Public Meeting on Chagas Disease
Patient-Focused Drug Development

April 28, 2015
Welcome

Soujanya Giambone, MBA
Office of Strategic Programs
Center for Drug Evaluation and Research
U.S. Food and Drug Administration

April 28, 2015
Agenda

• Setting the Context
 – Opening Remarks
 – Overview of FDA’s Patient-Focused Drug Development Initiative
 – Background on Chagas disease and Therapeutic Options
 – Overview of Discussion Format

• Discussion Topic 1: Disease symptoms and daily impacts that matter most to patients

• Discussion Topic 2: Patients’ perspectives on current approaches to treating Chagas disease

• Lunch

• Scientific Discussion

• Open Public Comment

• Closing Remarks
Opening Remarks

John Farley, MD MPH
Deputy Director, Office of Antimicrobial Products
Center for Drug Evaluation and Research
U.S. Food and Drug Administration

April 28, 2015
FDA’s Patient-Focused Drug Development Initiative

Theresa Mullin, PhD
Director, Office of Strategic Programs
Center for Drug Evaluation and Research
U.S. Food and Drug Administration

April 28, 2015
Patient-Focused Drug Development under PDUFA V

- FDA is developing a more systematic way of gathering patient perspective on their condition and available treatment options
 - Patient perspective helps inform our understanding of the context for the assessment of benefit-risk and decision making for new drugs
 - Input can inform FDA’s oversight both during drug development and during our review of a marketing application

- Patient-Focused Drug Development is part of FDA commitments under the fifth authorization of the Prescription Drug User Fee Act (PDUFA V)
 - FDA will convene at least 20 meetings on specific disease areas in Fiscal Years (FY) 2013 - 2017
 - Meetings will help develop a systematic approach to gathering patient input
Identifying Disease Areas for the Patient-Focused Meetings

- In September 2012, FDA announced a preliminary set of diseases as potential meeting candidates
 - Public input on these nominations was collected. FDA carefully considered these public comments and the perspectives of our drug review divisions at FDA

- FDA identified a set of 16 diseases to be the focus of meetings for FY 2013-2015
 - Another public process has been initiated to determine the disease set for FY 2016-2017
Disease Areas to be the focus of meetings for FY 2013-2015

FY 2013
- Chronic fatigue syndrome
- HIV
- Lung cancer
- Narcolepsy

FY 2014
- Sickle cell disease
- Fibromyalgia
- Pulmonary arterial hypertension
- Inborn errors of metabolism
- Hemophilia A, Hemophilia B, von Willebrand disease, and other heritable bleeding disorders
- Idiopathic pulmonary fibrosis

FY 2015
- Female sexual dysfunction
- Breast cancer
- **Chagas disease**
- Functional gastrointestinal disorders (May 11, 2015)
- Alpha-1 antitrypsin deficiency
- Parkinson’s disease and Huntington’s disease
Tailoring Each Patient-Focused Meeting

- Each meeting focuses on a set of questions that aim to elicit patients' perspectives on their disease and on treatment approaches
 - We start with a set of questions that could apply to any disease area; these questions are taken from FDA’s benefit-risk framework and represent important considerations in our decision-making
 - We then further tailor the questions to the disease area of the meeting (e.g., current state of drug development, specific interests of the FDA review division, and the needs of the patient population)
- Focus on relevant current topics in drug development for the disease at each meeting
 - E.g., focus on HIV patient perspectives on potential “cure research”
- We’ve learned that active patient involvement and participation is key to the success of these meetings.
“Voice of the Patient” Reports

- Following each meeting, FDA publishes a Voice of the Patient report that summarizes the patient testimony at the meeting, perspectives shared in written docket comments, as well as any unique views provided by those who joined the meeting webcast.

- These reports serve an important function in communicating to both FDA review staff and the regulated industry what improvements patients would most like to see in their daily life.

- FDA believes that the long run impact of this program will be a better, more informed understanding of how we might find ways to develop new treatments for these diseases.
Overview of Chagas Disease and Available Treatment Options

Maria Allende, MD
Medical Officer, Division of Anti-infective Products
Center for Drug Evaluation and Research
U.S. Food and Drug Administration

April 28, 2015
Chagas disease overview

• What is Chagas disease?
• Why is it called Chagas disease?
• Who can get Chagas disease?
• Symptoms
• Diagnosis
• Treatments available: nifurtimox and benznidazole
• Side effects of medications
What is Chagas Disease?

- A disease spread by contact with feces of an infected insect (triatomine) called “kissing bug”, “vinchuca” or “barbeiro”
- The infected insect carries the agent of the disease, a parasite called *Trypanosoma cruzi*
- The disease can cause serious heart illness
- It can also affect swallowing and digestion

Trypanosoma cruzi in human blood

Disease *vector* (carrier) of the parasite

Triatomine bug
What is Chagas Disease? - continued

- There are two phases of Chagas disease: the **acute phase** and the **chronic phase**
- Acute phase: few weeks/months after infection
- Chronic phase: years and decades after infection
- Both phases can be symptom free (most common form) or can be life threatening
- Spontaneous cures are extremely rare, infections last for life without treatment
- Certain people are at higher risk of more serious disease: those with weakened immune system (AIDS, treatment after kidney transplant)
Why is it called “Chagas” disease?

Dr. Carlos Chagas, a Brazilian physician, discovered the disease in 1909. He discovered the triatomine vector and the parasite, which he called *Trypanosoma cruzi*. He was the first to describe the disease in humans and the parasite cycle in nature.

The disease is also called “American Trypanosomiasis”

Trypanosoma cruzi (causative agent) and *barbeiro* or *vinchuca* (triatomine vector, carrier), from original 1909 article

Dr Chagas with the first patient, Berenice, a 2 year old girl from Minas Gerais, Brazil.

Dr. Chagas injected the blood from Berenice, into Guinea pigs which died 6 days later, with large amounts of *Trypanosoma cruzi*, confirming the cause of the disease.
Also called “Chagas-Mazza” disease

• Dr. Salvador Mazza’s contributions:
 – Documented widespread cases in northern Argentina beginning in 1926 with the discovery of dogs infected with *Trypanosoma cruzi*

• Dr. Mazza died from a laboratory infection with *Trypanosoma cruzi*, while working with patient’s blood
Who can get Chagas disease?

- Especially those who have lived in rural areas in Latin America, in contact with infected bugs
- Also the disease can be spread from:
 - Mother to baby (congenital)
 - Organ transplant
 - Blood transfusion
- Less common transmission:
 - laboratory accident, contaminated food/drink
- The disease is not spread through casual person to person contact
Chagas Disease spread around the world

Source: Drugs for Neglected Diseases Initiative (DNDi), www.dndi.org
Symptoms

• Days after the contact (acute phase), some may have:
 – Fever and body aches
 – Swelling of the eyelid or at the bite site
 – Weakness and inflammation of the heart (myocarditis) and inflammation of the brain in a few patients

• Most people have no symptoms and years later, about a third of them may develop the chronic phase:
 – Heart failure (enlarged heart, not pumping blood well, causing difficulty breathing/leg swelling)
 – Irregular heart beats that can cause sudden death and risk of stroke
 – Problems with digestion and bowel movements
Possible complications of Chronic Chagas disease
(occurring in about 30% of those infected)

- Heart tissue with inflammation and infection
- Enlarged heart
- Severe irregular heart beats (arrhythmias)
- Dilation of the esophagus (achalasia)
- Dilation of the intestine (Megacolon)
Diagnosis

- There are several blood tests approved by FDA for diagnosis of Chagas disease.
- No test predicts who will or will not be sick.
- The tests are done at the CDC (doctors send the patient’s blood sample to CDC through the State Health Department).
- Blood Banks and organ donor programs in the U.S. screen for Chagas disease.
 - Some people find out they have Chagas disease when they try to donate blood.
Treatment of Chagas Disease

• **Antiparasitic** treatment, to kill the parasite (antiparasitic drugs)

• **Symptomatic** treatment, to manage the symptoms and signs of infection (cardiac drugs and pacemakers)
Treatment of Chagas Disease

- There are no treatments currently approved by the FDA.
- Two drugs available (oral tablets only), exclusively through the CDC, at a doctor’s request:
 - Nifurtimox
 - Benznidazole
- Treatment consists of daily doses taken by mouth for 60 days.
Treatment of Chagas Disease

• CDC and WHO recommend treatment in the acute (shortly after infection) cases and young, with or without symptoms. These include:
 – Babies infected from their mothers, children and adolescents
 – Women who can get pregnant
 – Patients with weakened immune systems (AIDS, treatments after kidney transplant)
 – Patients less than 50 years of age, without severe symptoms of heart disease

• Reported efficacy is higher (60-90%) when treatment is given shortly after infection occurs, especially in young patients up to 18 years of age
Treatment of Chagas Disease

• Treatment is **optional** in:
 – Patients older than 50 years of age, without severe symptoms of heart disease

• Treatment is **not** currently recommended for:
 – Pregnant women
 – Patients with severe kidney or liver disease
 – Patients with severe heart disease (a study is ongoing)
Commonly reported side effects

- Nifurtimox: decrease or loss of appetite, weight loss, nausea/vomiting, headache, sleeping problems, dizziness, seizures, changes in sensation and/or tingling or numbness in arms or legs
- Benznidazole: allergic skin rashes, changes in sensation and/or tingling and numbness in arms or legs, decrease or loss of appetite, nausea/vomiting, headache, dizziness
- *With either drug, side effects improve after stopping treatment*
Things to remember...

- Chagas disease can be transmitted from mother to child (congenitally) even through more than one generation
- Also transmitted through blood transfusion or organ transplants
- Chagas disease has an acute and chronic phase
- In both phases, most people do not have symptoms
- Infections usually last for life without treatment
- About a third of all infected people get life threatening cardiac disease, many years after infection
- In a small number of people, acute disease can be life-threatening
- No drug is approved in the U.S. but treatment is available through a CDC program
Acknowledgements

- **Office of Antimicrobial Products**
 Ed Cox MD MPH
 John Farley MD MPH

- **Division of Anti-Infective Products**
 Sumati Nambiar MD MPH
 Joe Toerner MD MPH
 Thomas Smith MD

- **Office of Strategic Programs**
 Theresa Mullin PhD
 Pujita Vaidya MPH
 Soujanya Giambone MBA
 Sayyedeh Mariani, BA

Special thanks to all panelists, including Rodolfo Viotti, MD, who was not able to come but contributed to this workshop
Thank You, Gracias, Obrigada!

To my first mentors, Drs. Jorge Bernabó, Diana Zoruba and José Leguizamón, from the Hospital Municipal de Vicente López, province of Buenos Aires, Argentina, who first taught me about Chagas disease and whose expertise, compassion and dedication continues to inspire me today.

To my patients, past, present and future, on whose behalf we hope to one day eradicate this disease.
Lionel Messi, Chagas campaign champion
Overview of Discussion Format

Soujanya Giambone, MBA
Office of Strategic Programs
Center for Drug Evaluation and Research
U.S. Food and Drug Administration

April 28, 2015
Discussion Overview

Topic 1: The symptoms that matter most to you
- What worries you most about your disease?
- Which symptoms have the most significant impact on your life?
- How do these symptoms affect your ability to do specific activities?
- How have your symptoms changed?

Topic 2: Current approaches to treating Chagas disease
- What are you doing to treat Chagas disease?
- What are the biggest downsides to your treatments?
- What would you look for in an “ideal” treatment?
Discussion Format

• We will first hear from a panel of patients and caregivers
 – The purpose is to set a good foundation for our discussion
 – They reflect a range of experiences with Chagas disease

• We will then broaden the dialogue to include patients and patient representatives in the audience
 – The purpose is to build on the experiences shared by the panel
 – We will ask questions and invite you to raise your hand to respond
 – Please state your name before answering
Discussion Format, continued

• Web participants can add comments through the webcast
 – Although they may not all be read or summarized today, your comments will be incorporated into our summary report
 – We’ll occasionally go to the phones to give you another opportunity to contribute
Send us your comments!

- You can send us comments through the “public docket”
 - The docket will be open until June 29, 2015
 - Share your experience, or expand upon something discussed today
 - Comments will be incorporated into our summary report
 - Anyone is welcome to comment

Click Comment Now!
Resources at FDA

• FDA Office of Health and Constituent Affairs
 – Contact: PatientNetwork@fda.hhs.gov, (301) 796-8460
 – Liaison between FDA and stakeholder organizations
 – Runs the Patient Representative Program
 • Patient Representatives advise FDA at Advisory Committee meetings

• CDER Office of Center Director
 – Professional Affairs and Stakeholder Engagement (PASE)
 – Contact: Mary Ghods, mary.ghods@fda.hhs.gov
 – Facilitates communication and collaboration between CDER and patient and healthcare professional stakeholders and others on issues concerning drug development, drug review and drug safety.
Discussion Ground Rules

• We encourage patients to contribute to the dialogue—caregivers, advocates, and healthcare providers are welcome too

• FDA is here to listen

• Discussion will focus on symptoms and treatments
 – Open Public Comment Period is available to comment on other topics

• The views expressed today are personal opinions

• Respect for one another is paramount

• Let us know how the meeting went today; evaluations at registration desk
Discussion Topic 1

Disease symptoms and daily impacts that matter most to patients

Soujanya Giambone
Facilitator
Panel Participants

- Candace Stark
- Maira Gutierrez
- Lorena Medrano
- Carlos Toba Beza
- Rachel Marcus
- Maria Abrigo (Phone)
Topic 1 Discussion: Disease symptoms and daily impacts that matter most to patients

- What **worries you most** about your condition?

