

Drug Development to Enable Precision Dosing

Richard Peck, Global Head Clinical Pharmacology, Pharma Research & Early Devt, F Hoffmann Ia Roche, Basel

FDA Precision Dosing Workshop, August 12th 2019

Disclosures

• I am an employee of and hold stock in F Hoffmann Ia Roche

Precision dosing in practice today

Clinical endpoint guided

- Many situations
- Individual MTD for cancer drugs

Biomarker guided

- Anti-hypertensives, cholesterol lowering, insulin and oral hypoglycaemics, warfarin, erythropoietin
- Generally biomarkers that are part of routine clinical care

PK guided

- "Classical" patient subgroups ethnicity, organ failure, age, DDIs...
- Therapeutic Drug Monitoring

Pharmacogenetics

•7% of approved drugs have actionable germ line pharmacogenetics (Relling & Evans, Nature, 2015)

•BUT Only implemented in highly selected cases or some tertiary care centres

Precision dosing in drug development today Disease/Response guided dosing is unusual but has been done

Response guided

- IgG replacement (PK guided)
- Erythropoeitin and thrombopoeitin analogues (PD guided)

Disease-based

• omalizumab

Response guided dosing for immune globulin dosing

Table 2. Change in Weekly Dose of GAMMAGARD LIQUID for Intended IgG Trough Level Adjustment ^a							
Difference between Measured and Target IgG Trough Levels							
Body Weight	100 mg/dL	$200 \ mg/dL$	$300 \ mg/dL$	400 mg/dL			
10 kg	2 mL	4 mL	6 mL	8 mL			
20 kg	4 mL	8 mL	11 mL	15 mL			
30 kg	6 mL	11 mL	17 mL	23 mL			
40 kg	8 mL	15 mL	23 mL	30 mL			
50 kg	9 mL	19 mL	28 mL	38 mL			
60 kg	11 mL	23 mL	34 mL	45 mL			
70 kg	13 mL	26 mL	40 mL	53 mL			
80 kg	15 mL	30 mL	45 mL	60 mL			
90 kg	17 mL	34 mL	51 mL	68 mL			
100 kg	19 mL	38 mL	57 mL	75 mL			
110 kg	21 mL	42 mL	62 mL	83 mL			
120 kg	23 mL	45 mL	68 mL	91 mL			
130 kg	25 mL	49 mL	74 mL	98 mL			
140 kg	26 mL	53 mL	79 mL	106 mL			

^a Derived using a linear approximation to the nomogram method with a slope of 5.3 kg/dL.

Cuvitru sc

Table 1 Change in Volume to Be Administered Weekly/Biweekly for Intended IgG Trough Level Change ^a						Frough	
		Body Weight					
Difference from Target Serum IgG Trough Levels	Dosing Frequency	30 kg	50 kg	70 kg	90 kg	110 kg	
100 mg/dL	Weekly	3 mL	5 mL	7 mL	9 mL	11 mL	
	Biweekly	6 mL	10 mL	13 mL	$17 \mathrm{mL}$	21 mL	
200 mg/dL	Weekly	6 mL	10 mL	13 mL	$17 \mathrm{mL}$	21 mL	
	Biweekly	12 mL	19 mL	27 mL	35 mL	42 mL	
300 mg/dL	Weekly	9 mL	14 mL	$20\mathrm{mL}$	26 mL	32 mL	
	Biweekly	$17 \mathrm{mL}$	29 mL	40 mL	52 mL	63 mL	

Derived using a linear approximation of trough levels and weekly dose per kg body mass with a slope of 52.1 kg/dL.

а

Dose individualisation using baseline disease variability Omalizumab dose varies with body weight and IgE level

Table 1. Subcutaneous XOLAIR Doses Every 2 or 4 Weeks* for Patients 12 Years of Age and Older with Asthma

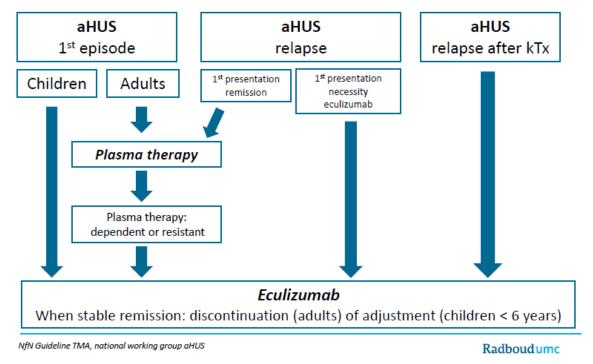
		2150 and	· Older with rist	11114			
Pretreatment	Dosing	Body Weight					
Serum IgE (IU/mL)	Freq.	30-60 kg	>60-70 kg	>70-90 kg	>90-150 kg		
			Dose	(mg)			
≥30-100	Every	150	150	150	300		
>100-200	4	300	300	300	225		
>200-300	weeks	300	225	225	300		
>300-400	Every	225	225	300			
>400-500	2	300	300	375			
>500-600	weeks	300	375	Insufficio	ent Data		
>600-700		375		to Recomm	end a Dose		
	+	Dosing frequency:					

