/bone interface. Bone screws or washers that are intended for mandibular, maxillofacial, cranial and orbital fracture fixation or for use in the spine are outside the scope of this guidance document. Devices intended for use with suture or chord components (e.g., bone anchors, syndesmosis tight ropes) as part of an implant system are also outside the scope of this guidance document.

Device Design Characteristics: Bone screws of varying designs (e.g., cancellous screws, cortical screws, cannulated screws, fully threaded screws, partially threaded screws) are included within the scope of this guidance. Devices that fall within the scope of this guidance document consist of bone screws and washers manufactured solely from one of the following materials in conformance with the associated FDA-recognized consensus standard:

- ASTM F1295 Standard Specification for Wrought Titanium-6 Aluminum-7Niobium Alloy for Surgical Implant Applications (UNS R56700)
- ASTM F67 Standard Specification for Unalloyed Titanium, for Surgical Implant Applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700)

Compatible drill bits for all screw diameters and types should be no larger than the core diameter of their compatible screws, and pilot hole diameters should be specified in the instructions for use for each screw size. Washers should be at least 0.5mm thick and be constructed of the same material as the compatible screw. Additionally, the inner diameter of a washer should be larger than the compatible screw’s thread diameter, and the inner diameter of the washer should be less than the diameter of the screw head.
Implants with the following features are not eligible for the Safety and Performance Based Pathway via this guidance:

- Combination products
- Resorbable devices
- Additively manufactured devices
- Devices which utilize surgical techniques or associated instruments outside the standard of care
- Devices with complex geometries or modularities (e.g., segmented, fenestrated)
- Devices with other unique technological characteristics (e.g., unique screw thread)

Where FDA determines that additional data are necessary to make these determinations, the Agency may, on a case-by-case basis, review that data before determining whether or not the device is appropriate for the Safety and Performance Based Pathway. In situations, where you determine that additional testing outside of those identified in this guidance are necessary to make a determination regarding eligibility into the Safety and Performance Based Pathway, we would encourage sponsors to submit a Pre-Submission⁴ to engage in discussion with FDA prior to submission of the 510(k).

III. Testing Performance Criteria

If your device is appropriate for submission through the Safety and Performance Based Pathway, and you choose to use that option, you do not need to provide direct comparison testing against a legally marketed predicate to demonstrate substantially equivalent performance characteristics. To ensure that the performance criteria outlined in this guidance remain contemporary and take into account relevant data from recent clearances, FDA recommends that you provide a results summary for all tests evaluated in addition to the other submission information (e.g., Declaration of Conformity (DoC)) identified for each test or evaluation below. Unless otherwise identified in the submission information sections below, test information such as results summary, test protocols, or complete test reports should be submitted as part of the 510(k) as described in FDA’s guidance Safety and Performance Based Pathway.⁵ For additional information regarding the submission of non-clinical bench testing information, please see FDA’s guidance Recommended Content and Format of Non-Clinical Bench Performance Testing Information in Premarket Submissions.⁶

Mechanical Bench Testing

The following mechanical tests should be performed in conformance with the FDA currently-recognized version of ASTM F543 Standard Specification and Test Methods for Metallic Medical Bone Screw. We recommend that you perform all testing on screw designs that represent worst-case (e.g., most likely to loosen or fail) final design versions. You should also provide a rationale identifying how you identified the worst-case design. Additionally, axial pullout strength should be evaluated using an engineering analysis method described below. Acceptance criteria are listed below for each test.7

For each mechanical test below, you should provide a report as specified in the relevant reporting sections of ASTM F543, in addition to a Declaration of Conformity (DoC) to the consensus standard. Any protocol deviations should be thoroughly described and justified; however, note that certain protocol deviations may invalidate comparison to the performance criteria listed below, resulting in the need for submission of a Traditional, Special, or Abbreviated 510(k), as appropriate.