- Of all the symptoms that you experience because of your condition, which **1-3 symptoms** have the most significant impact on your life?

- Are there **specific activities** that are important to you but that you cannot do at all or as fully as you would like because of your condition?

- How have your condition and its symptoms **changed over time**?

- Do your symptoms come and go? If so, do you know of anything that makes your symptoms better or worse?
BREAK
Discussion Topic 2

Patients’ perspectives on current approaches to treating Chagas Disease

Soujanya Giambone
Facilitator
Topic 2 Discussion: Patients’ perspectives on current approaches to treating Chagas disease

• **What are you currently doing** to help treat your condition?
 – What specific symptoms do your treatments address?
 – How has your treatment regimen changed over time, and why?

• What are the most significant *downsides to your current treatments*, and how do they affect your daily life?

• What specific things would you look for in an *ideal treatment* for your condition?
Scenario 1

• Imagine you are just diagnosed with Chagas disease.
 – You have no symptoms.
 – You may have had the disease for 2-3 decades.
 – 3 out of 10 patients who have no symptoms may develop symptoms that will lead to sudden death from heart conditions (usually around the age of 40)

• Drug X is developed to treat patients with Chagas disease
 – Patients will need to take Drug X for 60 days.
 – Drug X has been shown to cure 7 out of 10 patients that do not have symptoms of Chagas disease
 – Drug X causes nausea, vomiting or tingling or numbness in arms or legs in many patients. In rare cases, it causes non-fatal, reversible side effects such as seizures.

Would you consider this treatment: For yourself? For your teenage child?
Scenario 2

Imagine that...

- You have been invited to participate in a clinical trial to study an experimental treatment for Chagas disease.

- Early research in animals and people shows that this treatment may cure the disease in some people.

- The purpose of the study is to better understand how well this treatment works and its safety.

- The study will enroll 50 adults who have been diagnosed with Chagas disease but do not show symptoms.
Scenario 2

Imagine that...

- This clinical study lasts 2 years and clinic visits will occur every 2 months for the first year, and once every 4 months in the second year.

- Some visits may involve blood tests.

- More common side effects of this therapy may include nausea, vomiting, and weight loss.

- Rarer but more serious side effects may include changes in sensation and nerve damage and skin rash.

What thoughts and questions come to mind as you hear this scenario?
Lunch Break
T. cruzi transmission routes

- Congenital
- Transfusion
- Transplant
- Oral
T. cruzi seroprevalence in sentinel population groups from 1980s to 2000

Estimated prevalence / incidence

1990: 18 million / 500,000
2010: 5.7 million / 39,000

Moncayo Ann Trop Med Parasitol 2006; WHO Weekly Epi Rec 2015
Estimated *T. cruzi* infection prevalence by country

Based on WHO 2010 estimates
The US is an endemic [enzootic] country

11 vector species

Bern et al Clin Micro Rev 2011
Many infected reservoir hosts
Confirmed *T. cruzi*-positive blood donations
Jan 1, 2007 – Apr 23, 2015, N = 2,043

Source: AABB Biovigilance program
Chagas disease in the United States

• Locally-acquired Chagas disease burden undefined
 – 7 autochthonous vector-borne human infections documented since 1955 (TX [4], CA, TN, LA)
 – Extrapolation from study of 16 blood donors apparently infected in US suggests prevalence of 1 in 354,000 donors

• 23 million people born in Chagas disease-endemic countries of Latin America live in the U.S.
 – Estimated ~300,000 infected immigrants, based on *T. cruzi* infection prevalence in countries of origin
 – In case series, 13 - 16% of non-ischemic cardiomyopathy in Latin American immigrants attributed to *T. cruzi*

Acute phase of Chagas disease

1-2 weeks
Acute phase of Chagas disease

- < 1% diagnosed, most mild
- May have signs at portal of entry (chagoma, Romaña’s sign)
- Fever, systemic symptoms, hepatosplenomegaly, atypical lymphocytosis
- Acute meningoencephalitis and myocarditis rare, but associated with high mortality
- Patent parasitemia
 - Parasites may be visible on wet prep of heparinized blood or buffy coat, Giemsa-stained smears
 - PCR-based assays have high sensitivity

*Transfusion- and transplant-associated cases may have incubation period up to 120 days
Congenital *T. cruzi* infection

- Similar to acute *T. cruzi* infection
- Median 6% (1-10%) of infants of infected women
- Most mild or asymptomatic
 - Rarely meningoencephalitis, myocarditis, respiratory distress syndrome, fetal hydrops
- Early diagnosis by microscopy or PCR
 - Microscopy of concentrated cord or neonatal blood sensitivity <50% in one specimen
 - PCR sensitivity ~75% in one specimen
 - Parasitemia rises after birth, peaks 30-90 days
 - Transferred maternal IgG until 8-9 months

Torrico et al AJTMH 2004, Bern et al CID 2009, Oliveira et al 2010
Acute phase of Chagas disease

- Parasitemia level falls steeply ~ 8 weeks post infection
- Acute symptoms (if any) resolve spontaneously
Acute phase of Chagas disease

1-2 weeks

Chronic phase

8 weeks

- Blood smear negative, PCR sensitivity variable (20 to 90%)
- Diagnosis relies on serology
 - ELISA, IFA, TESA-blot
 - confirmed by positive results on at least 2 different tests
- Infectious to vector, congenitally, via transplant or transfusion
- Can reactivate if immunosuppressed
Acute phase of Chagas disease

1-2 weeks

Chronic phase

8 weeks

Indeterminate form

• No cardiac or GI signs or symptoms, normal EKG
 – may have subtle abnormalities on echocardiogram, autonomic testing; prognostic significance unknown
 – some experts require negative barium studies as well
• Lifelong infection in absence of treatment
Acute phase of Chagas disease

Chronic phase

Indeterminate form
No signs or symptoms of Chagas disease

70 - 80% remain indeterminate throughout life

1-2 weeks

8 weeks
Acute phase of Chagas disease

1-2 weeks

Chronic phase

8 weeks

Indeterminate form
No signs or symptoms of Chagas disease

70 - 80% remain indeterminate throughout life

20 - 30% progress over years - decades

Determinate forms
- Chagas cardiomyopathy &/or
- Gastrointestinal disease
Chagas cardiomyopathy

• Conduction system defects
 – Earliest sign, especially RBBB, LAFB
 – Later, high grade AV blocks
• Brady- and tachyarrhythmias
 – Sinus node dysfunction, bradycardia
 – Multifocal ventricular extrasystoles
 – Sustained and non-sustained ventricular tachycardia
• Apical aneurysm, thrombus, strokes
• Dilated cardiomyopathy and congestive heart failure

Rassi et al Clin Cardiol 2000
Box. Classification Schemes to Grade Presence and Severity of Chagas Cardiomyopathy

Modified Kuschnir Classification
0: Normal ECG findings and normal heart size (usually based on chest radiography)
I: Abnormal ECG findings and normal heart size (usually based on chest radiography)
II: Left ventricular enlargement
III: Congestive heart failure

Brazilian Consensus Classification
A: Abnormal ECG findings, normal echocardiogram findings, no signs of CHF
B1: Abnormal ECG findings, abnormal echocardiogram findings with LVEF >45%, no signs of CHF
B2: Abnormal ECG findings, abnormal echocardiogram findings with LVEF <45%, no signs of CHF
C: Abnormal ECG findings, abnormal echocardiogram findings, compensated CHF
D: Abnormal ECG findings, abnormal echocardiogram findings, refractory CHF

Modified Los Andes Classification
IA: Normal ECG findings, normal echocardiogram findings, no signs of CHF
IB: Normal ECG findings, abnormal echocardiogram findings, no signs of CHF
II: Abnormal ECG findings, abnormal echocardiogram findings, no signs of CHF
III: Abnormal ECG findings, abnormal echocardiogram findings, CHF

Classification Incorporating American College of Cardiology/American Heart Association Staging
A: Normal ECG findings, normal heart size, normal LVEF, NYHA class I
B: Abnormal ECG findings, normal heart size, normal LVEF, NYHA class I
C: Abnormal ECG findings, increased heart size, decreased LVEF, NYHA class II–III
D: Abnormal ECG findings, increased heart size, decreased LVEF, NYHA class IV

ECG findings
- Common
 - Right bundle-branch block
 - Incomplete right bundle-branch block
 - Left anterior fascicular block
 - 1° AV block
 - 2° AV block, Mobitz type I or II
 - Complete AV block
 - Bradycardia, sinus node dysfunction
 - Ventricular extrasystoles, often frequent, multifocal, or paired
 - Ventricular tachycardia, nonsustained or sustained
- Less common but clinically significant when present
 - Atrial fibrillation or flutter
 - Left bundle-branch block
 - Low QRS voltage
 - Q waves

Signs of cardiac insufficiency
- Cardiomegaly
- Clinical CHF
- LV end-diastolic volume
- LV ejection fraction

Abbreviations: CHF, congestive heart failure; ECG, electrocardiogram; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association.
Mortality in Chagas heart disease

• Signs of poor prognosis
 – Complex ventricular arrhythmias
 – Global or segmental wall motion abnormalities
 – Sustained or non-sustained ventricular tachycardia
 – Increased LVEDD, decreased LV ejection fraction

• Sudden death can occur early or late in course
 – Ventricular arrhythmias, complete AV block, emboli

• Mortality from intractable CHF in advanced disease
 – LVEF< 30% associated with <30% survival over 2-4 years

Rassi NEJM 2006
Gastrointestinal Chagas disease

- Esophagus: Dysphagia, odynophagia, weight loss, regurgitation, aspiration, megaesophagus
- Colon: Chronic severe constipation, fecaloma, megacolon
- Parasite strain differences?
 - Seen in Argentina, Bolivia, Paraguay, Uruguay, Brazil
 - Very rare in Central America, northern South America
- Treatment largely surgical

De Oliveira Am J GE 1998; Miles Lancet 1981

Photos: www.fiocruz.br/chagas
Transplant-derived acute *T. cruzi* infection

- *T. cruzi* transmission risk varies by organ
 - Kidney 13% (2/15) in US cohort; 19% (3/16) in Argentina
 - Liver 20% (2/10) in US cohort
 - Heart 75% (3/4) in US cohort

Chagas in Transplant Working Group recommendations:
- Kidney, liver can be used; use of heart contraindicated
- Serial monitoring with PCR
 - Presumptive treatment not recommended
 - Good outcomes with early detection and treatment

Huprikar 2013; Riarte 1999; Chin-Hong (Chagas in Transplant Working Group) 2011
Reactivation in immunosuppressed hosts with pre-existing chronic *T. cruzi* infection

Two major settings for reactivation

- *T. cruzi*-infected patient who receives solid organ or bone marrow transplant
 - Acute myocarditis, skin lesions, inflammatory panniculitis
 - Good prognosis with monitoring and prompt treatment
- HIV/AIDS patients
 - CNS disease most common: mass lesion, meningoencephalitis; 80% mortality
 - Acute myocarditis 2nd most common
 - Role of and indications for antitrypanosomal prophylaxis unresolved

Kransdorf Am J Transpl 2013; Sartori Ann Trop Med Para 2007
Median follow-up 9.8 years
Treated group had significantly lower rate of progression than the untreated group

<table>
<thead>
<tr>
<th>Baseline group</th>
<th>Progression to higher group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Untreated</td>
</tr>
<tr>
<td>0</td>
<td>7.2%</td>
</tr>
<tr>
<td>I</td>
<td>18.7%</td>
</tr>
<tr>
<td>II</td>
<td>46.4%</td>
</tr>
</tbody>
</table>

More severe baseline status had higher rate of progression

Mortality
Three of 283 treated patients [1.1%] vs 12 of 283 untreated patients [4.2%] died; in models adjusted for LV ejection fraction, adjusted hazard ratio was 0.2 (CI, 0.03 to 1.2; P = 0.085).

