Paclitaxel-Coated Drug-Coated Balloon (DCB) and Drug-Eluting Stent (DES) Late Mortality Panel

Circulatory System Devices Panel Meeting:
General Issues Meeting

Day Two (45 min)
June 20, 2019
FDA Presentation – Day Two

Section 1: Recap from Day One
Section 2: Pre-clinical Background
Section 3: Animal Safety Studies
Section 4: Dose Analysis
Section 5: Benefit/Risk – TLR
Section 6: Next Steps: PAS and Labeling
Section 7: Other Indications
Section 8: Day Two Summary
Day One Summary

• Presence of Signal
• Class Effect
• Impact of Missing Data
• Subgroup Analyses
• Cause of Death
FDA Presentation – Day Two

Section 1: Recap from Day One
Section 2: Pre-clinical Background
Section 3: Animal Safety Studies
Section 4: Dose Analysis
Section 5: Benefit/Risk – TLR
Section 6: Next Steps: PAS and Labeling
Section 7: Other Indications
Section 8: Day Two Summary
Paclitaxel Dosage for PAD

• 0.167 μg/mm² to 3.5 μg/mm² (dose per surface area)

• Maximum total drug load ranges from 0.1 mg to 17 mg

• The paclitaxel dose during DCB and DES treatment is orders of magnitude less than intravenous administration for cancer treatment

• Major differences in drug formulation and the route of administration may affect drug activity and metabolism
Pre-Clinical Animal Studies

• Over 30 animal studies were conducted for the 5 approved devices

• Safety (1X), Safety Margin (3X) dose, and Pharmacokinetic (PK) Studies were conducted separately for these devices

• Studies date back to early 2000s, so study design may be different than feedback FDA typically provides

• Limitations: Previous studies may not be consistent with current feedback (tissue and duration)
Paclitaxel Concentrations in Local Vessels and Plasma

• Local Vessel Concentration: Drug levels are detectable in the local vasculature (i.e., target lesion/artery wall) beyond 60 days with some studies demonstrating local arterial tissue levels above the level of quantitation at 180 and 270 days

• Plasma Concentration: Paclitaxel in plasma cleared rapidly from systemic circulation. Immediately post-procedure, detectable levels were low and generally declined to levels below quantitation between 6 to 24 hours
Paclitaxel Concentrations in Downstream Tissues and Organs

• Drug levels were evaluated in downstream tissues and organs of elimination
 – The downstream tissues evaluated for drug dosage was typically distal vasculature
 – Safety evaluations also included evaluations of the gluteus maximus, gracilis, semitendinosus, and semimembranosus muscles, and coronary bands (of the hooves)
 – Drug levels were also evaluated in organs of elimination such as kidneys, liver, lung, and spleen
Paclitaxel Concentrations in Downstream Tissues and Organs

• The detectable drug levels in these tissues and organs were assessed at acute and chronic time points
• Drug levels were detectable in the downstream tissues and organs of elimination beyond 90 days in most cases
• The highest drug levels for organs were in the lung, and were within the cytostatic potency range for paclitaxel for one device
• Levels were generally lower in the liver and kidneys and cleared more quickly
Adverse Effects Related to Paclitaxel

- The long-term effects of paclitaxel exposure in patients with PAD are largely unknown.
- There are numerous adverse effects associated with paclitaxel use for cancer treatment, which can include:
 - neutropenia, hypersensitivity (e.g., skin reactions, dyspnea), cardiovascular effects (e.g., hypotension, bradycardia, hypertension), anaphylaxis, and nausea.
- Based on literature reports, it has been reported that the effects of paclitaxel may be concentration-dependent:
 - At high concentrations, paclitaxel is cytotoxic.
 - At low concentrations paclitaxel is cytostatic, but may have other properties (i.e., pro-inflammatory and pro-angiogenic) which may result in other unintended effects.
- Even though low doses of paclitaxel are used in DES and DCB, FDA does not believe there is evidence to suggest that no adverse effects can be experienced at this dose.
Pre-clinical Conclusions for Paclitaxel Dosage and Concentration

• Regardless of low dose and single administration, paclitaxel was resident in local and downstream tissues for 60 days and beyond, and in some cases for as long as 270 days (last time point assessed).

