Clinical Implementation of PK/PD Model-Informed Decision Support Tools for Precision Dosing

Sander Vinks, PhD, PharmD, FCP
Cincinnati Children’s Research Foundation Endowed Chair
Professor, Pediatrics & Pharmacology
Director, Division of Clinical Pharmacology
Scientific Director, Pharmacy Research in Patient Services
Co-director, Genetic Pharmacology Service
Objectives

• Highlight the ongoing paradox of precision medicine and the drug development process resulting (typically) in doses for the average patient.

• Describe clinical decision support using model-informed precision dosing to improve treatment outcomes by identifying the optimal dose for each individual patient.

• Present examples of the development and implementation of model-informed decision support for precision dosing at Cincinnati Children’s.
Continuing Paradox of Drug Development

1. Clinical trials provide evidence of efficacy and safety at usual doses in populations

![Image of people and pill]

+ = Efficacious & Safe

2. Physicians treat individual patients who can vary widely in their response to drug therapy

![Image of people and pill]

+ = Efficacious & Safe

Adverse Drug Reaction
No Response

Courtesy: Guido Filler, MD, PhD, University Western Ontario

Mycophenolate exposure at standard dose
Continuing Paradox of Drug Development

1. Clinical trials provide evidence of efficacy and safety at usual doses in *populations*

2. Physicians treat *individual patients* who can vary widely in their response to drug therapy

Mycophenolate exposure at standard dose

Courtesy: Guido Filler, MD, PhD, University Western Ontario
Precision Medicine based on *Pharmacokinetics & Pharmacodynamics*

• Wouldn’t it be amazing if we could follow the amount of drug and biomarkers in the body as our ‘molecular status’, *in vivo*, and in real time?

• So … *why can’t we do it now?*

Inspiration: Tom Soh, PhD, Stanford; https://www.youtube.com/watch?v=5_6kbrz2ONU
Because we lack *real-time assays* for concentrations (PK) and biomarkers (PD)

And we don’t have *simple tools* for clinical interpretation using EHR integrated decision support
Ongoing development at CCHMC:

- Anticancer drugs - melphalan, cyclophosphamide, busulfan
- Pain medication - morphine and metabolites
- Neonatal abstinence syndrome (NAS) drugs - methadone, buprenorphine
PaperSpray Mass Spectrometry – Clinical Application of a Novel Technique

- PaperSpray ionization developed at Purdue University (Graham Cooks)
- Technology now being developed by Prosolia Company, Indianapolis

Ongoing development:
- Anticancer drugs (melphalan, cyclophosphamide, busulfan)
- Pain medication (morphine and metabolites, methadone), buprenorphine
Power of Modeling & Simulation

PK/PD driven decision support

Cloud based

Precision Dosing -> Improved Outcomes

PK/PD model-informed Precision Dosing Process for concentration-controlled trials

Model-informed clinical decision support initiative at Cincinnati Children’s

Integration of pharmacogenetics with model-based PK/PD algorithms in a decision support platform as part of the Electronic Health Record for individualized precision dosing in real time

The not too distant future of availability of drug sensors

Model-informed precision dosing can have many applications

- **Melphalan** – *individualized micro dosing strategy to control variability in high dose melphalan exposure in reduced intensity conditioning in allogeneic hematopoietic cell transplantation for non-malignant disorders*
- **Hydroxyurea** – *improving the timeline to achieve maximum tolerated dose and improved response in patents with sickle cell anemia*
- **Morphine, Midazolam, Acetaminophen** - *NeoRelief™ decision support platform for individualized pain treatment in neonates*
- **Methadone and buprenorphine** – *MIPD for tailored neonatal abstinence syndrome treatment*
- **Biologics** – *RoadMap™ physician driven decision support for precision dosing of monoclonal antibodies in the treatment of Inflammatory Bowel Disease*

Vinks, Pediatric Grand Rounds, “Personalized Medicine through Model-informed Precision Dosing: What’s Here – What’s Near?” - December 2018; https://cctst.uc.edu/node/3810
Pain management in the Neonatal Intensive Care Unit - *large variability in exposure with standard doses* -

Target attainment

65% above target?

16% on target

19% below target

Euteneuer et al. 2019. Morphine PK variability in the NICU - 229 observations in 56 neonates
Electronic Health Record-embedded Decision Support for Morphine Precision Dosing

Supported by: Gerber Foundation; Ohio Technology Validation & Start-up Fund; CCTST T1 grant, CCHMC Innovation Fund, and Peri-Natal Pilot Fund

NeoRelief Prototyping

Real time measurement & feedback

Concentration read-out

Dosing input
NeoRelief Prototyping

Real time measurement & feedback

Integration of PK and pains scores (PD) in an intuitive dashboard
Human Factors engineering:
NeoRelief™ Precision Dosing Application

- Help clinicians recognize the importance of optimal dosing and impact of morphine and midazolam on the patient’s response to pain and sedation.