Trend toward decreased mortality in treated group
Treated women significantly less likely to transmit to their infants than untreated women

RR 0.04 [95% CI 0.012, 0.166]

Fabbro PLoS NTD 2014
Conventional serology after treatment

- Viotti 2006: negative seroconversion in 15% of treated vs 6% of untreated; median time 11.7 years
- Observational data (Fabbro 2007): up to 40% of treated (at 30 years) vs 0% of untreated
- Observational data (Fabbro 2014): seroreversion more rapid (less slow!) in those treated as children
Potential outcomes for studies of drug treatment of chronic *T. cruzi* infection

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG serology</td>
<td>Widely accepted as most rigorous, widely available</td>
<td>Takes >5 to 40 years; positive results ≠ failure</td>
</tr>
<tr>
<td>Fall in IgG titers</td>
<td>Widely available</td>
<td>No independent basis for cut-offs, high biological variability</td>
</tr>
<tr>
<td>Lytic antibodies</td>
<td>Supported by pediatric RCT data, respond more rapidly than conventional serology</td>
<td>Takes months to several years; direct assays challenging</td>
</tr>
<tr>
<td>Serial qPCR</td>
<td>Rapid response, sensitive indicator of treatment failure</td>
<td>Dependent on lab, blood volume; negative results ≠ cure</td>
</tr>
<tr>
<td>Cardiac progression</td>
<td>Clinical outcome of most interest</td>
<td>Takes years to decades; requires large sample size</td>
</tr>
</tbody>
</table>
Review Considerations for New Drugs in the United States

Chagas Disease Public Meeting on Patient-Focused Drug Development

Joseph G. Toerner, M.D., M.P.H.*
Deputy Director for Safety
Division of Anti-infective Products
CDER, FDA

April 28, 2015

*No conflicts of interest
Outline of the Presentation

- Adequate and Well-Controlled Trials
- Endpoints
- Regulatory Approvals
Adequate and Well-Controlled Trials

• Trials designed to show that a new drug is safe and effective for treatment
 – Effective: the benefit that patients experience (cure, improvement)
 – Safe: the risk of side effects

• FDA and clinicians weigh the benefits and risks of new drugs for treatment
Adequate and Well-Controlled Trials

Drugs approved must meet the statutory standards for effectiveness and safety

- Section 505(d) of the FD&C Act
- Section 115(a) of the Modernization Act allows for one trial

Substantial evidence from adequate and well-controlled clinical trials

- 21 CFR 314.126
Adequate and Well-Controlled Trials

Placebo concurrent control

- A test drug is compared with an inactive preparation designed to resemble the test drug
- Success = test drug is better than placebo
 - Success = statistical inference testing shows robust evidence of efficacy
Adequate and Well-Controlled Trials

Dose-comparison concurrent control

- Two or more doses of the test drug are compared
- Success = one dose of the test drug is better than a different dose of the test drug
Adequate and Well-Controlled Trials

No treatment concurrent control

- A test drug is compared with no treatment
- Usually patients are randomized to test drug or to no treatment
- Success = test drug is better than no treatment
Adequate and Well-Controlled Trials

Active treatment concurrent control

– A test drug is compared with a known effective therapy (active control)

– Success = test drug is better than known effective therapy, or test drug is similar (non-inferiority)

• Treatment effect over placebo of the active control drug must be known for non-inferiority
Adequate and Well-Controlled Trials

Historical control

- A test drug is compared to experience historically derived (natural history)
- Success = test drug is better than the historical experience
- Usually reserved for rare circumstances
 - e.g., historical experience = high mortality
Outline of the Presentation

• Adequate and Well-Controlled Trials
• Endpoints
• Regulatory Approvals
Endpoint Definitions

The methods of assessment of subjects’ responses are well-defined and reliable. The protocol for the study and the report of results should explain the variables measured, the methods of observation, and criteria used to assess response.

–21 CFR 314.126(b)(6)
Endpoint Definitions

…a clinically meaningful endpoint that is a direct measure of how a patient feels, functions, or survives…

—Federal Register/Vol. 57, No.73/April 15, 1992
Endpoint Definitions

A characteristic or variable that reflects how a patient feels, functions, or survives. Clinical endpoints are distinct measurements or analyses of disease characteristics observed in a study or a clinical trial that reflect the effect of a therapeutic intervention. Clinical endpoints are the most credible characteristics used in the assessment of benefits and risks of a therapeutic intervention in randomized clinical trials.

Biomarkers Definitions Working Group:

– Clin Pharmacol Ther 2001;69:89-95
– Also used in a 2011 IOM Report “Committee on Qualification of Biomarkers and Surrogate Endpoints in Chronic Disease”
Types of Endpoint Measures

- Clinician-reported outcomes
- Patient-reported outcomes (PRO)
- Biomarkers
Clinician-Reported Endpoint Measures

• Assessment of the patient’s health condition based on direct clinician observations and interpretation

• Advantages as efficacy endpoints
 – Standardized
 – Reproducible and consistent
 – Well-defined and reliable

• Example: reduction in lesion size by at least 20% within 2-3 days for acute bacterial skin infections
Patient-Reported Endpoint Measures: PRO

• Any report of the status of the patient’s health condition coming directly from the patient, without interpretation by clinicians, about how the patient functions or feels in relation to a health condition and its treatment

• Example: PRO used in inhaled antibacterial drug trials in cystic fibrosis
Biomarker Endpoint Measures

• Biomarker: A characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to an intervention.
 – Usually used as a surrogate endpoint
 – Rarely used as a primary efficacy endpoint measurement
Biomarker Endpoint Measures

A surrogate endpoint, or “marker”, is a laboratory measurement or physical sign that is used in therapeutic trials as a substitute for a clinically meaningful endpoint that is a direct measure of how a patient feels, functions, or survives and that is expected to predict the effect of therapy.

- Federal Register/Vol. 57, No.73/April 15, 1992
- Accelerated Approval 21 CFR 314.500 (subpart H): reasonably likely to predict clinical benefit
Biomarker Endpoint Measures

Examples of biomarker endpoints

- HIV viral load
- TB culture conversion to no growth
- Serologic tests for antibody to *T. cruzi*
Outline of the Presentation

• Adequate and Well-Controlled Trials
• Endpoints
• Regulatory Approvals
Regulatory Approvals

• Standard approval
 – Adequate and well-controlled trials show that a drug is safe and effective on the basis of clinically meaningful endpoint
 – Examples:
 • Drugs for treatment of skin infection (ABSSSI) approved on the basis of reduction in lesion size
 • Drugs for treatment of HIV/AIDS approved on the basis of reduction in HIV viral load (a biomarker validated as a primary efficacy endpoint)
Regulatory Approvals

• Accelerated approval
 – Adequate and well-controlled trials show that a drug is safe and effective on the basis of a surrogate marker
 • Surrogate is reasonably likely to predict benefit
 – Additional trials confirm the clinical benefit
 – Example:
 • Drugs for treatment of tuberculosis approved on the basis of the surrogate of TB culture to no growth
Summary

• Adequate and well-controlled trials
 – Substantial evidence of efficacy and safety
 – Several types of trial designs

• Endpoints
 – A measure of patient feels, functions, survives: patient-reported or clinician-reported
 – Biomarker is usually a surrogate marker reasonably likely to predict clinical benefit

• Regulatory approvals
 – Standard approval; accelerated approval
RECENT, ONGOING, AND PLANNED
CLINICAL TRIALS FOR CHAGAS DISEASE

ISABELA RIBEIRO, MD
Chagas Disease - an unmet medical need

- Most common parasitic disease in the Americas
- Leading cause of infectious myocarditis worldwide
- Two drugs available: nifurtimox and benznidazole
 - Developed and registered in 1960-1970’s
- < 1% of those infected receive treatment
 - Safety and tolerability issues
 - Long treatment period (1-2 months)
Evaluation and Treatment of Chagas Disease in the United States
A Systematic Review

Table 1. Prospective Controlled Trials of Benznidazole or Nifurtimox for Chronic Chagas Disease in the United States

<table>
<thead>
<tr>
<th>Source</th>
<th>Chagas Form</th>
<th>Study Design</th>
<th>Age, y</th>
<th>Length of Treatment, d</th>
<th>Cometion Groups</th>
<th>Sample Size, No.</th>
<th>Primary Outcome of Interest, %</th>
<th>Major Adverse Events or Adverse Effects, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>de Andrade et al. 1996a</td>
<td>Indeterminate (n = 120)</td>
<td>Randomized, double-blinded</td>
<td>7-12</td>
<td>60</td>
<td>Benznidazole, 7.5 mg/kg per d</td>
<td>64</td>
<td>Negative seroconversion at 36 mo by AT-ELISA</td>
<td>12.5 Maculopapular rash and pruritus</td>
</tr>
<tr>
<td>Sota Estani et al. 1996b</td>
<td>Indeterminate (n = 90)</td>
<td>Randomized, double-blind</td>
<td>6-12</td>
<td>60</td>
<td>Benznidazole, 5 mg/kg per d Placebo</td>
<td>55</td>
<td>Negative seroconversion at 24 mo by F29-ELISA</td>
<td>62 Intestinal colitis</td>
</tr>
<tr>
<td>Coura et al. 1997c</td>
<td>Indeterminate with ≥ 2 of 3 pretreatment xenodiagnosis positive</td>
<td>Randomized but apparently not double-blind</td>
<td>Adults</td>
<td>30</td>
<td>Benznidazole, 5 mg/kg per d Placebo</td>
<td>55</td>
<td>Posttreatment xenodiagnosis positive</td>
<td>1.8 Traffic accident</td>
</tr>
<tr>
<td>Viotti et al. 2006d</td>
<td>Indeterminate and nonsevere determinate</td>
<td>Alternate assignment to benznidazole or no treatment; nonrandomized, unblinded</td>
<td>Mean, 30</td>
<td>30</td>
<td>Benznidazole, 5 mg/kg per d Placebo</td>
<td>283</td>
<td>Progression</td>
<td>Severe allergic dermatitis prompting discontinuation</td>
</tr>
</tbody>
</table>

Abbreviations: AT-ELISA, Antigen tyrosinase chemiluminescent enzyme-linked immunosorbent assay; CI, confidence interval; ECG, electrocardiogram; HR, hazard ratio (mortality adjusted for enrollment fraction; F29-ELISA, Fagallier calcium binding protein F29-antigen-based enzyme-linked immunosorbent assay; IFA, Indirect Immunofluorescence assay; IHA, indirect hemagglutination; NR, not reported.

P = 0.056, 95% CI 0.15-0.55; 40.6-67.0% by intention-to-treat analysis based on AT-ELISA results.

*All children were asymptomatic but 9 had right bundle-branch block on ECG; no difference in distribution in treatment vs placebo groups.

*Neither age nor clinical findings reported in article presumed to have the indeterminate form.

*Chagas cardiac disease: Kussman grades I or II; those with grade III, defined by presence of heart failure, were excluded. Distribution at study entry: 40.6% Kussman 0, 20.1% grade I, 10.2% grade II. See Box for definition of Kussman grades. Median follow-up, 5.6 years.
Use of benznidazole to treat chronic Chagas’ disease: a systematic review with a meta-analysis

José A. Pérez-Molina¹*, Ana Pérez-Ayala¹, Santiago Moreno², M. Carmen Fernández-González², Javier Zamora³ and Rogelio López-Velez¹

Figure 1. Flow diagram for selected studies.
Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection

Ana Lucia S Sgambatti de Andrade, Fabio Zicker, Renato Mauricio de Oliveira, Simonne Almeida e Silva, Alejandro Luquetti, Luiz R Travassos, Igor C Almeida, Soraya S de Andrade, João Guimarães de Andrade, Celina M T Martelli

Figure 2: AT ELISA results at trial entry (○) and at end of follow-up (●) for 58 benznidazole-treated and 54 placebo-treated children who completed trial treatment. Broken horizontal line—cut-off; values below this indicate seronegativity.

Figure 3: Baseline cumulative distribution curves of titres of antibodies against T. cruzi among children receiving placebo and benznidazole at baseline and at 3 years of follow-up.

Figure 4: T. cruzi serological response in benznidazole and placebo groups by time. Lines indicate 95% CI. IF—indirect immunofluorescence, IHA—indirect haemagglutination.
EFFICACY OF CHEMOTHERAPY WITH BENZNIDAZOLE IN CHILDREN IN THE INDETERMINATE PHASE OF CHAGAS’ DISEASE

SERGIO SOSA ESTANI, ELSA LEONOR SEGURA, ANDRES MARIANO RUIZ, ELSA VELAZQUEZ, BETINA MABEL PORCEL, AND CRISTINA YAMPOTIS

Centro Nacional de Diagnóstico e Investigación de Endemias/Ministerio de Salud, Provincia de Salta, Argentina. Institute Nacional de Parasitología Dr. Mario F. Chaben/ANLIS Secretaria de Salud, Ministerio de Salud y Acción Social de la Nación; Buenos Aires, Argentina. Hospital San Roque, Ministerio de Salud y Acción Social de la Nación, Buenos Aires, Argentina

Serologic follow-up of children treated with benznidazole or placebo to 48 months post-treatment in Salta, Argentina, 1991–1995