• Though no relationship could be gleaned from paclitaxel concentration and local tissue effects, there is the potential that the drug could be having an effect on various tissue systems during its residence and thus allowing for chronic effects.
FDA Presentation – Day Two

Section 1: Recap from Day One
Section 2: Pre-clinical Background
Section 3: Animal Safety Studies
Section 4: Dose Analyses
Section 5: Benefit/Risk – TLR
Section 6: Next Steps: PAS and Labeling
Section 7: Other Indications
Section 8: Day Two Summary
Preclinical Animal Vascular Safety Studies

• FDA review of all preclinical safety studies for PMA approved paclitaxel DCB and DES.
• 22 separate GLP vascular safety studies conducted between 2004 and 2018
• Naïve iliofemoral arteries of 512 non-diseased domestic or Yucatan mini-swine
• Nominal and 3X safety margin paclitaxel doses evaluated.
Preclinical Animal Safety Study Design

• Cohorts of 6-10 were exposed to the test and control devices

• 1-7 days, 30 days, 90 days, and 180 days prior to sacrifice (210 for one study)

• Study endpoints:
 – Acute device delivery and handling
 – General animal health
 – Angiographic imaging
 – Comprehensive gross pathology
 – Downstream and major systemic organ histopathology,
 – Arterial target tissue histomorphologic and histomorphometric analysis
Animal Safety Study Results

- Low animal mortality and low morbidity rates
- No evidence of device-related bone marrow suppression, hepatic or renal toxicity
- No reports of malignancy or unusual gross findings
- Medial smooth muscle loss with proteoglycan and collagen deposition was commonly reported
- Drug related changes in downstream skeletal muscle and coronary band arterioles noted in DCB treated hind limbs noted at low levels in acute, 30 day and 90-day timepoints, sometimes containing crystalline drug material.
- Downstream findings rare to absent with DES
Animal Safety Study Conclusions

- No systemic pathologic changes which appeared to be device or drug-related
- Reviewed data does not suggest a potential mechanism for increased late mortality observed in human study subjects.
- Chronic time-points for animal study data is still short term compared to the observed safety signal
FDA Presentation – Day Two

Section 1: Recap from Day One
Section 2: Pre-clinical Background
Section 3: Animal Safety Studies
Section 4: Dose Analyses
Section 5: Benefit/Risk – TLR
Section 6: Next Steps: PAS and Labeling
Section 7: Other Indications
Section 8: Day Two Summary
Dose Analysis

- Pivotal Trials (AT Population)
- Known 5-Year Mortality Separated Into Dose Groups
- Univariate Cox proportional hazard (PH) model
Dose Analysis

- Pivotal Trials (AT Population)
- Known 5-Year Mortality Separated Into Dose Groups
- Univariate Cox proportional hazard (PH) model
Dose Analysis

- Pivotal Trials (AT Population)
- Known 5-Year Mortality Separated Into Dose Groups
- Univariate Cox proportional hazard (PH) model

PTS IN EACH DOSE GROUP WITH KNOWN VITAL STATUS

7-9 DOSE GROUPS
Dose Analysis

- Pivotal Trials (AT Population)
- Known 5-Year Mortality Separated Into Dose Groups
- Univariate Cox proportional hazard (PH) model

PTS IN EACH DOSE GROUP WITH KNOWN VITAL STATUS

7-9 DOSE GROUPS

95% CI
Dose Analysis – Zilver PTX DES

- Mean Dose = 1.1 ± 0.5 mg (range of 0.3-3.2 mg)
- No definitive dose trend
- P = 0.5

Five-Year All-Cause Mortality Rate for Paclitaxel Dose Groups: ZILVER PTX RCT (AT Population)
Dose Analysis – Lutonix DCB

- Mean Dose = 3.5 ± 1.8 mg (range 1.0-11.3 mg)
- Possible dose trend
- P = 0.04

Five-Year All-Cause Mortality Rate for Paclitaxel Dose: LEVANT 2 RCT (AT Population)
Dose Analysis – In.Pact Admiral DCB

- Mean Dose = 7.5 ± 3.7 mg (range 1.9-21.7 mg)
- No definitive dose trend
- P = 0.09
Dose Analysis – Stellarex DCB

- Mean Dose = 4.2 ± 1.8 mg (range 1.3-9.4 mg)
- No definitive dose trend
- P = 0.80

Three-Year All-Cause Mortality Rate for Paclitaxel Dose: ILLUMENATE RCT (AT Population)
Dose Analysis Conclusions

• ZILVER PTX RCT, IN.PACT SFA I & II and ILLUMENATE RCT - no clear relationship between dose and mortality

• LEVANT 2 RCT - possible trend of increased mortality with increased dose

• No consistent association between dose and mortality detected across studies
FDA Presentation – Day Two