1. **Test name:** Torsional Strength
 Methodology: ASTM F543 Standard Specification and Test Methods for Metallic Medical Bone Screws
 Performance Criteria: The worst-case bone screw should be selected for mechanical testing:

<table>
<thead>
<tr>
<th>Nominal Major Diameter (mm)</th>
<th>Torsional Yield Strength (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.16</td>
</tr>
<tr>
<td>2</td>
<td>0.35</td>
</tr>
<tr>
<td>2.5</td>
<td>0.60</td>
</tr>
<tr>
<td>2.7</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>3.5</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>2.3</td>
</tr>
<tr>
<td>4.5</td>
<td>3.5</td>
</tr>
<tr>
<td>5</td>
<td>4.3</td>
</tr>
<tr>
<td>5.5</td>
<td>5.9</td>
</tr>
<tr>
<td>6</td>
<td>9.5</td>
</tr>
</tbody>
</table>

7 It should be noted that although ASTM F543 is FDA-recognized in full, FDA believes that for the purposes of the safety and performance based pathway, the testing, methods and criteria identified in this section on mechanical bench testing represent the least burdensome approach to demonstrating substantial equivalence for this pathway, although alternative or additional methods or acceptance criteria are identified in the recognized consensus standard for some tests. The supplementary information sheet for ASTM F543 will be revised to reflect this information upon finalization of this guidance.
Note that the acceptance criterion is based on the torsional yield strength, which is a more conservative indicator of screw failure strength than the maximum torque strength identified in ASTM F543.

Performance Criteria Source: Criteria are based on aggregated mechanical testing data submitted to FDA in 510(k) submissions for orthopedic bone screws previously found to be substantially equivalent. It should be noted that the values in the table above were rounded to be the most inclusive and accurate based on the final data.

Additional Considerations: As specified in ASTM F543, a minimum of five samples should be tested. In addition, analysis of the data available to FDA on existing devices has shown that five samples should be adequate based on the mean torsional yield strength testing results compared to the criteria for each nominal diameter. To be considered a successful result, either: (1) All samples should meet or exceed the acceptance criteria listed above, (2) the average of all samples should meet or exceed the criteria above and the standard deviation should be ≤ 10% of the calculated average, or (3) the criteria derived from ASTM E122 *Calculating Sample Size to Estimate, With Specified Precision, the Average for a Characteristic of a Lot or Process* should be met, as suggested in ASTM F543. The table value selected for the acceptance criterion should be based on the worst-case screw nominal major diameter. If the nominal major diameter is not listed in this table, the next highest diameter torsional strength value should be used as the acceptance criterion.

Submission Information: Results summary and DoC

2. **Test name:** Driving Torque
 Methodology: ASTM F543 *Standard Specification and Test Methods for Metallic Medical Bone Screws*
 Performance Criteria: The worst-case bone screw used in torsional strength testing should be tested in insertion and removal testing. The maximum torque recorded in insertion and removal testing (recorded in Newton-meters) should be 50% of or less torque than the torsional yield strength for insertion into a minimum of 20 pcf bone foam. Additionally, visual inspection should be performed on screws following their removal, and images of the final test samples should be provided to demonstrate that the screw threads adequately resist damage, such as disassociation of the screw thread from the screw body.

 Performance Criteria Source: Criteria are based on aggregated mechanical testing data submitted to FDA in 510(k) submissions for orthopedic bone screws previously found to be substantially equivalent.

 Additional Considerations: In order to be considered a successful result, all samples should meet or exceed the acceptance criteria listed above.

 Submission Information: Results summary and DoC

3. **Test name:** Axial Pullout Strength
 Methodology: For all screw diameters and types, the pilot hole diameter should be no larger than the minor diameter of the screw in order to use the engineering analysis below. Note that an engineering analysis is recommended in lieu of bench testing.
described in ASTM F543 to assess axial pullout strength when demonstrating substantial
equivalence using the safety and performance pathway due to significant variations in test
outcomes resulting from small differences in the test blocks used, even when the blocks
conform to the specifications in ASTM F1839 Standard Specification for Rigid
Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and
Instruments.