<table>
<thead>
<tr>
<th>Treatment</th>
<th>n</th>
<th>Mean</th>
<th>SD</th>
<th>Test</th>
<th>Mean</th>
<th>SD</th>
<th>Test</th>
<th>Mean</th>
<th>SD</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benznidazole</td>
<td>Pretreatment</td>
<td>51</td>
<td>7.98</td>
<td>1.82</td>
<td>7 DF</td>
<td>1 DF</td>
<td>7.05</td>
<td>1.12</td>
<td>7 DF</td>
<td>1 DF</td>
</tr>
<tr>
<td>End of treatment</td>
<td>47</td>
<td>7.68</td>
<td>2.14</td>
<td>NS</td>
<td>6.27</td>
<td>1.28</td>
<td>NS</td>
<td>0.433</td>
<td>0.110</td>
<td>NS</td>
</tr>
<tr>
<td>3 months</td>
<td>45</td>
<td>7.26</td>
<td>2.33</td>
<td>NS</td>
<td>6.27</td>
<td>1.28</td>
<td>P<0.01</td>
<td>0.409</td>
<td>0.112</td>
<td>P<0.01</td>
</tr>
<tr>
<td>6 months</td>
<td>45</td>
<td>7.00</td>
<td>2.53</td>
<td>P<0.05</td>
<td>6.11</td>
<td>1.57</td>
<td>P<0.001</td>
<td>0.371</td>
<td>0.115</td>
<td>P<0.001</td>
</tr>
<tr>
<td>12 months</td>
<td>48</td>
<td>7.00</td>
<td>2.27</td>
<td>P<0.05</td>
<td>5.87</td>
<td>1.56</td>
<td>P<0.001</td>
<td>0.369</td>
<td>0.107</td>
<td>P<0.001</td>
</tr>
<tr>
<td>18 months</td>
<td>47</td>
<td>7.03</td>
<td>2.62</td>
<td>P<0.001</td>
<td>5.80</td>
<td>1.82</td>
<td>P<0.001</td>
<td>0.358</td>
<td>0.120</td>
<td>P<0.001</td>
</tr>
<tr>
<td>24 months</td>
<td>46</td>
<td>6.80</td>
<td>2.26</td>
<td>P<0.01</td>
<td>5.32</td>
<td>2.03</td>
<td>P<0.001</td>
<td>0.330</td>
<td>0.098</td>
<td>P<0.001</td>
</tr>
<tr>
<td>48 months</td>
<td>44</td>
<td>5.93</td>
<td>2.11</td>
<td>P<0.001</td>
<td>5.65</td>
<td>2.18</td>
<td>P<0.001</td>
<td>0.343</td>
<td>0.094</td>
<td>P<0.001</td>
</tr>
<tr>
<td>Placebo</td>
<td>Pretreatment</td>
<td>50</td>
<td>8.00</td>
<td>1.16</td>
<td>7 DF</td>
<td>1 DF</td>
<td>6.80</td>
<td>1.22</td>
<td>7 DF</td>
<td>1 DF</td>
</tr>
<tr>
<td>End of treatment</td>
<td>45</td>
<td>8.11</td>
<td>1.21</td>
<td>NS</td>
<td>6.80</td>
<td>1.07</td>
<td>NS</td>
<td>0.492</td>
<td>0.090</td>
<td>NS</td>
</tr>
<tr>
<td>3 months</td>
<td>44</td>
<td>8.11</td>
<td>1.10</td>
<td>NS</td>
<td>6.54</td>
<td>1.15</td>
<td>NS</td>
<td>0.489</td>
<td>0.098</td>
<td>NS</td>
</tr>
<tr>
<td>6 months</td>
<td>39</td>
<td>7.97</td>
<td>1.34</td>
<td>NS</td>
<td>6.61</td>
<td>1.60</td>
<td>NS</td>
<td>0.477</td>
<td>0.101</td>
<td>NS</td>
</tr>
<tr>
<td>12 months</td>
<td>47</td>
<td>8.08</td>
<td>1.26</td>
<td>NS</td>
<td>6.40</td>
<td>1.13</td>
<td>NS</td>
<td>0.476</td>
<td>0.113</td>
<td>NS</td>
</tr>
<tr>
<td>18 months</td>
<td>48</td>
<td>7.93</td>
<td>1.17</td>
<td>NS</td>
<td>6.47</td>
<td>1.16</td>
<td>NS</td>
<td>0.464</td>
<td>0.108</td>
<td>NS</td>
</tr>
<tr>
<td>24 months</td>
<td>49</td>
<td>7.77</td>
<td>1.22</td>
<td>NS</td>
<td>6.34</td>
<td>1.54</td>
<td>NS</td>
<td>0.479</td>
<td>0.104</td>
<td>NS</td>
</tr>
<tr>
<td>48 months</td>
<td>44</td>
<td>7.47</td>
<td>0.95</td>
<td>NS</td>
<td>6.97</td>
<td>2.21</td>
<td>P<0.05</td>
<td>0.503</td>
<td>0.113</td>
<td>NS</td>
</tr>
</tbody>
</table>

* IFA = Indirect hemagglutination assay; IHA = Indirect hemagglutination assay; EIA = Enzyme immunoassay. Test = analysis of variance or Kruskal-Wallis test; df = degrees of freedom; NS = not significant (P > 0.05). The IFA and IHA values are means (log of two-fold dilutions of sera) sampled. The EIA values are mean optical densities.

Chagas Disease Clinical Trials - 2008

- Two randomised clinical trial of BZN in adults
 - TRAENA (started in 03/1999 – 12/2012)
 - BENEFIT (11/2004 – ongoing)
- Decades with no new clinical trials for new treatment options in Chagas disease
- R&D and access stalled by existing knowledge gaps

- Relevance of animal models
- Limited data on:
 - the importance of different parasite strains to human disease
- Coexistence of infection
- Mechanisms of resistance
- PK/PD in Chagas largely unknown
- No consensus on reference treatment
- Lack of early test of cure
- Limited sensitivity of PCR test
Focused approach
Balancing Gaps and the Urgent Medical Need

- Clear need of new treatment options for patients with chronic Chagas disease (adults and older children)

- Decision to proceed to clinical development and generation of scientific information → fill existing gaps and inform future drug development

- PCR: selected as the primary endpoint for clinical trials after extensive expert consultation
 - Standardised methodology with multi-centre evaluation
 - Serial and sequential PCR examination
 - Rationale for selection: plausible biological rationale (link parasite persistence and chronic heart inflammation), animal models, human data from acute Chagas disease (children, reactivation), observational studies in humans

- Early regulatory consultation and agreement on endpoints, trial design and development strategy

- Generation of PK/PD data in humans – using different biomarkers and parasite genotyping – for new candidates and benznidazole
Clinical Trials - Chronic Chagas Disease
A lot of progress over recent years

- Benznidazole in children
 - Pop PK study in children 0-12 years – results ASTMH and ESPID 2013/2014
 - Pop PK in children 2-12 years – publication 2014

Azoles for Chagas Disease
- Posaconazole and Benznidazole in adults
 - CHAGASAZOL - Hospital Val Hebron – Barcelona - publication 2014
 - STOP-CHAGAS – Merck-sponsored, multi-country clinical trial - ongoing

- E1224 and Benznidazole in adults
 - Phase 2, PoC E1224 - Bolivia - results ASTMH 2013

Fexinidazole for Chagas disease
- Phase 2, PoC FEXI in adults – Bolivia - ongoing
Azole Class Clinical Trial Results - ICTMM

Molina et al.
NCT01162967

CHAGASAZOL

Proportion 1:1:1

Benznidazol 300mg/dia
Posaconazol 200mg/dia
Posaconazol 800mg/dia

26 patients
5 Treatment Stopped
4 Lost to follow up
17 patients

27 patients
3 Lost pretreatment
0 Treatment Stopped
21 patients

25 patients
0 Treatment Stopped
3 Lost to follow up
25 patients

PCR TREATMENT: D0 D7 D14 D28 D45 D60
FOLLOW UP: M4 M6 M8 M12

TWICE / 10ML
<40: Positive

Cumulative probability of failure

Positive PCR (%)

90.5 % 80 % 5.9 %

P < 0.0001
P = 0.426
E1224 - Phase II PoC Study

DNDi-CH-E1224-001
NCT01489228

E1224 high dose arm (double-blind) N = 46
No treatment follow-up period

E1224 low dose arm (double blind) N = 46
No treatment follow-up period

E1224 short dose arm N = 46
Matching placebo tablets
No treatment follow-up period

Benznidazole tablets (open-label) N = 46
No treatment follow-up period

E1224 matching placebo (double-blind) N = 46
No treatment follow-up period

8 weeks treatment (60 days for BZN)

10 months additional follow-up

Efficacy based on repeated PCR and candidate biomarkers, parallel evaluation of serology

Day 65 (EOT)

<table>
<thead>
<tr>
<th>Parasite clearance at D65</th>
<th>Placebo (N=47)</th>
<th>LD (N=48)</th>
<th>SD (N=46)</th>
<th>HD (N=45)</th>
<th>BZN (N=45)</th>
<th>All (N=231)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>47</td>
<td>48</td>
<td>46</td>
<td>45</td>
<td>45</td>
<td>231</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>35 (74.5)</td>
<td>5 (10.4)</td>
<td>5 (10.9)</td>
<td>11 (24.4)</td>
<td>4 (8.9)</td>
<td>60 (26.0)</td>
</tr>
<tr>
<td>Yes</td>
<td>12 (25.5)</td>
<td>43 (89.6)</td>
<td>41 (89.1)</td>
<td>34 (75.6)</td>
<td>41 (91.1)</td>
<td>171 (74.0)</td>
</tr>
</tbody>
</table>

12 Month Follow-up

Sustained clearance At 12 months

<table>
<thead>
<tr>
<th></th>
<th>No n (%)</th>
<th>Yes n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N=47)</td>
<td>43 (91.5)</td>
<td>4 (8.5)</td>
</tr>
<tr>
<td>(N=48)</td>
<td>44 (91.7)</td>
<td>4 (8.3)</td>
</tr>
<tr>
<td>(N=46)</td>
<td>41 (89.1)</td>
<td>5 (10.9)</td>
</tr>
<tr>
<td>(N=45)</td>
<td>32 (71.1)</td>
<td>13 (28.9)</td>
</tr>
<tr>
<td>(N=45)</td>
<td>8 (19.0)</td>
<td>37 (81.0)</td>
</tr>
<tr>
<td>(N=231)</td>
<td>168 (72.7)</td>
<td>63 (27.3)</td>
</tr>
</tbody>
</table>
Population Pharmacokinetics of Benznidazole in Children With Chagas Disease

- 2 open-label, single-arm, prospective Pop PK studies
 - NCT01549236 40 Children 2 – 12 years old
 Age: 7.3 years (range 2.1 – 12)
 - NCT00699387 81 Children 1d – 12 years old
 Age: >2a: 40; < 2a: 41 (8 newborn)
- Samples for PK were obtained at randomly pre-assigned times
- Benznidazole in plasma was measured by HPLC, HPLC-MS-MS
- PopPK modeling was performed with NONMEM software (nonlinear mixed effects analysis)
Population Pharmacokinetics of Benznidazole in Children With Chagas Disease

BNZ concentrations (polynomial regression) by age group

- 100% PCR negative at EOT
- Have we been overdosing adults?...

P biatric network PEDCHAGAS
Paediatric cohorts

<table>
<thead>
<tr>
<th>tiempo</th>
<th>n</th>
<th>+</th>
<th>%</th>
<th>IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>91</td>
<td>91</td>
<td>83,8-95,2</td>
</tr>
<tr>
<td>7d</td>
<td>92</td>
<td>35</td>
<td>38</td>
<td>28,8-48,3</td>
</tr>
<tr>
<td>30d</td>
<td>89</td>
<td>3</td>
<td>3,4</td>
<td>1,2-9,4</td>
</tr>
<tr>
<td>60d</td>
<td>85</td>
<td>1</td>
<td>1,2</td>
<td>0,2-6,4</td>
</tr>
<tr>
<td>3m</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0,4,6</td>
</tr>
<tr>
<td>6m</td>
<td>76</td>
<td>2</td>
<td>2,6</td>
<td>0,7-9,1</td>
</tr>
<tr>
<td>12m</td>
<td>75</td>
<td>2</td>
<td>2,7</td>
<td>0,7-9,2</td>
</tr>
<tr>
<td>24m</td>
<td>69</td>
<td>1</td>
<td>1,4</td>
<td>0,3-7,8</td>
</tr>
<tr>
<td>36m</td>
<td>64</td>
<td>1</td>
<td>1,6</td>
<td>0,3-8,3</td>
</tr>
</tbody>
</table>
Paediatric cohorts
STOP-CHAGAS - A Study of the Use of Oral Posaconazole (POS) in the Treatment of Asymptomatic Chronic Chagas Disease - NCT01377480

• Multi-centre, multi-country, randomised, double-blinded placebo-controlled study
• Status:
 • 120 patients randomised
 • Enrollment and follow-up concluded
 • Top level report: Q2 2015

Steering Committee: S Sosa-Estani, A Avezum, S Yusuf, S Chrolavicious.
TRAENA - Treatment with benznidazole in adult chronic Chagas disease patients

- Adults with chronic Chagas disease – indeterminate and with cardiac involvement
- Randomized, double-blind, clinical trial
- PI: Dr Adelina Riarte
- INP Fatala-Chaben, Buenos Aires, Argentina

<table>
<thead>
<tr>
<th></th>
<th>PLB</th>
<th>BZN</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustained PCR response 12 months</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>YES</td>
<td>Total</td>
</tr>
<tr>
<td>PLB</td>
<td>112</td>
<td>51</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>33.84</td>
<td>15.41</td>
<td>49.24</td>
</tr>
<tr>
<td></td>
<td>68.71</td>
<td>31.29</td>
<td>70.01</td>
</tr>
<tr>
<td></td>
<td>82.96</td>
<td>26.02</td>
<td>59.20</td>
</tr>
<tr>
<td>BZN</td>
<td>23</td>
<td>145</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>6.95</td>
<td>43.81</td>
<td>50.76</td>
</tr>
<tr>
<td></td>
<td>13.69</td>
<td>86.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.04</td>
<td>73.98</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
<td>196</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>40.79</td>
<td>59.21</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Frequency Missing = 61
BENznidazole Evaluation For Interrupting Trypanosomiasis

BENEFIT

- Randomized, double-blind, clinical trial
- Adults with chronic Chagas disease with cardiac
- PIs: Dr Carlos Morillo, Dr. Marin Neto

PRIMARY ENDPOINT

- Combination of death, cardiac arrest resuscitation, sustained ventricular tachyarrhythmias, need for pacemaker or defibrillator implant, thromboembolic phenomena or hospitalization for CHF, Heart Tx

