

Application Scaling Techniques on HPC Clusters

Mike Mikailov, Nicholas Petrick, Fu-Jyh Luo, Stuart Barkley, Nadia Guimont

Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratories (OSEL), Division of Imaging Diagnostics and Software Reliability (DIDSR)

Introduction

Modeling and Simulation Modeling and Simulation (M&S) are used extensively by FDA scientists¹. M&S applications can overwhelm even HPC clusters. An FDA simulation project would require 28 years of computations per product on a single workstation. Applying our techniques reduces this run time to only seven days.

Bioinformatics FDA's Precision Medicine Initiative relies heavily on the next-generation sequencing technology which is associated with lengthy processing of exponentially growing sequence databases. A BLAST+ job consumes more than 22 days of computations. Applying the techniques reduces this run time to only few hours.

Deep Neural Networks Testing run time of 228 reduced to 3 weeks.

Big Data Analysis Interactome project, 1,800-year reduced to 6 months.

Materials & Methods

Scaling simulations:

- Partition simulation loops to delegate iterations to independent tasks.
- Adapt L'Ecuyer RngStream² technique to provide quality random numbers across all independent tasks.
- Use array job facility of the job schedulers to launch the tasks on all available cores and save all partial results.
- Merge all the partial results and summarize.

Scaling Bioinformatics:

- Partition queries and reference database into M and N subsets. Generate M x N unique combinations of the subsets.
- Use array job to launch M x N tasks, each task processing a unique combination of the subsets and save all partial results.
- Merge all the partial results and summarize.

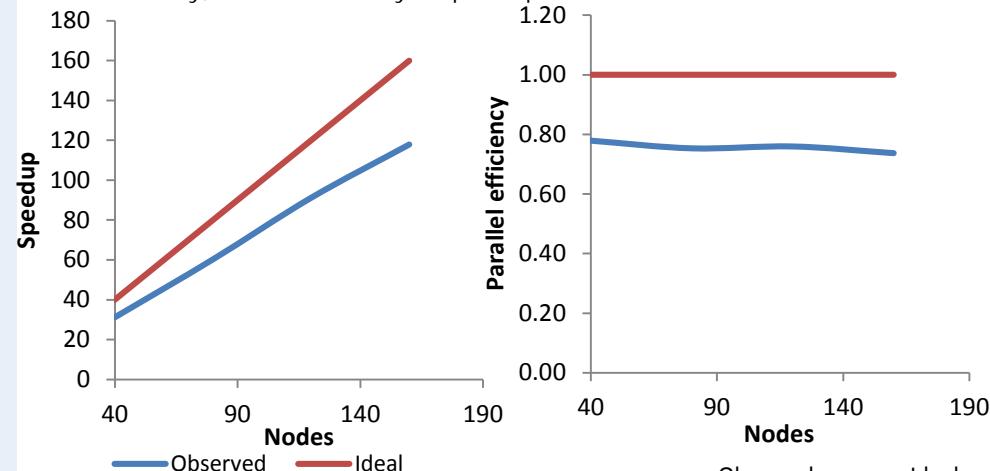
Scaling Deep Neural Networks Testing:

- Create a look-up table, mapping contiguous intervals of sub-image IDs (total of L) to whole-slide image IDs.
- Use array job to launch L tasks, each task retrieving (using the look-up table) and processing a sub-image for testing and saving results.

Big Data Analysis:

- Split big data into P smaller subsets.
- Use array job to launch P tasks, each processing a subset and saving partial results.
- Merge all the partial results.

* Note: Number of array job tasks can exceed the max capacity.


The challenge comes not from how big and fast the cluster can be, but how the HPC applications can be **scaled** to take advantage of all the resources in parallel and scalable manner.

Scan the QR code to access additional information online

Results

Speedup and parallel efficiency example using BlastX . Speedup increases sub-linearly; Parallel efficiency = speed up / number of nodes

Conclusions

- The scaling techniques presented here are already in use by FDA scientists.
- The techniques enable reduction of the data subset processed by each job task to a size that fits into the memory of the computing nodes where computations are performed. The resulting reduction in disk I/O produces excellent results, enabling substantial drops in run times.
- The described methods use only open source code, adds no hardware cost.

Acknowledgments

Arifa S. Khan, PhD, CBER; Junshan Qiu, PhD, CDER; Weijie Chen, PhD, CDRH; Weizhe Li, PhD, CDRH, and many others at FDA.

References

- [1. <https://www.nuventra.com/resources/blog/simulation-transforms-regulatory-pathways/>](https://www.nuventra.com/resources/blog/simulation-transforms-regulatory-pathways/)
- [2. <http://simul.iro.umontreal.ca/>](http://simul.iro.umontreal.ca/)