Individualized, Maximally Precisely Drug Therapy: A Physician’s Bedside Viewpoint.

Listening to the patient,
Setting and hitting an individualized specific point target goal, at target time – NOT just being in a “therapeutic range”, in serum or a nonserum compartment, or an observable effect, and a brief mention of some tools to do this best.

Roger W. Jelliffe MD
Professor of Medicine Emeritus,
Founder and Director Emeritus,
Laboratory of Applied Pharmacokinetics and Bioinformatics,
University of Southern California Keck School of Medicine,
Los Angeles, CA,
jelliffe@usc.edu 626-484-5313, www.lapk.org
Sources for more info: Control, not metrics.

Dosage precision must be specifically maximized for each patient. But how?

Optimal modeling, tracking and control methods are needed.
What is the IDEAL Population PK/PD Model?

Given a data set from a patient population, and the correct structural model, don’t summarize yet! Instead, find each individual patient’s exact model parameter values.

- The ideal popmodel is the collection of exact models of each patient studied.
- Multiple discrete support points, one for each patient, with any distribution!
- A finite, (NOT continuous!) collection, (no summary!) of each patient’s
- exactly known parameter values.

One can never do better than that. That is the unattainable ideal. Nonparametric (NP) models approach this ideal pretty closely.

What do they look like?
Nonparametric (NP) statistics do not require that the population data meet the assumptions necessary for parametric statistics.

NP statistics describe unconstrained distributions of any shape.

(Occam’s razor fewest assumptions are best)
Visualize this without the true data points (black or white squares) which in real life you will never see. You will see the many small gray circles (left), the NP model support point estimates, but only a single ellipse cloud (right). Which one (NP or P) is closer to the ideal? What will you do NOW?
Developing maximally precise dosage regimens using “Multiple Model” (MM) design.

1. The multiple models are all the support points in the NP popmodel. Each point has its own unique parameter values and probability.

2. Apply a candidate dosage regimen to all support points. Each point has its own unique response to that same dose.

3. Compare each response with your target goal. Calculate its weighted squared error (WSE) in failing to hit your target. Add these up.

4. Examine more candidate regimens - just like doing regression to minimize any weighted least squares cost function, and -

5. Find the regimen having the least overall total WSE in target goal achievement at target time. The maximally precise regimen.
Dosing on **Means** **Vanco MM** Dosing

MM dosing finds the regimen which hits target (15 ug/ml - dashes and dots) at target times (crosses) with minimal total WSE, thus hitting target most precisely.

Vertical axis = vancomycin concentration (ug/ml). Horizontal = time.
Doing TDM and getting \textbf{NP Bayesian (NPB) posterior models for an individual patient’s subsequent management and MM dosage adjustment.}

Assume the true patient is one of the NP pop support points. Each NP pop support point (with its parameter values) is a \textbf{candidate} to be the patient. But with \textbf{what probability} given the TDM data?

Those NP support points with parameter values predicting the TDM data well become more probable.

Those predicting poorly become less probable.

We get the revised Bayesian posterior probability of \textbf{all} the NP pop model support points given the pop model and that patient’s TDM data.

Then do MM dosage again. TDM and MM control, cycle after cycle.
NPB posterior gent model estimates - significant posterior model support points, and overall weighted average.
A highly unstable tobramycin patient, with high intra-individual variability. NP Bayesian weighted average fit, fixed parameter values throughout. **A very poor fit!**
Tobramycin patient - IMM fitting – changing param values - much better tracking.
Serum digoxin concentrations in nontoxic and toxic patients found by Doherty [1]. Great overlap between therapeutic and toxic concentration. **Half of these patients with serum levels of 3.0 ng/ml or more were NOT toxic.**
A suicide attempt – dig concs, K, and patient response
A phone consult – doses, history, response

<table>
<thead>
<tr>
<th>Chart Number</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Name</td>
<td>digoxin 21</td>
</tr>
<tr>
<td>Last Name</td>
<td>bill nicolson's</td>
</tr>
<tr>
<td>Birth Date</td>
<td>06/12/99</td>
</tr>
<tr>
<td>Age</td>
<td>50 years</td>
</tr>
<tr>
<td>Dialysis</td>
<td>yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>File: C:\MLG2\patients\BILLSPT.MB</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>75.00 kg</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>Not in use</td>
</tr>
<tr>
<td>Time of first dose</td>
<td>09/11/87 08:00:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Dose</th>
<th>Frequency</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>06/22/07</td>
<td>08:00</td>
<td>PO</td>
<td>121.00</td>
<td>75.00</td>
</tr>
<tr>
<td>06/22/07</td>
<td>08:00</td>
<td>PO</td>
<td>220.00</td>
<td>75.00</td>
</tr>
<tr>
<td>06/22/07</td>
<td>08:00</td>
<td>PO</td>
<td>320.00</td>
<td>75.00</td>
</tr>
<tr>
<td>06/22/07</td>
<td>08:00</td>
<td>PO</td>
<td>420.00</td>
<td>75.00</td>
</tr>
<tr>
<td>06/22/07</td>
<td>08:00</td>
<td>PO</td>
<td>520.00</td>
<td>75.00</td>
</tr>
</tbody>
</table>