Last Follow-up Visits – April 2015 – 1.5% LTFU

<table>
<thead>
<tr>
<th>Country</th>
<th># of Sites</th>
<th>Total Patients Randomized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>19</td>
<td>559</td>
</tr>
<tr>
<td>Bolivia</td>
<td>1</td>
<td>357</td>
</tr>
<tr>
<td>Brazil</td>
<td>24</td>
<td>1366</td>
</tr>
<tr>
<td>Colombia</td>
<td>5</td>
<td>502</td>
</tr>
<tr>
<td>El Salvador</td>
<td>1</td>
<td>78</td>
</tr>
<tr>
<td>TOTAL</td>
<td>50</td>
<td>2856</td>
</tr>
</tbody>
</table>
Medical History

<table>
<thead>
<tr>
<th>Condition</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYHA Class</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>74.6</td>
</tr>
<tr>
<td>II</td>
<td>22.8</td>
</tr>
<tr>
<td>III</td>
<td>2.6</td>
</tr>
<tr>
<td>Previous Heart Failure</td>
<td>9.5</td>
</tr>
<tr>
<td>Resuscitated Cardiac Arrest</td>
<td>1.3</td>
</tr>
<tr>
<td>Sustained VT</td>
<td>2.8</td>
</tr>
<tr>
<td>Internal Cardiac Defibrillator</td>
<td>2.5</td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>7.0</td>
</tr>
<tr>
<td>Pacemaker</td>
<td>14.2</td>
</tr>
<tr>
<td>Stroke/TIA</td>
<td>4.4</td>
</tr>
<tr>
<td>Syncope</td>
<td>8.5</td>
</tr>
<tr>
<td>Country</td>
<td>Total Pts Randomized</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td>Argentina</td>
<td>559</td>
</tr>
<tr>
<td>Bolivia</td>
<td>357</td>
</tr>
<tr>
<td>Brazil</td>
<td>1360</td>
</tr>
<tr>
<td>Colombia</td>
<td>502</td>
</tr>
<tr>
<td>El Salvador</td>
<td>78</td>
</tr>
<tr>
<td>OVERALL</td>
<td>2856</td>
</tr>
</tbody>
</table>

- Drug interrupted
- Drug Restarted

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Drug interrupted</th>
<th>Drug Restarted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6.3</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.2</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.2</td>
<td>3.0</td>
</tr>
<tr>
<td>COUNTRY</td>
<td># Pts RANDOMIZED</td>
<td>BASELINE COLLECTED</td>
<td>ANALYZED (%)</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>OVERALL</td>
<td>2856</td>
<td>1932</td>
<td>1123 (58.1)</td>
</tr>
</tbody>
</table>
Fexinidazole
Proof-of-Concept Dose Ranging Study

Study initiated:
July 2014

Study recruitment temporary interruption: Oct 17, 2014

Study recruitment interruption: December 11, 2014

Target for Top Line Report (TLR): August 2015

180 ICF signed
47 patients randomised
LVLP planned April 2015

140 adults with chronic indeterminate CD
PCR sustained response at 6 months
Stopping rules: futility and safety

Risk Management:
Timelines for recruitment
Safety monitoring

Follow-up period
Follow-up period
Follow-up period
Follow-up period
Follow-up period
Follow-up period

Screening period
randomisation

8 weeks treatment

4 months additional follow-up

EOT

M4
Improved Treatment Regimens of Benznidazole
BZN New Regimen and BZN / E1224 Combination

Principal Investigators: Faustino Torrico, Joaquim Gascón, Rodolfo Viotti, Sergio Sosa Estani

Sites: Bolivia and Argentina:

Plataforma de Atención Integral a los Pacientes con Enfermedad de Chagas
CEADES Bolivia/IS Global/CRESiB

Hospital Eva Peron, Buenos Aires
INP Fatala-Chaben, Buenos Aires
Centro de Chagas, Santiago del Estero

INGEBI/CONICET, Buenos Aires, Argentina

Study Initiation Date: 15/10/2015
Future Clinical Trials
Chronic Chagas Disease

- **Benznidazole in children**
 - ELEA/Chemo –sponsored, Mundo Sano Foundation
 - Assessment of efficacy and safety of BZN in children
 - Historical placebo-control
 - Design under finalisation

- **New Benznidazole Treatment regimens in adults**
 - DNDi-sponsored, collaboration with Eisai, ELEA and Mundo Sano Foundation
 - Assessment of efficacy and safety of BZN as monotherapy and E1224 combination in adults 18-50 years

- **BERENICE project**

- **Nifurtimox in children**
 - Bayer –sponsored
 - Assessment of efficacy and safety of Nifurtimox in children
 - Historical placebo-control
 - Design under finalisation
Trypanocidal Treatment of Women Infected with *Trypanosoma cruzi* and Its Effect on Preventing Congenital Chagas

Diana L. Fabbro¹, Emmario Danesi², Veronica Olivera¹, Maria Olenka Codebó³, Susana Denner¹, Cecilia Heredia², Mirtha Streiger¹, Sergio Sosa-Estani²,³*

¹ Centro de Investigaciones sobre Enfermedades Nacionales (CIEN) - Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina, ² Centro Nacional de Diagnóstico e Investigaciones Endémico-epidémicas, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), Buenos Aires, Argentina, ³ Instituto Nacional de Parasitología (INP), “Dr Mario Fataş Chaben”, Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) Malbrán, Buenos Aires, Argentina

1527 Clinical Records of infected women (pre-selected)

<table>
<thead>
<tr>
<th>1029 Excluded mothers, no possible to contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>498 infected mothers (eligible) and their children</td>
</tr>
</tbody>
</table>

144 infected mothers and 354 children (354 PAIRS INCLUDED)

| 354 Excluded mothers, no completion of information |

132 Pairs Treated mother-child

| 132 Non infected children (100.0%) |
| 0 Infected children (0.0%) |

222 Pairs Non treated mother-child

| 177 Non infected children (79.7%) |
| 34 Infected children (15.3%) |
| 11 Infected children with migration (5.0%) |

Log-rank test, p<0.05
Prevention of congenital Chagas through treatment of girls and women of childbearing age

Guillermo Moscatelli/†, Samanta Moroni, Facundo García-Bournissen, Griselda Ballering, Margarita Bisio, Héctor Freilij, Jaime Alcheh

Department of Parasitology and Chagas, Ricardo Gutiérrez Children’s Hospital, Buenos Aires, Argentina
Primary Aim: To determine if multiple, sequential blood PCR assays for T. cruzi DNA post-treatment can consistently differentiate parasitological cure from treatment failure

64 cynomolgous macaques infected with T. cruzi in the field from natural sources

Biomarkers under-evaluation: multiplex real-time qPCR, multiplex serodiagnostic assay, lytic antibodies, hemocultures, whole transcriptome biomarker

Confirm health and infection status; pre-treatment sample collection; acclimation and taste-testing; PK to determine dosing

Immunosuppression; determination of infection status; sample testing and data analysis

0 (months) 6 12 18 24 30

60 day course of treatment (staged); sample collection at 8 week intervals up to 52 weeks post-treatment (7 post-treatment blood and tissue samples)

Treatment groups
Total N=56 animals to be enrolled
Vehicle (n=8)
Benznidazole standard dose (n=16)
Benznidazole low dose (n=16)
E1224 standard dose (n=16)

Main analysis:
Kappa value PCR+ after treatment and presence of infection estimated at 0.9182 (95% CI 0.8074, 1)

• 80% power to detect Kappa > 0.7
<table>
<thead>
<tr>
<th>Research</th>
<th>Translational</th>
<th>Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen</td>
<td>Hit to Lead</td>
<td>Lead Opt.</td>
</tr>
<tr>
<td>GSK Tres Cantos</td>
<td>Chagas vaccine Sabin</td>
<td>U. Washington</td>
</tr>
<tr>
<td>GNF</td>
<td>Celgene</td>
<td>GNF</td>
</tr>
<tr>
<td>Eisai/Broad</td>
<td>Oxaborole Anacor</td>
<td></td>
</tr>
<tr>
<td>LSHTM STPH LMPH</td>
<td>LSHTM STPH LMPH</td>
<td>Broad series</td>
</tr>
<tr>
<td>IPK Dundee Eskitis</td>
<td>Broad series</td>
<td>Nitro Backups</td>
</tr>
<tr>
<td>GSK Tres Cantos</td>
<td>sanofi series</td>
<td></td>
</tr>
<tr>
<td>Merck / AZ</td>
<td></td>
<td>Fexinidazole</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New regimens Benznidazole</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pediatric Benznidazole (LAFEPE/ELEA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pediatric Nifurtimox (Bayer)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biomarkers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DNDi Activities</td>
</tr>
</tbody>
</table>

- **DNDi only**
- **DNDi in collaboration**
- **other**
Conclusions

- Significant impact of recent clinical trial data (adults and children) on the overall Chagas disease R&D landscape
 - Additional push for scaling up diagnosis and treatment of Chagas disease, improved access to available drugs and formulations
- Work towards new treatments for the chronic form of Chagas Disease
 - PKPD for new treatments in Chagas disease
 - POC studies for reduced BNZ, combination and Fexinidazole
- Need for clear regulatory framework for registration of new treatments for adults with chronic Chagas disease
Thank You to All Our Partners & Donors

R&D for Neglected Patients

via the 4th Sector Health Project implemented by Abt Associates, Inc.
Acknowledgements

Chagas Clinical Research Platform

Principal Investigators and collaborators on the reported trials

- Sergio Sosa Estani
- Jaime Altcheh
- Facundo Garcia Bounissen
- Alejandro Schijman
- Faustino Torrico
- Joaquin Gascón
- Adelina Riarte
- Carlos Morillo

- DNDi R&D Chagas Team
 - Fabiana Barreir
 - Bethania Blum
 - Jayme Fernandes
 - Erika Correia
 - Cristina Alonso Vega
 - Fabiana Alves
Panel Discussion

Sumathi Nambiar, MD PhD
Division Director, Division of Anti-infective Products
Center for Drug Evaluation and Research
U.S. Food and Drug Administration
Afternoon Panel Discussion

• Populations who could be enrolled in a clinical trial
 – *What are the populations (e.g. stage of disease) for which a clinical trial could be feasible and acceptable?*

• Acceptable control groups
 – *Are there any situations for which a placebo control would be acceptable?*
Use of Serology to Assess the Efficacy of Drugs for Chagas Disease

Louis V. Kirchhoff, MD, MPH

Professor, Departments of Internal Medicine (Infectious Diseases) and Epidemiology
University of Iowa

Chagas Disease Public Meeting on Patient-Focused Drug Development

FDA, Silver Spring, MD, April 28, 2015
General Issues for Evaluating Drugs for Chagas Disease

1. Evaluating drugs for Chagas disease is a major challenge, but not uniquely so
2. Following clinical parameters is not useful
3. Parasitologic cure is the goal but determining that it has been achieved is difficult
4. Parasitologic assays lack sensitivity
5. Serologic assays are excellent for diagnosis in donors and clinical settings (pre-treatment)
6. Variability and delay in the fall of anti-\(T. \text{cruzi}\) antibody titers after treatment make assessment of drug efficacy a difficult and prolonged process
Recruitment of Study Subjects with Chronic Chagas Disease

1. Younger persons who have been infected for fewer years are more curable
2. Avoid reinfection after treatment
3. Perform screening and confirmatory serologic assays
4. Need to avoid including subjects who are false positives in serologic assays
 a. Option 1: Include persons with a broad range of titers
 b. Option 2: Include only persons with “robust” titers
 c. Options 3 & 4: Include only PCR+ persons in a. or b.
Serology as an Approach for Detecting Parasitologic Cure

1. Logistical issue: freeze multiple aliquots of serum from each blood draw to allow head-to-head testing of all samples at each time point

2. Long-term goal is to detect after treatment an early pattern of declining antibody reactivity or a lack of detectable antibodies that is indicative of parasitologic cure

3. Options for targets:
 a. Broad *T. cruzi* lysate [epimastigotes (e.g. Ortho ELISA) vs. trypomastigotes as sources]
 b. Mixtures of single or chimeric recombinant proteins (e.g., Wiener Rec Chagatest; Abbott Prism, Architect, and ESA assays)
 c. Whole parasites or single native antigen [e.g., IIF; (trypomastigotes in CoML assay; gp160; and t-GPI-mucins as targets of “lytic antibodies”)]
 d. Different approaches: parasite or human biomarkers as indicators of infection status (e.g. mass spectrometry, APOA-1, FN1; PCR)
POLYMERASE CHAIN REACTION

Tool for treatment monitoring in Chagas disease

Standardization and Validation issues

Patient-Focused Drug Development meeting on Chagas Disease

Silver Spring, Maryland April 2015

Alejandro Gabriel Schijman
Grupo de Biologia Molecular de La Enfermedad de Chagas
INSTITUTO DE INVESTIGACIONES EN INGENIERIA GENETICA
Y BIOLOGIA MOLECULAR “Dr. Héctor N. Torres”
CONICET
Buenos Aires, Argentina
Top research priorities for Chagas disease, human African trypanosomiasis and leishmaniasis:

Research on new diagnostics for case detection and characterization, including drug resistance and tests of cure.

Research on new therapeutics to avoid drug resistance, including exploring combinations of approved anti-kinetoplastid drugs, repurposing of existing approved drugs, and developing new drugs.

Research on new vector control technologies, including markers of successful vector control.