For all screws, extract the relevant dimensions below (i.e. screw major diameter, screw
minor diameter, screw pitch, and axial thread length). These dimensions will be used to
calculate theoretical pullout strengths for the smallest axial thread lengthened screws in
the device system using the following equation (Chapman et al., 1996)\(^8\):

\[
Fs = S \times A = \left\{ S \times L \times \pi \times D_{major} \times TSF \right\}
\]

\(Fs\) = predicted shear failure force (N)
\(S\) = material ultimate shear stress (MPa)
\(A\) = thread shear area (mm\(^2\))
\(L\) = length of thread engagement in material (mm)
\(D_{major}\) = major diameter (mm)
\(TSF\) = Thread Shape Factor (dimensionless) = \((0.5 + 0.57735 \times \frac{d}{p})\)
\(d\) = thread depth (mm) = \((D_{major} - D_{minor})/2\)
\(D_{minor}\) = minor (root) diameter (mm)
\(p\) = thread pitch (mm)

Using a material ultimate shear stress value of 3.395 MPa (representative of 20 pcf bone
foam), the resulting theoretical pullout strength value obtained for the device should be
equivalent or greater to the following values depending on the nominal major diameter of
the worst-case screws. A justification should be provided to support why the evaluated
screws selected are worst case. Axial pullout performance is heavily influenced by
amount of interface. Factors such as decreasing outer diameter and decreasing axial
thread length may help identify the worst case.

Dimensions used for calculations should be clearly listed for each theoretical outcome.
Dimensional values used in this calculation should be consistent with the values listed on
the screw engineering drawings.

\(^8\) Chapman, J. R. (1996). Factors Affecting the Pullout Strength of Cancellous Bone Screws. Journal of
Biomechanical Engineering, 118(3), 391. doi:10.1115/1.2796022
Performance Criteria:

<table>
<thead>
<tr>
<th>Nominal Major Diameter (mm)</th>
<th>Theoretical Pullout Strength (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>45.6</td>
</tr>
<tr>
<td>2</td>
<td>50.5</td>
</tr>
<tr>
<td>2.5</td>
<td>55.5</td>
</tr>
<tr>
<td>2.7</td>
<td>79.5</td>
</tr>
<tr>
<td>3</td>
<td>92.0</td>
</tr>
<tr>
<td>3.5</td>
<td>112.5</td>
</tr>
<tr>
<td>4</td>
<td>148.4</td>
</tr>
<tr>
<td>4.5</td>
<td>152.3</td>
</tr>
<tr>
<td>5</td>
<td>230.7</td>
</tr>
<tr>
<td>5.5</td>
<td>336.0</td>
</tr>
<tr>
<td>6</td>
<td>468.6</td>
</tr>
<tr>
<td>6.5</td>
<td>503.5</td>
</tr>
</tbody>
</table>

Performance Criteria Source: Criteria are based on aggregated mechanical testing data and device description information submitted to FDA in 510(k) submissions for orthopedic bone screws previously found to be substantially equivalent.

Submission Information: Results summary and engineering analysis

Sterilization (devices labeled as sterile) and Reprocessing (end-user sterilized) Validation

4. **Test name:** Sterilization (devices labeled as sterile) and Reprocessing (end-user sterilized)

Methodology: FDA currently-recognized versions of the following consensus standards (as applicable):

- International Organization for Standardization (ISO) 17665-1 *Sterilization of health care products – Moist heat – Part 1: Requirements for the development, validation, and routine control of a sterilization process for medical devices*
- ISO 11135-1 *Sterilization of health care products – Ethylene oxide – Part 1: Requirements for development, validation, and routine control of a sterilization process for medical devices*
- ISO 11137-1 *Sterilization of health care products – Radiation – Part 1: Requirements for development, validation, and routine control of a sterilization process for medical devices*
- ISO 11607-1 *Packaging for terminally sterilized medical devices – Part 1: Requirements for materials, sterile barrier systems and packaging systems*
- ISO 11607-2 *Packaging for terminally sterilized medical devices – Part 2: Validation requirements for forming, sealing and assembly processes*
Performance Criteria: Validation testing should demonstrate the cleanliness and sterility of, or the ability to clean and sterilize to a sterility assurance level of 10^{-6}, the device and device-specific instruments. You should provide a description of the packaging (sterile barrier system) and how it will maintain the device’s sterility, and a description of the package test methods, but not package test data.

