<u>**Tanmay Bera**</u>¹, Hongjian Ding², Howard Semey², Leihong Wu¹, Zhichao Liu¹, Amy Barnes², Darryl Langley², Monica Pava-Ripoll³, Himansu Vyas², Weida Tong¹, Joshua Xu^{1*} 1-Division of Bioinformatics and Biostatistics, NCTR, US FDA, Jefferson, AR. 2-Food Chemistry Laboratory 1, ARKL, ORS/ORA, US FDA Jefferson, AR. 3-Office for Food Safety, CFSAN, US FDA, College Park, MD.

Introduction

Insect Contamination & Food Safety Challenges in Detection

Scope:

GOAL:

Develop <u>1. Imaging Acquisition Method</u> and 2. <u>Image Analysis System</u> (through <u>Machine</u> <u>Learning</u>) for accurate & efficient <u>species level identification</u> of insect based food contamination

Materials & Methods

Sample collection:

Food products often suffer from contamination from food contaminating beetles. Food samples are routinely analyzed manually to screen for such contamination, which needs automation for better & efficient screening.

We plan to use a combination of good quality image acquisition and image processing for elytral pattern recognition for automated species recognition.

Results

CNN (Average Accuracy: ~79%)

Conclusions

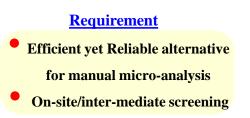
Acknowledgments

References

Scan the QR code to access additional information online

Tanmay Bera¹, Hongjian Ding², Howard Semey², Leihong Wu¹, Zhichao Liu¹, Amy Barnes², Darryl Langley², Monica Pava-Ripoll³, Himansu Vyas², Weida Tong¹, Joshua Xu^{1*} 1-Division of Bioinformatics and Biostatistics, NCTR, US FDA, Jefferson, AR. 2-Food Chemistry Laboratory 1, ARKL, ORS/ORA, US FDA Jefferson, AR. 3-Office for Food Safety, CFSAN, US FDA, College Park, MD.

Introduction



Damages

Present Technique

Challenges

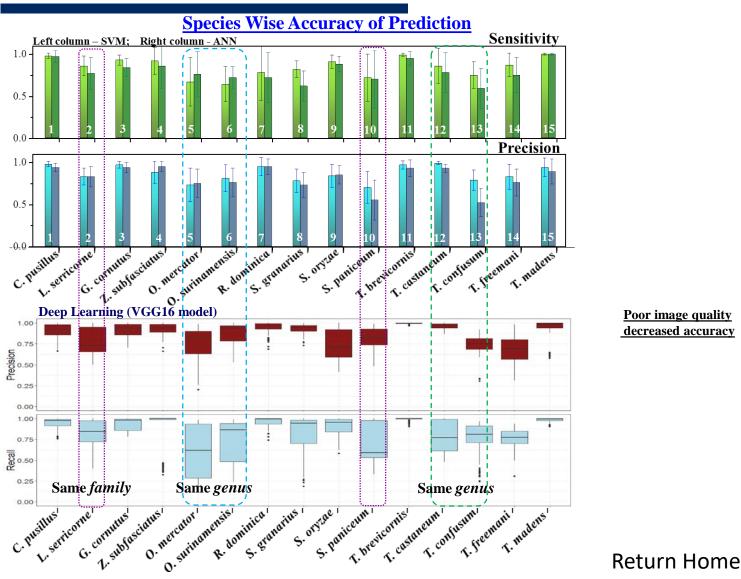
Extent of damage depends on Species:

Approach & Aim :

Can an <u>Image Acquisition</u> process be standardized to produce high quality image in a consistent manner to collect a large set of image, for a several different species of pantry beetles?

Can an <u>Image Processing Algorithm</u> be developed through <u>Machine Learning</u> for species level identification of insect based food contamination ?

Return Home


Tanmay Bera¹, Hongjian Ding², Howard Semey², Leihong Wu¹, Zhichao Liu¹, Amy Barnes², Darryl Langley², Monica Pava-Ripoll³, Himansu Vyas², Weida Tong¹, Joshua Xu^{1*} 1-Division of Bioinformatics and Biostatistics, NCTR, US FDA, Jefferson, AR. 2-Food Chemistry Laboratory 1, ARKL, ORS/ORA, US FDA Jefferson, AR. 3-Office for Food Safety, CFSAN, US FDA, College Park, MD.

Microscopy & Imaging

Results

Poor image quality decreased accuracy

Tanmay Bera¹, Hongjian Ding², Howard Semey², Leihong Wu¹, Zhichao Liu¹, Amy Barnes², Darryl Langley², Monica Pava-Ripoll³, Himansu Vyas², Weida Tong¹, Joshua Xu^{1*} 1-Division of Bioinformatics and Biostatistics, NCTR, US FDA, Jefferson, AR. 2-Food Chemistry Laboratory 1, ARKL, ORS/ORA, US FDA Jefferson, AR. 3-Office for Food Safety, CFSAN, US FDA, College Park, MD.

Results

Optimizing Image Acquisition

Extension and Database Development

Total ~50 different Species, 40 images/species, that covers most beetle based food contamination

Return Home

Tanmay Bera¹, Hongjian Ding², Howard Semey², Leihong Wu¹, Zhichao Liu¹, Amy Barnes², Darryl Langley², Monica Pava-Ripoll³, Himansu Vyas², Weida Tong¹, Joshua Xu^{1*} 1-Division of Bioinformatics and Biostatistics, NCTR, US FDA, Jefferson, AR. 2-Food Chemistry Laboratory 1, ARKL, ORS/ORA, US FDA Jefferson, AR. 3-Office for Food Safety, CFSAN, US FDA, College Park, MD.

Conclusions

- Machine learning was implemented for Species Identification for pantry beetles for food contamination
- Initial studies showed the feasibility of using elytral pattern recognition for beetle species identification
- The ANN classification resulted ~79% avg. accuracy of prediction
- SVM improves it to ~ 85%
- CNN(vgg16) needed no feature extraction and helped achieve ~80% accuracy
- However, due to poor quality of the images showed confusion between species with similar family and/or genus
- Imaging is important in revealing patterns properly
- Imaging parameters were optimized to reveal the elytral patterns more clearly
- Transmitted light with 100x magnification seems to be the best combination of image acquisition
- **Capable of distinguishing species from the same genius**
- Method was tested by multiple operating personnel and showed minimal deviations
- Thus, a standard method for imaging was developed
- The method was extended to about 50 different species of food contaminating beetles that cover most of beetle based contaminations
- Database of 40 images per species are currently being constructed and will be made publicly available.
- These images are being used to develop AI algorithms for automated species identification through a cloud based image repository
- We also plan to develop a GUI (interface) to have beetle species identified when uploaded