Section 1: Recap from Day One
Section 2: Pre-clinical Background
Section 3: Animal Safety Studies
Section 4: Dose Analyses
Section 5: Benefit/Risk – TLR
Section 6: Next Steps: PAS and Labeling
Section 7: Other Indications
Section 8: Day Two Summary
Benefit/Risk – TLR Assessment

• Extent of the probable benefits and risk
 – Type
 – Magnitude/Severity
 – Probability
 – Duration

• Uncertainty

• Alternative Treatments

• Patient Perspectives

• Public Health Need
Benefit/Risk – TLR Assessment

• Original PMA Approval
 – One-year follow-up for pivotal trials
 – Limited supplemental longer term data
 – Probable benefits outweighed the probable risks
 – No mortality/safety signal at the time of FDA approval
Clinically Driven TLR

YEAR 1

<table>
<thead>
<tr>
<th>Study</th>
<th>Experimental Events</th>
<th>Control Events</th>
<th>Risk Ratio</th>
<th>RR</th>
<th>95%-CI</th>
<th>Weight (fixed)</th>
<th>Weight (random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lutonix/LEVANT II</td>
<td>34</td>
<td>22</td>
<td>0.79</td>
<td>0.48</td>
<td>1.30</td>
<td>23.9%</td>
<td>28.2%</td>
</tr>
<tr>
<td>Medtronic/SFA I & II</td>
<td>6</td>
<td>22</td>
<td>0.14</td>
<td>0.06</td>
<td>0.34</td>
<td>23.7%</td>
<td>20.2%</td>
</tr>
<tr>
<td>Philips/ILLUMENATE</td>
<td>12</td>
<td>12</td>
<td>0.52</td>
<td>0.24</td>
<td>1.12</td>
<td>12.9%</td>
<td>22.5%</td>
</tr>
<tr>
<td>Cook/ZILVER</td>
<td>28</td>
<td>38</td>
<td>0.43</td>
<td>0.27</td>
<td>0.67</td>
<td>39.5%</td>
<td>29.1%</td>
</tr>
</tbody>
</table>

Fixed effect model 981

Random effects model

Heterogeneity: $I^2 = 74\%$, $\tau^2 = 0.2769$, $p < 0.01$

YEAR 2

<table>
<thead>
<tr>
<th>Study</th>
<th>Experimental Events</th>
<th>Control Events</th>
<th>Risk Ratio</th>
<th>RR</th>
<th>95%-CI</th>
<th>Weight (fixed)</th>
<th>Weight (random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lutonix/LEVANT II</td>
<td>52</td>
<td>32</td>
<td>0.84</td>
<td>0.57</td>
<td>1.23</td>
<td>26.1%</td>
<td>28.0%</td>
</tr>
<tr>
<td>Medtronic/SFA I & II</td>
<td>18</td>
<td>30</td>
<td>0.33</td>
<td>0.19</td>
<td>0.57</td>
<td>23.9%</td>
<td>22.0%</td>
</tr>
<tr>
<td>Philips/ILLUMENATE</td>
<td>24</td>
<td>19</td>
<td>0.66</td>
<td>0.38</td>
<td>1.14</td>
<td>15.4%</td>
<td>21.6%</td>
</tr>
<tr>
<td>Cook/ZILVER</td>
<td>41</td>
<td>44</td>
<td>0.53</td>
<td>0.37</td>
<td>0.78</td>
<td>34.8%</td>
<td>28.5%</td>
</tr>
</tbody>
</table>

Fixed effect model 906

Random effects model

Heterogeneity: $I^2 = 83\%$, $\tau^2 = 0.0885$, $p = 0.05$

YEAR 5

<table>
<thead>
<tr>
<th>Study</th>
<th>Experimental Events</th>
<th>Control Events</th>
<th>Risk Ratio</th>
<th>RR</th>
<th>95%-CI</th>
<th>Weight (fixed)</th>
<th>Weight (random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lutonix/LEVANT II</td>
<td>76</td>
<td>44</td>
<td>0.99</td>
<td>0.73</td>
<td>1.33</td>
<td>34.2%</td>
<td>35.6%</td>
</tr>
<tr>
<td>Medtronic/SFA I & II</td>
<td>47</td>
<td>37</td>
<td>0.77</td>
<td>0.54</td>
<td>1.09</td>
<td>26.1%</td>
<td>31.1%</td>
</tr>
<tr>
<td>Cook/ZILVER</td>
<td>48</td>
<td>51</td>
<td>0.62</td>
<td>0.45</td>
<td>0.85</td>
<td>37.7%</td>
<td>33.3%</td>
</tr>
</tbody>
</table>