Research on vector population characteristics, including insecticide resistance.

Operational research on integrated disease and vector control.

Research on vaccines to prevent Leishmania infection and disease, and vaccines to block transmission of Leishmania.

Research to assess the importance of asymptomatic infection.
INTERNATIONAL INITIATIVES

WHO Consultation on International Biological Reference Preparations For Chagas Diagnostic Tests,
23-24 April 2007, Buenos Aires, Argentina

It has been recognized that the application of polymerase chain reaction (PCR) to detect Trypanosoma cruzi directly in blood with high sensitivity and specificity has opened new possibilities for the diagnosis of infection and evaluation of trypanocidal chemotherapy.

Revisiting Chagas disease: From a Latin American Health perspective to a Global Health perspective,
2-3 July 2007, WHO, Geneva, Switzerland;
GENETIC DIVERSITY OF TRYpanosoma cruzi
Discrete Typing Units

DOMESTIC
SILVATIC

Michael Miles
DTUs and Molecular Diagnosis

- Variations in accuracy of PCR in different regions could be due in part to the geographical diversity of DTUs distribution.

- Copy numbers of sequences used as targets for molecular diagnosis differ among different DTUs and strains.

- Therefore, PCR should be validated in this context.
Preparation of control panels and distribution to 29 laboratories

Figura M4. Paises participantes en el estudio interlaboratorio de PCR y materiales enviados. A. Paises participantes. B y C. Materiales enviados a cada laboratorio: Base de datos para informar procedimientos y resultados (B) y paneles de muestras identificados por color (C).
Table 1. PCR tests reported by the participating Laboratories.

<table>
<thead>
<tr>
<th>Laboratory / Test</th>
<th>Extraction Method</th>
<th>Target</th>
<th>Primer Names</th>
<th>Amplification</th>
<th>Master Mix</th>
<th>Cycles N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Solvent extraction (HM)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>In-House (HM)</td>
<td>35</td>
</tr>
<tr>
<td>B</td>
<td>Solvent extraction (HM)</td>
<td>kDNAv</td>
<td>35-36</td>
<td>C</td>
<td>In-House (HM)</td>
<td>30</td>
</tr>
<tr>
<td>C1</td>
<td>Solvent extraction (HM)</td>
<td>kDNAv</td>
<td>35-36</td>
<td>C</td>
<td>In-House (HM)</td>
<td>32</td>
</tr>
<tr>
<td>C2</td>
<td>Solvent extraction (HM)</td>
<td>Sat-DNA</td>
<td>Tcz1-Tcz2</td>
<td>C</td>
<td>In-House (HM)</td>
<td>40</td>
</tr>
<tr>
<td>C3</td>
<td>Solvent extraction (HM)</td>
<td>24s</td>
<td>D71-D71</td>
<td>C</td>
<td>In-House (HM)</td>
<td>40</td>
</tr>
<tr>
<td>C4</td>
<td>Solvent extraction (HM)</td>
<td>CO II-DNA</td>
<td>Tcm2-Tcm2</td>
<td>C</td>
<td>In-House (HM)</td>
<td>35</td>
</tr>
<tr>
<td>C5</td>
<td>Solvent extraction (HM)</td>
<td>CO II-DNA</td>
<td>Nested Tm10-21</td>
<td>C</td>
<td>In-House (HM)</td>
<td>48</td>
</tr>
<tr>
<td>C6</td>
<td>Solvent extraction (HM)</td>
<td>SL-DNA</td>
<td>Tcz1-Tcz2</td>
<td>C</td>
<td>In-House (HM)</td>
<td>30</td>
</tr>
<tr>
<td>D1</td>
<td>Solvent extraction (HM)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>In-House (HM)</td>
<td>36</td>
</tr>
<tr>
<td>D2</td>
<td>Solvent extraction (HM)</td>
<td>Sat-DNA</td>
<td>Tcz2-TczR</td>
<td>RT</td>
<td>QiaGen (Kt)</td>
<td>50</td>
</tr>
<tr>
<td>D3</td>
<td>Solvent extraction (HM)</td>
<td>Sat-DNA</td>
<td>Tcz2-TczR</td>
<td>C</td>
<td>In-House (HM)</td>
<td>41</td>
</tr>
<tr>
<td>E</td>
<td>Chelex Resin (HM)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>In-House (HM)</td>
<td>35</td>
</tr>
<tr>
<td>F1</td>
<td>Roche Glass fibers column (Kt)</td>
<td>Sat-DNA</td>
<td>cruz1-2</td>
<td>RT</td>
<td>Roche (Kt)</td>
<td>NA</td>
</tr>
<tr>
<td>F2</td>
<td>Roche Glass fibers column (Kt)</td>
<td>kDNAc</td>
<td>32r-148r</td>
<td>RT</td>
<td>Roche (Kt)</td>
<td>NA</td>
</tr>
<tr>
<td>G1</td>
<td>Roche Glass fibers column (Kt)</td>
<td>kDNAc</td>
<td>32r-148r</td>
<td>RT</td>
<td>Roche (Kt)</td>
<td>NA</td>
</tr>
<tr>
<td>G2</td>
<td>Roche Glass fibers column (Kt)</td>
<td>kDNAc</td>
<td>32r-148r</td>
<td>RT</td>
<td>Roche (Kt)</td>
<td>NA</td>
</tr>
<tr>
<td>G3</td>
<td>Roche Glass fibers column (Kt)</td>
<td>kDNAc</td>
<td>32r-148r</td>
<td>RT</td>
<td>Roche (Kt)</td>
<td>NA</td>
</tr>
<tr>
<td>G4</td>
<td>Roche Glass fibers column (Kt)</td>
<td>Sat-DNA</td>
<td>cruz1-2</td>
<td>RT</td>
<td>Roche (Kt)</td>
<td>NA</td>
</tr>
<tr>
<td>H1</td>
<td>Favorgen Glass fibers column (Kt)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>GoTaq (Kt)</td>
<td>33</td>
</tr>
<tr>
<td>H2</td>
<td>Favorgen Glass fibers column (Kt)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>In-House (HM)</td>
<td>33</td>
</tr>
<tr>
<td>H3</td>
<td>Favorgen Glass fibers column (Kt)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>In-House (HM)</td>
<td>0</td>
</tr>
<tr>
<td>H4</td>
<td>Favorgen Glass fibers column (Kt)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>In-House (HM)</td>
<td>0</td>
</tr>
<tr>
<td>J</td>
<td>Solvent extraction (HM)</td>
<td>Sat-DNA</td>
<td>Tcz1-Tcz2</td>
<td>C</td>
<td>In-House (HM)</td>
<td>40</td>
</tr>
<tr>
<td>K1</td>
<td>Silica gel column (Kt)</td>
<td>Sat-DNA</td>
<td>cruz1-2</td>
<td>RT</td>
<td>In-House (HM)</td>
<td>NA</td>
</tr>
<tr>
<td>K2</td>
<td>Silica gel column (Kt)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>In-House (HM)</td>
<td>NA</td>
</tr>
<tr>
<td>L1</td>
<td>Blood mini Kit (Kt)</td>
<td>Sat-DNA</td>
<td>cruz1-2</td>
<td>C</td>
<td>In-House (HM)</td>
<td>40</td>
</tr>
<tr>
<td>L2</td>
<td>Blood mini Kit (Kt)</td>
<td>Sat-DNA</td>
<td>Satellite DNA based kit</td>
<td>C</td>
<td>OligoC-T Core (Kt)*</td>
<td>40</td>
</tr>
<tr>
<td>M</td>
<td>Silica gel column (Kt)</td>
<td>kDNAv</td>
<td>Tc1-Tc2</td>
<td>C</td>
<td>In-House (HM)</td>
<td>1</td>
</tr>
<tr>
<td>N1</td>
<td>Solvent extraction (HM)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>In-House (HM)</td>
<td>40</td>
</tr>
<tr>
<td>N2</td>
<td>Solvent extraction (HM)</td>
<td>Sat-DNA</td>
<td>Tcz1-Tcz2</td>
<td>C</td>
<td>In-House (HM)</td>
<td>35</td>
</tr>
<tr>
<td>O</td>
<td>Solvent extraction (HM)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>In-House (HM)</td>
<td>40</td>
</tr>
<tr>
<td>P1</td>
<td>Solvent extraction (HM)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>In-House (HM)</td>
<td>35</td>
</tr>
<tr>
<td>P2</td>
<td>CTAB (HM)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>In-House (HM)</td>
<td>35</td>
</tr>
<tr>
<td>G</td>
<td>Solvent extraction (HM)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>In-House (HM)</td>
<td>37</td>
</tr>
<tr>
<td>R</td>
<td>Roche Glass fibers column (Kt)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>In-House (HM)</td>
<td>40</td>
</tr>
<tr>
<td>S1</td>
<td>Qiagen Silica gel column (Kt)</td>
<td>18s</td>
<td>Tct18s F3-R4</td>
<td>C</td>
<td>AmpliTaq Gold (Kt)</td>
<td>40</td>
</tr>
<tr>
<td>S2</td>
<td>Qiagen Silica gel column (Kt)</td>
<td>Sat-DNA</td>
<td>cruz1-2</td>
<td>RT</td>
<td>Platinum qPCR w/ROX (Kt)*</td>
<td>40</td>
</tr>
<tr>
<td>S3</td>
<td>Qiagen Silica gel column (Kt)</td>
<td>18s</td>
<td>Tct18s F1042-R1144</td>
<td>RT</td>
<td>Platinum qPCR w/ROX (Kt)*</td>
<td>40</td>
</tr>
<tr>
<td>S4</td>
<td>Qiagen Silica gel column (Kt)</td>
<td>18s</td>
<td>Tct18s F1042-R1144</td>
<td>RT</td>
<td>Platinum qPCR w/ROX (Kt)*</td>
<td>40</td>
</tr>
<tr>
<td>T</td>
<td>ATGEN kit (Kt)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>AmpliTaq Gold (Kt)</td>
<td>40</td>
</tr>
<tr>
<td>U1</td>
<td>Solvent extraction (HM)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>In-House (HM)</td>
<td>40</td>
</tr>
<tr>
<td>U2</td>
<td>Solvent extraction (HM)</td>
<td>24s</td>
<td>D71-D72</td>
<td>C</td>
<td>In-House (HM)</td>
<td>32</td>
</tr>
<tr>
<td>V1</td>
<td>Silica gel column (Kt)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>In-House (HM)</td>
<td>40</td>
</tr>
<tr>
<td>V2</td>
<td>Silica gel column (Kt)</td>
<td>Sat-DNA</td>
<td>Tcz1-Tcz2</td>
<td>C</td>
<td>In-House (HM)</td>
<td>30</td>
</tr>
<tr>
<td>W</td>
<td>Solvent extraction (HM)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>In-House (HM)</td>
<td>40</td>
</tr>
<tr>
<td>X</td>
<td>Solvent extraction (HM)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>In-House (HM)</td>
<td>35</td>
</tr>
<tr>
<td>Y</td>
<td>Solvent extraction (HM)</td>
<td>kDNAv</td>
<td>121-122</td>
<td>C</td>
<td>In-House (HM)</td>
<td>35</td>
</tr>
<tr>
<td>Z</td>
<td>Silica gel column (Kt)</td>
<td>Sat-DNA</td>
<td>cruz1-2</td>
<td>RT</td>
<td>TaqMan Univ (Kt)</td>
<td>45</td>
</tr>
</tbody>
</table>