AF, RSR, AF, RSR, AF, RSR
Phone consult – TDM serum concs., response
Phone consult – NP Bayesian posterior – TDM plot of serum concentrations
Phone consult – NP Bayesian posterior – periph. concentrations, response.
Setting target goals and regimen format
Ideal PO regimen = 572 ug/day – OK, how about 562.5, or 500 and 625 on alt days?
Predicted serum compartment concentrations – new regimen
predicted peripheral compartment concentrations – new regimen
Things the industry and the FDA can do to educate and encourage clinicians to treat patients as individuals, and with maximal precision.

1. **Use, and publish or make available, NP pop models for clinical use and MM dosage.** Advocate individualized therapy in package inserts, with general method and drug-specific references.

2. Don’t be vague any more. **Advocate setting a specific point target for each patient.** Evaluate need for the drug versus a risk of toxicity above which you will not go for that patient.

3. Individualized therapy is more than therapy for subpopulations. Knowing genetics and other factors is good, but many factors will always remain undiscovered. Track the drug!

4. **Advocate using NP bedside software.** Been here for years. Use the new industry NP models for maximally precise individualized therapy and safety.

5. Advocate tracking drugs in acutely ill, highly variable patients having changing model parameters over time, using interacting multiple model (IMM) tracking and analysis.

6. **Form an FDA Individualized therapy advisory group, as Dr. Neely suggests.**

7. **Listen to the patient. S/he tells you the target - everything! Can you, will you, listen?**
Our sweet dog Diamond would have said, “Thanks so much, FDA, for organizing this needed and provocative workshop, and thanks, all of you, for coming, and for your thoughtful attention!”
IMM – V and K can change now over time.

Top. Red dots: measured serum tobramycin concentrations. Black line: estimated weighted average serum tobramycin concentrations. Vertical axis: serum tobramycin concentrations up to 12 ug/ml. Bottom: percent changes in estimated mean Vs1 (red, V in L/kg) and Ks1 (green, K in 1/hr per unit of creatinine clearance). Some changes appear volatile, perhaps from errors recording times of dosing and drawing samples. There are also clear changes in V and K not discoverable by other methods. Changes in K are separated from changes in V. Each parameter reflects a distinct and separate therapeutic issue.
Likelihood convergence – FOCE vs PEM

PEM, with exact likelihood, increases it monotonically. IT2B, using the FOCE likelihood approximation, wanders off course, and will therefore obtain erroneous parameter estimates.
Interacting Multiple Model (IMM) Tracking
How to track drug behavior and individualize therapy in these unstable, acutely ill patients?

High intra-patient (inter-occasional) variability has been a big obstacle to TDM and individualized therapy.

Some say TDM not useful here!
"The main purpose of a tracking system for air traffic control or air defense is the estimation of target trajectories in the controlled area and their prediction into the near future".*

* E. MAZOR Technion, Israel Institute of Technology, A. AVERBUCH Tel Aviv University, Y. BAR-SHALOM, Fellow, IEEE University of Connecticut, J. DAYAN Technion, Israel Institute of Technology

Interacting Multiple Model Methods in Target Tracking: A Survey.

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 34, NO. 1 JANUARY 1998.

A highly unstable patient, regular NP Bayesian fit, unchanged parameter values throughout, giving a very poor fit.
Predicted versus measured levels

- R-squared: 0.77, mean error: 1.11, mean squared error: 3.41
- $Y = 0.80X - 0.13$
- No parameter changes allowed
A swap (exchange) between points 1 and 2.
Before swap, Point 1 always has parameters V1, K1, conc is Amt 1/V1
Point 2 always has parameters V2, K2, conc is Amt 2/V2.

The swap – Amt 1 passes to Point 2, Amt 2 goes to Point 1.
After swap, Conc 1 is now Amt 2/V1, eliminated by K1, and
Conc 2 is now Amt 1/V2, eliminated by K2.

This is how drug amounts can change their parameter values over time.