Fixed effect model 568

Random effects model

Heterogeneity: $I^2 = 55\%$, $\tau^2 = 0.0325$, $p = 0.11$
Clinically Driven TLR

YEAR 1

<table>
<thead>
<tr>
<th>Study</th>
<th>Experimental Events</th>
<th>Control Events</th>
<th>Risk Ratio</th>
<th>RR</th>
<th>95%-CI</th>
<th>Weight (fixed)</th>
<th>Weight (random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lutonix/LEVANT II</td>
<td>34</td>
<td>285</td>
<td>0.79</td>
<td>[0.48; 1.30]</td>
<td>23.9%</td>
<td>28.2%</td>
<td></td>
</tr>
<tr>
<td>Medtronic/SFA I & II</td>
<td>6</td>
<td>207</td>
<td>0.14</td>
<td>[0.06; 0.34]</td>
<td>23.7%</td>
<td>20.2%</td>
<td></td>
</tr>
<tr>
<td>Philips/ILLUMINATE</td>
<td>12</td>
<td>189</td>
<td>0.52</td>
<td>[0.24; 1.12]</td>
<td>12.9%</td>
<td>22.5%</td>
<td></td>
</tr>
<tr>
<td>Cook/ZILVER</td>
<td>28</td>
<td>300</td>
<td>0.43</td>
<td>[0.27; 0.67]</td>
<td>39.5%</td>
<td>29.1%</td>
<td></td>
</tr>
</tbody>
</table>

Fixed effect model: 981 | **Random effects model:** 527 | $I^2 = 74\%$, $\tau^2 = 0.2769$, $p < 0.01$

YEAR 2

<table>
<thead>
<tr>
<th>Study</th>
<th>Experimental Events</th>
<th>Control Events</th>
<th>Risk Ratio</th>
<th>RR</th>
<th>95%-CI</th>
<th>Weight (fixed)</th>
<th>Weight (random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lutonix/LEVANT II</td>
<td>52</td>
<td>264</td>
<td>0.84</td>
<td>[0.57; 1.23]</td>
<td>26.1%</td>
<td>28.0%</td>
<td></td>
</tr>
<tr>
<td>Medtronic/SFA I & II</td>
<td>18</td>
<td>192</td>
<td>0.33</td>
<td>[0.19; 0.57]</td>
<td>23.9%</td>
<td>22.0%</td>
<td></td>
</tr>
<tr>
<td>Philips/ILLUMINATE</td>
<td>24</td>
<td>172</td>
<td>0.86</td>
<td>[0.38; 1.14]</td>
<td>15.4%</td>
<td>21.6%</td>
<td></td>
</tr>
<tr>
<td>Cook/ZILVER</td>
<td>41</td>
<td>277</td>
<td>0.53</td>
<td>[0.37; 0.78]</td>
<td>34.6%</td>
<td>28.5%</td>
<td></td>
</tr>
</tbody>
</table>

Fixed effect model: 906 | **Random effects model:** 491 | $I^2 = 63\%$, $\tau^2 = 0.0086$, $p = 0.05$

YEAR 5

<table>
<thead>
<tr>
<th>Study</th>
<th>Experimental Events</th>
<th>Control Events</th>
<th>Risk Ratio</th>
<th>RR</th>
<th>95%-CI</th>
<th>Weight (fixed)</th>
<th>Weight (random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lutonix/LEVANT II</td>
<td>76</td>
<td>219</td>
<td>0.99</td>
<td>[0.73; 1.33]</td>
<td>34.2%</td>
<td>35.6%</td>
<td></td>
</tr>
<tr>
<td>Medtronic/SFA I & II</td>
<td>47</td>
<td>156</td>
<td>0.77</td>
<td>[0.54; 1.09]</td>
<td>26.1%</td>
<td>31.1%</td>
<td></td>
</tr>
<tr>
<td>Cook/ZILVER</td>
<td>48</td>
<td>191</td>
<td>0.82</td>
<td>[0.45; 0.85]</td>
<td>37.7%</td>
<td>33.3%</td>
<td></td>
</tr>
</tbody>
</table>

Fixed effect model: 568 | **Random effects model:** 346 | $I^2 = 56\%$, $\tau^2 = 0.0326$, $p = 0.11$