Laboratory, letter code; PCR strategy, number code; HM, home made; C, commercial; kDNAc, constant region; kDNAv, variable region of minicircle DNA; Sat-DNA, satellite DNA; 24s, 24sa rDNA; 18s: 18sa rDNA; SL, Spliced Leader; NA, not available, * Master mix containing Uracil DNA N-Glycosylase and dUTP to prevent ampiclon carry-over contamination.
<table>
<thead>
<tr>
<th>Laboratory/Test</th>
<th>Extraction Method</th>
<th>PCR</th>
<th>Test Method</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B</td>
<td>HM, C</td>
<td>C</td>
<td>kDNAAv</td>
<td></td>
</tr>
<tr>
<td>C1, C2, C3, C4</td>
<td>HM, C</td>
<td>C</td>
<td>Sat-DNA</td>
<td></td>
</tr>
<tr>
<td>C5, C6, C7</td>
<td>HM, C</td>
<td>C</td>
<td>CO II-DNA</td>
<td></td>
</tr>
<tr>
<td>D1, D2, D3, D4</td>
<td>HM, C</td>
<td>C</td>
<td>CO I-DNA</td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>HM, C</td>
<td>C</td>
<td>SL-DNA</td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td>HM, C</td>
<td>C</td>
<td>kDNAAv</td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>HM, C</td>
<td>C</td>
<td>Sat-DNA</td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>HM, C</td>
<td>C</td>
<td>RT</td>
<td>kDNAc</td>
</tr>
<tr>
<td>G1, G3, G4</td>
<td>Kt, C</td>
<td>C</td>
<td>RT</td>
<td>kDNAc</td>
</tr>
<tr>
<td>G2</td>
<td>Kt, C</td>
<td>C</td>
<td>RT</td>
<td>kDNAc</td>
</tr>
<tr>
<td>I2, I3</td>
<td>Kt, C</td>
<td>C</td>
<td>RT</td>
<td>Sat-DNA</td>
</tr>
<tr>
<td>J</td>
<td>HM, C</td>
<td>C</td>
<td>RT</td>
<td>Sat-DNA</td>
</tr>
<tr>
<td>K1, K2</td>
<td>Kt, C</td>
<td>C</td>
<td>Sat-DNA</td>
<td></td>
</tr>
<tr>
<td>L1, L2</td>
<td>Kt, C</td>
<td>C</td>
<td>Sat-DNA</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>HM, C</td>
<td>C</td>
<td>kDNAAv</td>
<td></td>
</tr>
<tr>
<td>N1, N2, N3</td>
<td>HM, C</td>
<td>C</td>
<td>Sat-DNA</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>HM, C</td>
<td>C</td>
<td>RT</td>
<td>kDNAc</td>
</tr>
<tr>
<td>P1, P2</td>
<td>HM, C</td>
<td>C</td>
<td>RT</td>
<td>kDNAc</td>
</tr>
<tr>
<td>Q</td>
<td>Kt, C</td>
<td>C</td>
<td>RT</td>
<td>kDNAc</td>
</tr>
<tr>
<td>S1, S2</td>
<td>Kt, C</td>
<td>C</td>
<td>RT</td>
<td>Sat-DNA</td>
</tr>
<tr>
<td>S3, S4, S5</td>
<td>Kt, C</td>
<td>C</td>
<td>RT</td>
<td>Sat-DNA</td>
</tr>
<tr>
<td>T</td>
<td>Kt, C</td>
<td>C</td>
<td>RT</td>
<td>kDNAc</td>
</tr>
<tr>
<td>U1, U2</td>
<td>HM, C</td>
<td>C</td>
<td>RT</td>
<td>24s</td>
</tr>
<tr>
<td>V1, V2, V3</td>
<td>Kt, C</td>
<td>C</td>
<td>RT</td>
<td>Sat-DNA</td>
</tr>
<tr>
<td>W</td>
<td>HM, C</td>
<td>C</td>
<td>RT</td>
<td>Sat-DNA</td>
</tr>
<tr>
<td>X</td>
<td>HM, C</td>
<td>C</td>
<td>RT</td>
<td>Sat-DNA</td>
</tr>
<tr>
<td>Y</td>
<td>HM, C</td>
<td>C</td>
<td>RT</td>
<td>Sat-DNA</td>
</tr>
<tr>
<td>Z</td>
<td>Kt, C</td>
<td>C</td>
<td>RT</td>
<td>Sat-DNA</td>
</tr>
</tbody>
</table>

Grey boxes, Good Performing Methods (GPM) in sets A or B, Black boxes, GPM in both sets A and B.
Core Lab, Coordinating Lab, C, Conventional PCR, RT, Real Time PCR; K, kDNA; S, Satellite DNA; 24s, 24sa rDNA; 18s: 18s rDNA; SL, Spliced Leader
Sp, 100% of specificity in the three controls without DNA. Co, Coherence in PCR positive reports DL, Detection limit in fg DNA/ul. Y, Affirmative, N, Negative. NA, Not available. ND, Not detectable.
International Study to Evaluate PCR Methods for Detection of *Trypanosoma cruzi* DNA in Blood Samples from Chagas Disease Patients

Alejandro G. Schijman¹, Margarita Bisio⁷, Liliana Orellana², Mariela Sued², Tomás Duffy¹, Ana M. Mejia Jaramillo³, Carolina Cura¹, Frederic Auter⁴, Vincent Veron⁵, Yvonne Qvarnstrom⁶, Stijn Deborggraeve⁷, Gisely Hijar⁸, Inés Zulantay⁹, Raúl Horacio Lucero¹⁰, Elsa Velazquez¹¹, Tatiana Tellez¹², Zunilda Sanchez Leon¹³, Lucia Galvão¹⁴, Debbie Nolder¹⁵, Maria Monje Rumi¹⁶, José E. Levi¹⁷, Juan D. Ramirez¹⁸, Pilar Zorrilla¹⁹, María Flores²⁰, María I. Jericic²¹, Gladys Crisante²², Néstor Añez²², Ana M. De Castro²³, Clara I. Gonzalez²⁴, Karla Acosta Viana²⁵, Pedro Yachellini²⁶, Faustino Torrico¹², Carlos Robello¹⁹, Patricio Diosque¹⁶, Omar Triana Chavez³, Christine Aznar⁵, Graciela Russomando¹³, Philippe Büscher⁷, Azzeddine Assal¹⁹, Felipe Guhl¹⁸, Sergio Sosa Estani²⁷, Alexandre DaSilva⁶, Constança Britto²⁸, Alejandro Luquetti²⁹, Janis Ladzins³⁰

<table>
<thead>
<tr>
<th>Extraction</th>
<th>Target</th>
<th>Primers</th>
<th>Master Mix</th>
<th>Visualization</th>
<th>PANEL A</th>
<th>PANEL B</th>
<th>PANEL C</th>
</tr>
</thead>
<tbody>
<tr>
<td>phenol</td>
<td>RT</td>
<td>TczF-TczR</td>
<td>QiAgen</td>
<td>Sybr Green</td>
<td>Sp Y Y 1 1 10</td>
<td>Sp Y Y 0.05</td>
<td>Sp</td>
</tr>
<tr>
<td>phenol</td>
<td>C</td>
<td>TczF-TczR</td>
<td>In-House</td>
<td>Agarose Gel</td>
<td>Y Y 1 1 10</td>
<td>Y Y 0.05</td>
<td>100.00</td>
</tr>
<tr>
<td>Silica Gel Col</td>
<td>RT</td>
<td>cruiz1-2</td>
<td>Roche</td>
<td>Taq-Man</td>
<td>Y Y 0.1 0.01 1</td>
<td>Y Y 0.05</td>
<td>100.00</td>
</tr>
<tr>
<td>Phenol</td>
<td>C</td>
<td>121-122</td>
<td>In-House</td>
<td>Agarose Gel</td>
<td>Y Y 1 1 10</td>
<td>Y Y 0.5</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Detection limit fg/ul x-10:
- **Cl-Br**: 10 fg/ul
- **Can III**: 1 fg/ul

Sp: Specificity, **Co**: Sensitivity, **DL**: Detection Limit, **Par/ml**: Parallel/ml

Sp: Specificity, **Se**: Sensitivity
Analytical Performance of a Multiplex Real-Time PCR Assay Using TaqMan Probes for Quantification of *Trypanosoma cruzi* Satellite DNA in Blood Samples

Tomas Duffy¹, Carolina I. Cura¹, Juan C. Ramirez¹, Teresa Abate², Nelly M. Cayo³, Rudy Parrado⁴, Zoraida Diaz Bello², Elsa Velazquez⁵, Arturo Muñoz-Calderon², Natalia A. Juiz¹, Joaquín Basile¹, Lineth Garcia⁴, Adelina Riarte⁵, Julio R. Nasser⁶, Susana B. Ocampo³, Zaida E. Yadon⁷, Faustino Torrico⁴, Belkis Yole Alarcón de Noya², Isabela Ribeiro⁸, Alejandro G. Schijman¹*

¹ Grupo de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Buenos Aires, Argentina, ² Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela, ³ Instituto de Biología de la Altura, Universidad Nacional de Jujuy, Jujuy, Argentina, ⁴ Universidad San Simón, Cochabamba, Bolivia, ⁵ Instituto Nacional de Parasitología "Dr. Mario Fataia Chaben", ANLIS, Buenos Aires, Argentina, ⁶ Laboratorio de Química Biológica, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina, ⁷ Pan-American Health Organization, Washington, D.C., United States of America, ⁸ Drugs and Neglected Diseases Initiative, Genève, Switzerland

T.Cruzi DNA sequence

Internal Amplification Control
WHO-TDR / PAHO / DNDi Initiatives

Drugs for Neglected Diseases Initiative (DNDi)

Chagas Clinical Research Platform

22-23 March 2010, Buenos Aires.

PCR Technical Group Meeting

PAHO Meeting to organize validation studies of Q PCR

Setiembre 2011, Bogotá, Colombia.

INTERNATIONAL WORKSHOP FOR ANALYTICAL VALIDATION OF QUANTITATIVE PCR FOR DETERMINING PARASITIC LOADS IN HUMAN BLOOD

DECEMBER 2011, Buenos Aires, INGEBI-CONICET OPS/TDR
Standardization and validation of qPCR for Trypanosoma cruzi
Call for research laboratories

Deadline: 16 October 2011

I. Background

PAHO Communicable Diseases Research Program and the Special Programme for Research and Training in Tropical Diseases (TDR) invite research laboratories to joint standardization and validating exercise for quantitative Polymerase Chain Reaction (qPCR) for the quantification of Trypanosoma cruzi DNA loads in Chagas patients.

Selected laboratories will be invited to attend a one-week workshop to hosted by the Instituto de Investigaciones en Genética y Biología Molecular (INGEBI) in Buenos Aires in December 2011 and provided with an opportunity to evaluate/compare their qPCR techniques against a set of reference samples. The objective is to be able to harmonize procedures that can be applied in the future evaluation of treatment response to new products.

Applications are expected from public and private laboratories with demonstrated experience in processing clinical samples for qPCR for T. cruzi DNA and willingness to participate in the initiative. Further information about the proposal can be obtained by email or by accessing the TDRI website.
INTERNATIONAL WORKSHOP - 24 PARTICIPANTS

Q-PCR - DUPLEX TaqMan
Satellite DNA – IAC and Kinetoplastid DNA- IAC.

CLINICAL SPECIMENS PROVIDED BY PARTICIPANTS
Analytical validation of qPCR following Clinical Laboratory Standard Institute Guidelines

<table>
<thead>
<tr>
<th></th>
<th>Sat qPCR</th>
<th>kDNA qPCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic Sensitivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute CD</td>
<td>100 % (11/11)</td>
<td>100 % (11/11)</td>
</tr>
<tr>
<td>Chronic CD</td>
<td>80.69 % (117/145)</td>
<td>84.14 % (122/145)</td>
</tr>
<tr>
<td>Diagnostic Specificity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 % (50/50)</td>
<td>100 % (50/50)</td>
</tr>
<tr>
<td>Reportable Range</td>
<td>10^5-0.5 par eq/mL</td>
<td>10^5-0.25 par eq/mL</td>
</tr>
<tr>
<td>Limit of Detection (LOD)</td>
<td>0.698 par eq/mL</td>
<td>0.234 par eq/mL</td>
</tr>
<tr>
<td>Limit of Quantification (LOQ)</td>
<td>1.531 par eq/mL</td>
<td>0.895 par eq/mL</td>
</tr>
<tr>
<td>Precision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25 par eq/mL</td>
<td>---</td>
<td>31.98 %</td>
</tr>
<tr>
<td>0.5 par eq/mL</td>
<td>46.60 %</td>
<td>---</td>
</tr>
<tr>
<td>10 par eq/mL</td>
<td>6.00 %</td>
<td>8.79 %</td>
</tr>
<tr>
<td>1000 par eq/mL</td>
<td>1.72 %</td>
<td>2.92 %</td>
</tr>
<tr>
<td>Inclusivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tc Ia</td>
<td>0.0625 fg/μL</td>
<td>0.0625 fg/μL</td>
</tr>
<tr>
<td>Tc Id</td>
<td>≥ 0.25 fg/μL</td>
<td>0.0625 fg/μL</td>
</tr>
<tr>
<td>Tc Ie</td>
<td>≥ 1 fg/μL</td>
<td>0.0625 fg/μL</td>
</tr>
<tr>
<td>Tc II</td>
<td>0.0625 fg/μL</td>
<td>0.0625 fg/μL</td>
</tr>
<tr>
<td>Tc III</td>
<td>0.0625 fg/μL</td>
<td>0.0625 fg/μL</td>
</tr>
<tr>
<td>Tc IV</td>
<td>≥ 0.25 fg/μL</td>
<td>0.0625 fg/μL</td>
</tr>
<tr>
<td>Tc V</td>
<td>0.0625 fg/μL</td>
<td>0.0625 fg/μL</td>
</tr>
<tr>
<td>Tc VI</td>
<td>0.0625 fg/μL</td>
<td>0.0625 fg/μL</td>
</tr>
<tr>
<td>Tc Bat</td>
<td>0.0625 fg/μL</td>
<td>0.0625 fg/μL</td>
</tr>
<tr>
<td>Exclusivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. rangeli</td>
<td>1 pg/μL</td>
<td>1 fg/μL</td>
</tr>
<tr>
<td>L. major</td>
<td>1000 pg/μL</td>
<td>1000 pg/μL</td>
</tr>
<tr>
<td>L. mexicana</td>
<td>1000 pg/μL</td>
<td>1000 pg/μL</td>
</tr>
<tr>
<td>L. amazonensis</td>
<td>1000 pg/μL</td>
<td>1000 pg/μL</td>
</tr>
</tbody>
</table>
Clinical Samples from participating laboratories

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Caracas</td>
</tr>
<tr>
<td>G2a</td>
<td>Bogotá</td>
</tr>
<tr>
<td>G2b</td>
<td>Bogotá</td>
</tr>
<tr>
<td>G3</td>
<td>Bogotá</td>
</tr>
<tr>
<td>G4</td>
<td>México DF.</td>
</tr>
<tr>
<td>G5</td>
<td>Cayenne</td>
</tr>
<tr>
<td>G6a</td>
<td>La Paz</td>
</tr>
<tr>
<td>G6b</td>
<td>La Paz</td>
</tr>
<tr>
<td>G7</td>
<td>Madrid</td>
</tr>
<tr>
<td>G8</td>
<td>Buenos Aires</td>
</tr>
<tr>
<td>G9</td>
<td>Salta</td>
</tr>
<tr>
<td>G10</td>
<td>Rio de Janeiro</td>
</tr>
<tr>
<td>G11</td>
<td>Uberaba</td>
</tr>
<tr>
<td>G12</td>
<td>Natal</td>
</tr>
</tbody>
</table>

Satellite qPCR

- Tc I
- Tc V/VI
- Tc II

kDNA qPCR
External Quality Control Program

Panels of Guanidine EDTA-blood spiked with T.cruzi cells.