Does the swap fit the data better? IMM looks at all combinations of pairs like this, finds most probable sequences of interacting swaps that fit the changing data best. Gets the changing NP Bayesian posterior joint density over time, tracks unstable patients best.
IMM – much better tracking
IMM - better estimated vs measured

R-squared: 0.96, mean error: 0.06, mean squared error: 0.36
Y = 0.97X + 0.05
Change probability 1.00000 [%]
IMM – V and K change over time

Top. Red dots: measured serum tobramycin concentrations. Black line: estimated weighted average serum tobramycin concentrations. Vertical axis: serum tobramycin concentrations up to 12 ug/ml. Bottom: percent changes in estimated mean Vs1 (red, V in L/kg) and Ks1 (green, K in 1/hr per unit of creatinine clearance). Some changes appear volatile, perhaps from errors in recording times of dosing and drawing samples. There are also clear changes in V and K not discoverable by other methods. Changes in K are separated from changes in V. Each parameter reflects a distinct and separate therapeutic issue.
Optimize TDM sampling protocols

Don’t just spot check or get steady state troughs. Sample to learn drug behavior best, and as soon as possible. **Plan** before you sample. Do NOT wait to get steady state troughs, leaving the patient at risk by not knowing for too long!

Start TDM right with the **very first** dose!

Use D-optimal or MM-opt design. There is an optimal sampling time to get best info about each patient, given a certain dosage regimen format. Often, get a peak and a sample at about 1/3 of peak.

Do NOT waste money, effort, and compromise patient care with poor TDM designs. The TDM community can do a MUCH BETTER job here. Better info, better care, shorter stays, less cost.
D and MM Optimal Sampling
D-optimal design – best time to sample for V is at the peak. Best for K is at 36% of peak.
Multiple Model Optimal Design

• USC *BestDose* optimal sampling software is based on the discrete support points in the nonparametric population model.

 – Nonparametric Maximum Likelihood (NPML) estimation of a population model has the form of a MM prior (Mallet, and Lindsay).
 – Software for population NPML modeling is available, e.g., NPEM (Schumitzky, NPAG (Leary, Baek, USC*PACK (Jelliffe, and Pmetrics (Neely) and clinical Bestdose.

• Experiment design for MM (i.e., discrete) models is a subject found in classification theory.
 – How do we sample the patient to find out which support point he corresponds to most closely?
 – Classifying patients is fundamentally different from trying to estimate a patient’s model parameter values.

• Treating MM experiment design in the context of classification theory leads to the mathematical problem of minimizing Bayes risk of missclassification (Duda et. al.).
Model Response Separation $r(t)$

- Model Response Separation $r(t)$ is the separation between two model responses at a given time t
 \[r(t) = |\eta(t, a_1) - \eta(t, a_2)| \]

- Defines natural statistic for discriminating between two models

- Bayes Risk is shown in gray area below
 \[r(t) = \text{response separation} \]

- Bayes Risk (gray area) decreases as response separation $r(t)$ increases

- Models are best discriminated by sampling at a time t that maximizes $r(t)$
Unweighted MMOpt for PK Estimation

- Summary of optimal 1, 2 and 3 sample designs applied to PK parameter estimation

<table>
<thead>
<tr>
<th>Design Metric</th>
<th>Samples (hr)</th>
<th>Bayes Risk (prob)</th>
<th>99% conf (prob)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Sample Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bopt</td>
<td>4.25</td>
<td>0.5474</td>
<td>±0.0015</td>
</tr>
<tr>
<td>MMOpt</td>
<td>4.25</td>
<td>0.5474</td>
<td>±0.0015</td>
</tr>
<tr>
<td>2-Sample Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMOpt</td>
<td>1</td>
<td>0.2947</td>
<td>±0.0014</td>
</tr>
<tr>
<td>EDopt</td>
<td>1</td>
<td>0.3272</td>
<td>±0.0014</td>
</tr>
<tr>
<td>3-Sample Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMOpt</td>
<td>1</td>
<td>0.2325</td>
<td>±0.0013</td>
</tr>
<tr>
<td>EDopt</td>
<td>1</td>
<td>0.2617</td>
<td>±0.0013</td>
</tr>
</tbody>
</table>

- **1 Sample Design**: MMOpt performance equals Bayesian optimal design (both have Bayes Risk of 0.5474).
- MMOpt performance improves on EDopt design for 2 and 3 sample designs
 - **2 Sample Design**: Bayes Risk of 0.29 versus 0.33
 - **3 Sample Design**: Bayes Risk of 0.23 versus 0.26
- All results are statistically significant to p<0.0001
Weighted MMOpt for AUC control

- Introduce weights \(\{c_{ij}\} \) to specify a cost for each type of classification error.
- Assign \(c_{ij} \) as the cost of mistaking truth subject \(i \) for subject \(j \) \((j \neq i) \).
- Choice of weights tailors experiment design to desired applications of interest.