<table>
<thead>
<tr>
<th>Morphine</th>
<th>Timeframe:</th>
<th>1d</th>
<th>2d</th>
<th>3d</th>
<th>7d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration</td>
<td>Hours</td>
<td>42</td>
<td>3</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med</td>
<td>Med</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NeoRelief prototype after human factors engineering process
Why model-informed precision dosing should become a common clinical reality!

• ‘Our son was diagnosed with Crohn's last year and was started on Remicade. His trough level has frequently been sub-therapeutic.

• Our sense is there are multiple possible reasons for this but I imagined you would say most of them are avoidable with the right pharmacologic approach.

• Have you had any experience with Remicade (infliximab) for therapeutic monitoring? Seems like an area ripe for work given the cost of the drug and the risks of sub-therapeutic levels.

• We'd be curious about any thoughts you might have - that might help us and potentially the approach to Crohn's. I'd be interested to meet if you think there are some opportunities to explore.’
Pivotal study for FDA approval of infliximab in children with Crohn’s disease

- Impressive response rates observed after induction at week 10: in 88.4% of patients with 58.9% achieving clinical remission.
- However - approximately half (55.8%) of patients receiving infliximab maintenance therapy had favorable response or clinical remission at the end of the study at week 54.
- Many patients in the pivotal trial had what now would be considered ‘below target’ exposures during and toward the end of the study.

Fasanmade et al. Pharmacokinetic Properties of Infliximab in Children and Adults with Crohn’s Disease: A Retrospective Analysis of Data from 2 Phase III Clinical Trials. Clin Ther; 33:7: 947-64.
Learning Health Systems as Facilitators of Precision Medicine - *IBD ImproveCareNow Network*

> 100 GI Care Centers
> 30,000 patients and parents
> 950 physicians
> 60% of all patients with Inflammatory Bowel Disease

https://www.improvecarenow.org/#network-hub
Learning Health Systems as Facilitators of Precision Medicine - *IBD ImproveCareNow Network*

- A network case study to illustrate how the concept of precision medicine can be achieved through a Learning Health System in a real-world clinical environment.
PK consult: Individual PK parameters were estimated using the data shown in the dashed box and using the CCHMC infliximab population PK model. The model predicted the PK profile very well as confirmed by the measured concentrations.

Predictive covariates: Weight, Albumin, Erythrocyte Sedimentation Rate, Anti-drug antibody level.

Exposure control for biologics – a learning health system

Figure 1. Team science approach to systematically personalize monoclonal antibodies

Courtesy: Phillip Minar, MD. Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center
Exposure control for biologics – a learning health system

Infliximab RoadMAB (prototype)

Patient
- Weight (kg): 65
- ALB (g/dL): 2.3
- Combination immunomodulator: MTX
- ESR (mm/h): 55
- nCD64: 4.5

Infusion 5 Target concentration

<table>
<thead>
<tr>
<th>Reference Range</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Infusion 5 Target Fecal Calprotectin

<table>
<thead>
<tr>
<th>Reference Range</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref</td>
<td><16</td>
<td>250</td>
</tr>
</tbody>
</table>

Recommended Dosing

- Dose (mg/kg): 9
- Flat Dose (mg): 600
- Schedule: Q.4 weeks
- Interval (week): Q.4 weeks
- Estimated Trough: 7.9
- Estimated Trough: 8.2

Courtesy: Phillip Minar, MD. Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center
Conclusions

• *This Time is Different*: model-informed therapeutic drug management is here and clinically feasible

• *Learning Health Systems* represent an attractive platform for collecting and analyzing big EHR data sets using machine learning and AI to integrated new knowledge in a *timely fashion* into care to improve health

• A large evidence base is developing on the utility of model-informed precision dosing for narrow therapeutic index drugs

• Next iterations will have to expand emphasis on pharmacodynamics, disease progression and pro-active anticipatory intervention!
Acknowledgements

Clinical Pharmacology
Min Dong, PhD
Chie Emoto, PhD
David Hahn, PhD
Kana Mizuno, PhD
Tomoyuki Mizuno, PhD
Laura Ramsey, PhD
Ye (Vivian) Xiong, PhD

Cancer & Blood Diseases Institute
Stella M. Davies, MBBS, PhD, MRCP
Sharat Chandra, MD
Adrienne Hammill, MD
Parinda Mehta, MD
Patrick McGann, MD
Russell Ware, MD

Gastroenterology, Hepatology and Nutrition
Lee A. Denson, MD
Phillip Minar, MD
Michael J. Rosen, MD
Kaitlin Whaley, MD

Perinatal Institute/Neonatology
Kevin Dufendach, MD
Tom Duggan, MD
DonnaMaria Cortezzo, MD

James M. Anderson Center for Health Systems Excellence
Robert S. Kahn, MD, MPH
Jessica A. Kahn, MD, MPH
Peter Margolis, MD, PhD

Neurology
Tracy Glauser, MD

Pharmacy
Dawn Butler
Ashley Teusink, PharmD, MBA

Division of Pathology & Laboratory Medicine
Kenneth Setchell, PhD
David Witte, MD
Junfang Zhao, PhD

Information Services!
Patients and Parents!