Subcutaneous doses to be administered every 4 weeks Subcutaneous doses to be administered every 2 weeks

Table 2. Subcutaneous XOLAIR Doses Every 2 or 4 Weeks* for Pediatric Patients withAsthma Who Begin XOLAIR Between the Ages of 6 to <12 Years</td>

Pre-treatment	Dosing Freq.	Body Weight									
Serum IgE (IU/mL)		20-25	>25-30	>30-40	>40-50	>50-60	>60-70	>70-80	>80-90	>90-125	>125-150
(10) 111)		kg	kg	kg	kg	kg	kg	kg	kg	kg	kg
						Do	se (mg)				
30-100		75	75	75	150	150	150	150	150	300	300
>100-200		150	150	150	300	300	300	300	300	225	300
>200-300	Every	150	150	225	300	300	225	225	225	300	375
>300-400	4	225	225	300	225	225	225	300	300		
>400-500	weeks	225	300	225	225	300	300	375	375		
>500-600		300	300	225	300	300	375				
>600-700		300	225	225	300	375					
>700-800		225	225	300	375						
>800-900	-	225	225	300	375						
>900-1000	Every 2	225	300	375		Incuffi	ciont De	to to De	commo	nd a Dose	
>1000-1100	weeks	225	300	375		Insum	cient Da		Comme		5
>1100-1200		300	300								
>1200-1300		300	375								

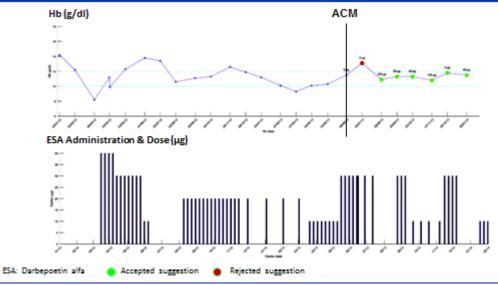
*Dosing frequency:


Subcutaneous doses to be administered every 4 weeks Subcutaneous doses to be administered every 2 weeks

Eculizumab for aHUS in The Netherlands Individualized dosing to manage costs and maintain reimbursement

- Eculizumab not cost effective at approved dose in aHUS
- EMA Approved dose produces exposures 3-9 fold above target
- Less frequent maintenance dosing and cessation of therapy in stable patients maintains clinical benefit
- Reduced drug costs ($\downarrow > 50\%$)
- Reimbursed in The Netherlands for aHUS with new dosing guideline.
- Prospective observational study ongoing CUREiHUS

New Dutch guideline



Volokhina et al. CPT, 2017;102:671-678

Artificial Intelligence (AI) based renal anaemia management system improves outcomes with individualised dosing

	Pre ACM	Using ACM	when ACM believed
In range Hb (%)	70.6	76.6	83.2
Median darbopoetin dose (µg/kg/month)	40	30	20
CV events (/1000 patient years)	517	440	
Transfusion events (/1000 patient years)	152	92	

Hb Behavior over Time Before and After ACM Implementation

Barbieri C et al, Kidney Int. 2016;90:422-429

Roche

Machine learning enabling individualised dosing

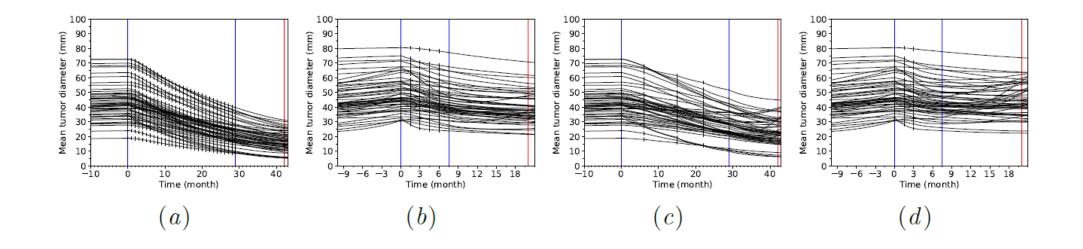
Clinical Cancer

Research

Proceedings of Machine Learning Research 85 2018

Machine Learning for Healthcare

Reinforcement Learning with Action-Derived Rewards for Chemotherapy and Clinical Trial Dosing Regimen Selection


Gregory Yauney Pratik Shah* Media Lab Massachusetts Institute of Technology Cambridge, MA, USA GYAUNEY@MEDIA.MIT.EDU PRATIKS@MEDIA.MIT.EDU