Performance Criteria Source: FDA’s guidance:

- Submission and Review of Sterility Information in Premarket Notification (510(k)) Submissions for Devices Labeled as Sterile
- Reprocessing Medical Devices in Health Care Settings: Validation Methods and Labeling

Submission Information: If using an Established Category A sterilization method, you should provide the information described in Section V.A. of the FDA guidance Submission and Review of Sterility Information in Premarket Notification (510(k)) Submissions for Devices Labeled as Sterile; the validation data itself is not needed to demonstrate substantial equivalence.

Biocompatibility Evaluation:

To identify the biocompatibility endpoints to include as part of your biocompatibility evaluation you should use Attachment A of CDRH’s guidance Use of International Standard ISO 10993-1, Biological evaluation of medical devices – Part 1: Evaluation and testing within a risk management process, referred to in the rest of this document as the CDRH Biocompatibility Guidance for brevity. FDA considers the devices covered by this guidance to be categorized as Implanted Devices in contact with tissue/bone with a “permanent” contact duration of > 30 days and you should assess the endpoints below per Attachment A of the CDRH Biocompatibility Guidance.

- Cytotoxicity
- Sensitization
- Irritation or Intracutaneous Reactivity
- Acute Systemic Toxicity
- Material-Mediated Pyrogenicity
- Sub-acute/Sub-chronic Toxicity
- Genotoxicity
- Implantation
- Chronic Toxicity
- Carcinogenicity

11 Available at https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-international-standard-iso-10993-1-biological-evaluation-medical-devices-part-1-evaluation-and
Rationale in Lieu of Testing: If the subject device is manufactured from the identical raw materials using identical manufacturing processes as a predicate device with the same type and duration of tissue contact, and any changes in geometry are not expected to impact the biological response, this is typically sufficient to establish substantially equivalent biocompatibility, if documentation such as that outlined in Attachment F of the CDRH Biocompatibility Guidance is also provided.

Testing: In rare cases, if you determined that testing is needed to address some or all of the identified biocompatibility endpoints, FDA recommends that complete test reports be provided for all tests performed unless a declaration of conformity without supplemental information can be appropriately provided, per Attachment E of the CDRH Biocompatibility Guidance. Any test-specific positive, negative, and/or reagent controls should perform as expected, and protocol deviations should be thoroughly described and justified; however, note that certain protocol deviations may invalidate comparison to the performance criteria listed below and require submission of a Traditional, Special, or Abbreviated 510(k).

5. **Test name:** Biocompatibility endpoints (identified from CDRH Biocompatibility Guidance)
 Methodology: FDA currently-recognized versions of biocompatibility consensus standards
 Performance Criteria: All direct or indirect tissue contacting components of the device and device-specific instruments should be determined to have an acceptable biological response.
 Performance Criteria Source: The CDRH Biocompatibility Guidance
 Additional Considerations: For any biocompatibility test samples with an adverse biological response, the biocompatibility evaluation should explain why the level of toxicity seen is acceptable. Some comparison testing against a legally marketed predicate may be necessary (and is considered acceptable under the Safety and Performance Based Pathway) to support such a rationale as explained in the CDRH Biocompatibility Guidance. For standard biocompatibility test methods that include comparison device control samples, the legally marketed comparison device control samples should perform as expected, as specified above for the subject device samples.
 Submission Information: Refer to CDRH Biocompatibility Guidance