Diagram Description:

1. **HORIZON 1**
 - Prior: \(\{p(H_i)\} \)
 - MMopt Expt Design
 - Dose: \(d_1(t) \)
 - Sample times: \(t_1, \ldots, t_n \)
 - Measure: \(Y \)

2. **HORIZON 2**
 - Optimal dosing for target AUC on next horizon: \(d_2(t) \)

3. **Bayesian Posterior**:
 - \(p(H_i|Y,U) \)
 - Parameter Estimates
 - \(\hat{V}, \hat{K} \)

4. **AUC Estimates**
 - \(\hat{AUC} \)

5. **Optimal Dosing**

Parameter Estimation

Metric Estimation

\[{c_{ij}} \] weights
Weighted MMOpt for AUC Control (2)

• Summary of optimal 1, 2 and 3 sample designs applied to AUC control

<table>
<thead>
<tr>
<th>Design Metric</th>
<th>Samples (hr)</th>
<th>RMS Error (AUC units)</th>
<th>99% conf (AUC units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Sample Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_{opt}.C_{1}</td>
<td>12.5</td>
<td>3.6194</td>
<td>±0.0273</td>
</tr>
<tr>
<td>MMOpt.C_{1}</td>
<td>14</td>
<td>3.7729</td>
<td>±0.0166</td>
</tr>
<tr>
<td>MMOpt</td>
<td>4.25</td>
<td>16.7924</td>
<td>±0.1145</td>
</tr>
<tr>
<td>2-Sample Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMOpt.C_{1}</td>
<td>1</td>
<td>2.1102</td>
<td>±0.0125</td>
</tr>
<tr>
<td>MMOpt</td>
<td>1</td>
<td>2.2575</td>
<td>±0.0232</td>
</tr>
<tr>
<td>ED_{opt}</td>
<td>1</td>
<td>2.6159</td>
<td>±0.0174</td>
</tr>
<tr>
<td>3-Sample Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMOpt.C_{1}</td>
<td>1</td>
<td>10.25</td>
<td>10.25</td>
</tr>
<tr>
<td>MMOpt</td>
<td>1</td>
<td>10.5</td>
<td>1.9991</td>
</tr>
<tr>
<td>ED_{opt}</td>
<td>1</td>
<td>24</td>
<td>2.4194</td>
</tr>
</tbody>
</table>

• **1 Sample Design**: weighted MMOpt performance approximates that of the weighted Bayesian optimal design (RMS error of 3.62 versus 3.77 AUC units)

• MMOpt performance improves on ED_{opt} design for 2 and 3 sample designs
 – **2 Sample Design**: RMS error of 2.11 versus 2.62 (units of AUC)
 – **3 Sample Design**: RMS error of 1.70 versus 2.42 (units of AUC)

• All results are statistically significant to p<0.0001
Weighted MMOpt for AUC Control (3)

- **OBJECTIVE:** Design an experiment most informative about next dose needed for patient to achieve a specified AUC of $\alpha_{des} = 40$

- In this case MMOpt weights are chosen as

$$c_{ij} = \left(\frac{D_j}{V_i K_i} - \alpha_{des} \right)^2$$

= Squared AUC error incurred if j’th subject’s ideal dose D_j is given to i’th subject

<table>
<thead>
<tr>
<th>#</th>
<th>Ideal Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>409.8827</td>
</tr>
<tr>
<td>2</td>
<td>417.1242</td>
</tr>
<tr>
<td>3</td>
<td>238.6149</td>
</tr>
<tr>
<td>4</td>
<td>387.6442</td>
</tr>
<tr>
<td>5</td>
<td>462.1011</td>
</tr>
<tr>
<td>6</td>
<td>128.2311</td>
</tr>
<tr>
<td>7</td>
<td>443.2281</td>
</tr>
<tr>
<td>8</td>
<td>103.6267</td>
</tr>
<tr>
<td>9</td>
<td>378.3394</td>
</tr>
<tr>
<td>10</td>
<td>385.2965</td>
</tr>
</tbody>
</table>

Mean 335.4089
STD 35.8470

Ideal Doses $\{D_j\}$ to achieve desired AUC of $\alpha_{des} = 40$

Matrix of Weights $\{c_{ij}\}$