Source of PKPD data, n=45

Cancer Therapy: Clinical

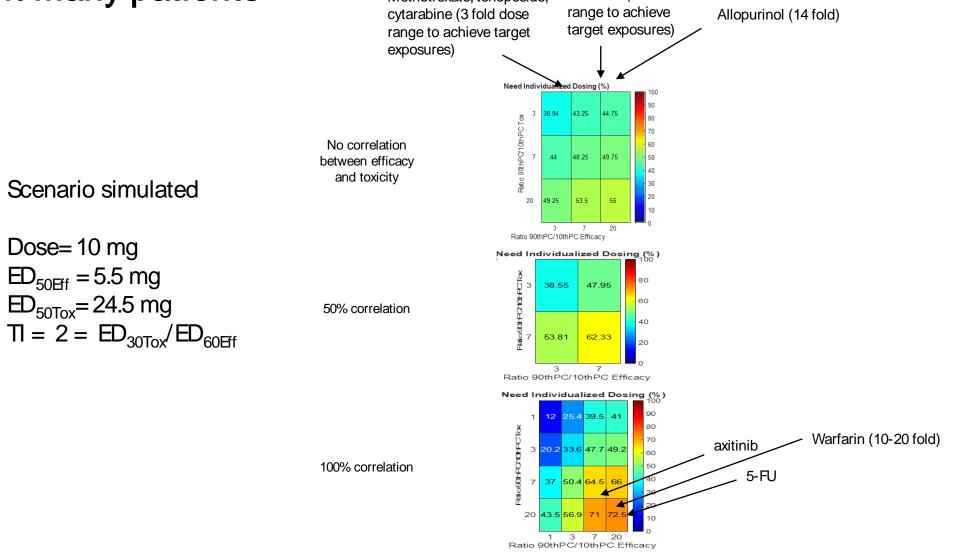
A Tumor Growth Inhibition Model for Low-Grade Glioma Treated with Chemotherapy or Radiotherapy

Benjamin Ribba¹, Gentian Kalosh⁶, Mathieu Peyre², Damien Ricard⁷, Vincent Calvez¹, Michel Tod^{3,4}, Branka Čajavec-Bernard¹, Ahmed Idbaih⁶, Dimitri Psimaras⁶, Linda Dainese⁸, Johan Pallud⁹, Stéphanie Cartalat-Carel², Jean-Yves Delattre⁶, Jérôme Honnorat^{2,4,5}, Emmanuel Grenier¹, and François Ducray^{2,4,5}

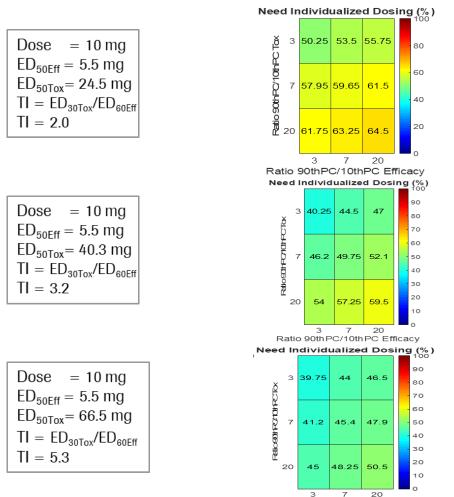
Lessons from drugs developed for precision dosing

Precision dosing is approvable after inclusion in pre-approval trials

Clinical development for precision dosing not fundamentally different from "one size fits all" dosing


Precision dosing needs a clearly defined target (or target range)

Precision dosing can be based on efficacy or safety or both


Current examples adjust dose based on single parameters

For low therapeutic index drugs, dose individualisation will benefit many patients Methotrexate, tenoposide, Sunitinib (6 fold

The benefit from dose-individualisation falls as therapeutic index increases *There is still significant opportunity for "moderate" TI drugs*

Ratio 90thPC/10thPC Efficacy

Roche

To be useful, Precision Dosing must significantly improve benefit:risk Improved benefit:risk most likely in the following situations

Narrow therapeutic index

Mechanism based adverse events

Severe/irreversible adverse effects

Irreversible consequences of inadequate dosing

Difficult routes of administration

Use in vulnerable populations

Combination therapy

Challenges and barriers to precision dosing in drug development

KOCI

- Stick with what we know "one size fits all" dosing
- Regulators don't need or want it

Complexity

- Complexity is uncompetitive
- Patient monitoring/tests
- Interpreting the results
- Formulation complexity
- Unclear development path

Unclear regulatory path for associated tools

Unclear reimbursement

Enabling precision dosing during clinical development

	Population	Univariate Sub-Population	Additional and/or Multivariate Sub-Populations	Individual				
e dose-exposure-response early								
st	stand & incorporate impact of PD and Disease variability on response							

Koch

Use exposure-response from phase 1/2 to compare precision and fixed dosing and support pivotal trial simulations

• Identify/confirm target ranges

Explor

Under

Dose "adaptive" clinical trials

- PK guided (Concentration-controlled)
- PD guided (Clinical response or biomarker-controlled)

Wider range of patients in clinical trials at all stages

• Phase 3 representative of real world patients

Companion CDS tool development

Formulation development to allow dose flexibility

Publish trials and models

Roche

It's the right thing to do

Higher development success rates

Outcomes based pricing

Patient, prescriber, provider and payer pressure – and post-approval action

Regulation

- Start by amending concepts such as "Recommended phase 2 dose" to "...dose range"
- Post approval commitments

Diagnostics developers

- Easy to use, new biomarkers
- Development and availability of clinical decision support tools

Doing now what patients need next