<table>
<thead>
<tr>
<th>Concent.</th>
<th>Panel I</th>
<th>Panel II</th>
<th>Panel III</th>
<th>Panel IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tc I K98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Negat</td>
<td>CCP 113</td>
<td>CCP 209</td>
<td>CCP 307</td>
<td>CCP 401</td>
</tr>
<tr>
<td>1 p/mL</td>
<td>CCP 114</td>
<td>CCP 210</td>
<td>CCP 306</td>
<td>CCP 403</td>
</tr>
<tr>
<td>10 p/mL</td>
<td>CCP 115</td>
<td>CCP 212</td>
<td>CCP 305</td>
<td>CCP 402</td>
</tr>
<tr>
<td>100 p/mL</td>
<td>CCP 116</td>
<td>CCP 211</td>
<td>CCP 308</td>
<td>CCP 404</td>
</tr>
<tr>
<td>Tc I SX10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Negat</td>
<td>CCP 109</td>
<td>CCP 216</td>
<td>CCP 301</td>
<td>CCP 406</td>
</tr>
<tr>
<td>1 p/mL</td>
<td>CCP 111</td>
<td>CCP 214</td>
<td>CCP 303</td>
<td>CCP 405</td>
</tr>
<tr>
<td>10 p/mL</td>
<td>CCP 110</td>
<td>CCP 215</td>
<td>CCP 302</td>
<td>CCP 407</td>
</tr>
<tr>
<td>100 p/mL</td>
<td>CCP 112</td>
<td>CCP 213</td>
<td>CCP 304</td>
<td>CCP 408</td>
</tr>
<tr>
<td>Tc V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Negat</td>
<td>CCP 108</td>
<td>CCP 201</td>
<td>CCP 316</td>
<td>CCP 411</td>
</tr>
<tr>
<td>1 p/mL</td>
<td>CCP 106</td>
<td>CCP 202</td>
<td>CCP 314</td>
<td>CCP 410</td>
</tr>
<tr>
<td>10 p/mL</td>
<td>CCP 107</td>
<td>CCP 203</td>
<td>CCP 315</td>
<td>CCP 409</td>
</tr>
<tr>
<td>100 p/mL</td>
<td>CCP 105</td>
<td>CCP 204</td>
<td>CCP 313</td>
<td>CCP 412</td>
</tr>
<tr>
<td>Tc VI ClBr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Negat</td>
<td>CCP 101</td>
<td>CCP 207</td>
<td>CCP 309</td>
<td>CCP 413</td>
</tr>
<tr>
<td>1 p/mL</td>
<td>CCP 102</td>
<td>CCP 206</td>
<td>CCP 310</td>
<td>CCP 416</td>
</tr>
<tr>
<td>10 p/mL</td>
<td>CCP 104</td>
<td>CCP 205</td>
<td>CCP 312</td>
<td>CCP 415</td>
</tr>
<tr>
<td>100 p/mL</td>
<td>CCP 103</td>
<td>CCP 208</td>
<td>CCP 311</td>
<td>CCP 414</td>
</tr>
</tbody>
</table>
QUANTIFICATION OF PARASITIC LOADS
Four Panels, 0, 3, 6, 9 months after preparation and transport
Three concentrations

Core Laboratory
Lab 1 Operator 1
Lab 1 Operator 2

Consultancy Bioq: Marcelo Rodriguez
Team Operativo Gestion de Calidad
Departamento Parasitología
Instituto Nacional de Enfermedades Infecciosas
ANLIS "Carlos G. Malbran"
Improvement of Findings after technical modifications

<table>
<thead>
<tr>
<th>Cepa T. cruzi</th>
<th>Muestra</th>
<th>Conc. Teorica</th>
<th>Smartcycler</th>
<th>C F X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ct1</td>
<td>Ct2</td>
</tr>
<tr>
<td>Tc la K98</td>
<td>CCP 401</td>
<td>C. Negat</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>CCP 402</td>
<td>10 p/mL</td>
<td>31.7</td>
<td>33.4</td>
</tr>
<tr>
<td></td>
<td>CCP 403</td>
<td>1 p/mL</td>
<td>35.3</td>
<td>36.5</td>
</tr>
<tr>
<td></td>
<td>CCP 404</td>
<td>100 p/mL</td>
<td>31.2</td>
<td>27.6</td>
</tr>
<tr>
<td>Tc Id Silvio X10 Cl1</td>
<td>CCP 405</td>
<td>10 p/mL</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>CCP 406</td>
<td>1 p/mL</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>CCP 407</td>
<td>C. Negat</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>CCP 408</td>
<td>100 p/mL</td>
<td>33.5</td>
<td>34.2</td>
</tr>
<tr>
<td>Tc V LL014-1-R1 Cl1</td>
<td>CCP 409</td>
<td>C. Negat</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>CCP 410</td>
<td>1 p/mL</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>CCP 411</td>
<td>100 p/mL</td>
<td>32.7</td>
<td>32.1</td>
</tr>
<tr>
<td></td>
<td>CCP 412</td>
<td>10 p/mL</td>
<td>37.2</td>
<td>38.4</td>
</tr>
<tr>
<td>Tc VI ClBr Bianca</td>
<td>CCP 413</td>
<td>100 p/mL</td>
<td>29.1</td>
<td>28.8</td>
</tr>
<tr>
<td></td>
<td>CCP 414</td>
<td>1 p/mL</td>
<td>35.6</td>
<td>36.9</td>
</tr>
<tr>
<td></td>
<td>CCP 415</td>
<td>10 p/mL</td>
<td>33.6</td>
<td>31.4</td>
</tr>
<tr>
<td></td>
<td>CCP 416</td>
<td>C. Negat</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>
Alejandro

Volumen: 5 μL (ADN) + 15 μL (Mix) = 20 μL (Final) OK

Master Mix: TaqMan Universal PCR Master Mix (Applied Biosystems) OK

PCR Multiplex: T. cruzi Satellite DNA - RNase P Detection Reagent Imagino que te refieres al reactivo del control interno. La referencia correcta sería: Taqman Human RNase P Control reagents kit (Applied Biosystems). El ADN que amplifica es el satélite como bien indicas y está descrito en el artículo de María Piron.

Dime si necesitas alguna cosa más (concentraciones de los primers, condiciones del termociclador, etc) y te lo envío, espero que más rápidamente, ahora que ya estoy de nuevo en Barcelona...

¿Que tal va el paper? ¿Te está dando mucho trabajo?

Gracias por todo y especialmente por la paciencia!!!!!

Besos

Elena

Alejandro, 4/22/2015
APPLICATION IN FIELD STUDIES AND CLINICAL TRIALS
Primary endpoint:
+ or − PCR in sero+ patients

Secondary endpoint:
Definition of optimal sampling
+ or − PCR in PCR +(10 or 5+10 ml)

Current Strategy = 1 sample - 10 ml

Enhancement Strategy = additional samples

Substitution strategy = SS1: 5 ml; SS2: 5+10 at D7

Target recruitment n=220

Study initiation April 13th (Recruitment Dec ‘11)

Complete follow-up – Dec 2012

6 months

12 months

Baseline

<table>
<thead>
<tr>
<th>0</th>
<th>7 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>10mL</td>
<td>10mL</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
</tr>
</tbody>
</table>

Day 70

<table>
<thead>
<tr>
<th>0</th>
<th>7 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>10mL</td>
<td>10mL</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
</tr>
</tbody>
</table>

Benznidazole 5mg/kg/d

during 60 days

NCT01678599
MSF-DNDi PCR study

Sample combination (baseline)

<table>
<thead>
<tr>
<th>Combination of results</th>
<th>Sample 1+2 2 PCR done</th>
<th>Sample 1+2+3 3 PCR done</th>
<th>Sample 1+2+3 At least 2 PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Positives</td>
<td>193</td>
<td>180</td>
<td>202</td>
</tr>
<tr>
<td>False Negatives</td>
<td>27</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Missing PCR</td>
<td>0</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Sample size</td>
<td>220</td>
<td>195</td>
<td>220</td>
</tr>
<tr>
<td>% true positives</td>
<td>87.73%</td>
<td>92.31%</td>
<td>91.82%</td>
</tr>
</tbody>
</table>

3 samples increase PCR clinical sensitivity in adults

No difference between 5 and 10 ml blood

No necessary to wait 7 days for additional sample
CHAGASAZOL STUDY

Treatment Failure (%)
- POSA RD: 92.6%
- POSA MD: 80%
- BENZNIDAZOL: 38.5%

Positive PCR (%)
- POSA RD: 90.5%
- POSA MD: 80%
- BENZNIDAZOL: 5.9%

P < 0.001 for Treatment Failure and P < 0.0001 for Positive PCR
Efficacy Results

Assessment by PCR at D65 and 12 months

Day 65 (EOT)

<table>
<thead>
<tr>
<th>Parasite clearance at D65</th>
<th>Placebo (N=47)</th>
<th>LD (N=48)</th>
<th>SD (N=46)</th>
<th>HD (N=45)</th>
<th>BZN (N=45)</th>
<th>All (N=231)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>47</td>
<td>48</td>
<td>46</td>
<td>45</td>
<td>45</td>
<td>231</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>n (%)</td>
<td>35 (74.5)</td>
<td>5 (10.4)</td>
<td>5 (10.9)</td>
<td>11 (24.4)</td>
<td>4 (8.9)</td>
<td>60 (26.0)</td>
</tr>
<tr>
<td>Yes</td>
<td>12 (25.5)</td>
<td>43 (89.6)</td>
<td>41 (89.1)</td>
<td>34 (75.6)</td>
<td>41 (91.1)</td>
<td>171 (74.0)</td>
</tr>
</tbody>
</table>

12 Month Follow-up

<table>
<thead>
<tr>
<th>Sustained clearance At 12 months</th>
<th>No n (%)</th>
<th>Yes n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>(N=47)</td>
<td>43 (91.5)</td>
</tr>
<tr>
<td>n (%)</td>
<td>4 (8.5)</td>
<td>4 (8.3)</td>
</tr>
<tr>
<td>Yes</td>
<td>(N=48)</td>
<td>44 (91.7)</td>
</tr>
<tr>
<td>n (%)</td>
<td>4 (8.3)</td>
<td>5 (10.9)</td>
</tr>
<tr>
<td></td>
<td>(N=46)</td>
<td>41 (89.1)</td>
</tr>
<tr>
<td></td>
<td>5 (10.9)</td>
<td>13 (28.9)</td>
</tr>
<tr>
<td></td>
<td>(N=45)</td>
<td>32 (71.1)</td>
</tr>
<tr>
<td></td>
<td>8 (19.0)</td>
<td>37 (81.0)</td>
</tr>
<tr>
<td></td>
<td>(N=45)</td>
<td>168 (72.7)</td>
</tr>
<tr>
<td></td>
<td>63 (27.3)</td>
<td></td>
</tr>
</tbody>
</table>

- Significant difference at EOT for all comparisons vs. placebo (<.001)
- Significant difference (one-sided) p < 0.025 for the comparison of HD arm vs. placebo and BZN arm vs. placebo for sustained response at 12 months
qPCR Repeated Measure Analysis:
Estimated Values (Population: ITT/Safety)

- Increased hazard of relapse with treatment group (placebo vs. LD and SD) and higher quantitative PCR at baseline (1.10 (1.03, 1.16))
- Decreased hazard of relapse with HD E1224 (0.60 (0.26, 1.37)) and BZN (0.06 (0.02, 0.21))

Stepwise Cox model - time to first relapse from day 8 post .tmt

- Increased hazard of relapse with treatment group (placebo vs. LD and SD) and higher quantitative PCR at baseline (1.10 (1.03, 1.16))
- Decreased hazard of relapse with HD E1224 (0.60 (0.26, 1.37)) and BZN (0.06 (0.02, 0.21))
Gracias

Thank you
Panel Discussion

Sumathi Nambiar, MD PhD
Division Director, Division of Anti-infective Products
Center for Drug Evaluation and Research
U.S. Food and Drug Administration
Afternoon Panel Discussion

• Trial designs and trial endpoints
 – What are feasible and acceptable clinical trial designs?
 – What primary endpoint(s) would be appropriate for a clinical trial? What are the strengths and weaknesses of clinical outcome endpoints (For example, Is the clinical outcome endpoint well-defined and reliable? When should treatment benefit be assessed? How long would patients need to be followed?)
Afternoon Panel Discussion

• Trial designs and trial endpoints

 – What are the strengths and weaknesses of the evidence that change in serology (sero-negative or reduction in titers), negative PCR, or other laboratory test result at a specified time point after treatment are predictive of later clinical outcome? Is accelerated approval a regulatory pathway that could be considered?