0.46 [0.36; 0.61] 0.43 [0.23; 0.78] 100.0% 100.0%

0.58 [0.47; 0.73] 0.57 [0.39; 0.83] 100.0% 100.0%

0.79 [0.65; 0.95] 0.78 [0.69; 1.03] 100.0% 100.0%
Clinically Driven TLR

YEAR 1

YEAR 2

YEAR 5
Clinically Driven TLR

YEAR 1

<table>
<thead>
<tr>
<th>Study</th>
<th>Experimental Events Total</th>
<th>Control Events Total</th>
<th>Risk Ratio</th>
<th>RR</th>
<th>95%-CI</th>
<th>Weight (fixed)</th>
<th>Weight (random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lutonix/LEVANT II</td>
<td>34</td>
<td>22</td>
<td>0.79</td>
<td>0.79</td>
<td>[0.48; 1.30]</td>
<td>23.9%</td>
<td>28.2%</td>
</tr>
<tr>
<td>Medtronic/SFA I & II</td>
<td>6</td>
<td>22</td>
<td>0.14</td>
<td>0.14</td>
<td>[0.06; 0.34]</td>
<td>23.7%</td>
<td>20.2%</td>
</tr>
<tr>
<td>Philips/ILLUMENATE</td>
<td>12</td>
<td>12</td>
<td>0.52</td>
<td>0.52</td>
<td>[0.24; 1.12]</td>
<td>12.9%</td>
<td>22.5%</td>
</tr>
<tr>
<td>Cook/ZILVER</td>
<td>28</td>
<td>38</td>
<td>0.43</td>
<td>0.43</td>
<td>[0.27; 0.67]</td>
<td>39.5%</td>
<td>29.1%</td>
</tr>
<tr>
<td>Fixed effect model</td>
<td>981</td>
<td>527</td>
<td>0.46</td>
<td>0.46</td>
<td>[0.35; 0.61]</td>
<td>100.0%</td>
<td>--</td>
</tr>
<tr>
<td>Random effects model</td>
<td>981</td>
<td>527</td>
<td>0.43</td>
<td>0.43</td>
<td>[0.23; 0.78]</td>
<td>--</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Heterogeneity: $I^2 = 74\%$, $\tau^2 = 0.2708$, $p < 0.01$

YEAR 2

<table>
<thead>
<tr>
<th>Study</th>
<th>Experimental Events Total</th>
<th>Control Events Total</th>
<th>Risk Ratio</th>
<th>RR</th>
<th>95%-CI</th>
<th>Weight (fixed)</th>
<th>Weight (random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lutonix/LEVANT II</td>
<td>52</td>
<td>32</td>
<td>0.84</td>
<td>0.84</td>
<td>[0.57; 1.23]</td>
<td>26.1%</td>
<td>28.0%</td>
</tr>
<tr>
<td>Medtronic/SFA I & II</td>
<td>18</td>
<td>30</td>
<td>0.33</td>
<td>0.33</td>
<td>[0.19; 0.57]</td>
<td>23.9%</td>
<td>22.0%</td>
</tr>
<tr>
<td>Philips/ILLUMENATE</td>
<td>24</td>
<td>19</td>
<td>0.66</td>
<td>0.66</td>
<td>[0.38; 1.14]</td>
<td>15.4%</td>
<td>21.6%</td>
</tr>
<tr>
<td>Cook/ZILVER</td>
<td>41</td>
<td>44</td>
<td>0.53</td>
<td>0.53</td>
<td>[0.37; 0.78]</td>
<td>34.6%</td>
<td>28.5%</td>
</tr>
<tr>
<td>Fixed effect model</td>
<td>905</td>
<td>491</td>
<td>0.58</td>
<td>0.58</td>
<td>[0.47; 0.73]</td>
<td>100.0%</td>
<td>--</td>
</tr>
<tr>
<td>Random effects model</td>
<td>905</td>
<td>491</td>
<td>0.57</td>
<td>0.57</td>
<td>[0.39; 0.83]</td>
<td>--</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Heterogeneity: $I^2 = 63\%$, $\tau^2 = 0.0886$, $p = 0.05$

YEAR 5

<table>
<thead>
<tr>
<th>Study</th>
<th>Experimental Events Total</th>
<th>Control Events Total</th>
<th>Risk Ratio</th>
<th>RR</th>
<th>95%-CI</th>
<th>Weight (fixed)</th>
<th>Weight (random)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lutonix/LEVANT II</td>
<td>76</td>
<td>44</td>
<td>0.99</td>
<td>0.99</td>
<td>[0.73; 1.33]</td>
<td>34.2%</td>
<td>35.6%</td>
</tr>
<tr>
<td>Medtronic/SFA I & II</td>
<td>47</td>
<td>37</td>
<td>0.77</td>
<td>0.77</td>
<td>[0.54; 1.09]</td>
<td>26.1%</td>
<td>31.1%</td>
</tr>
<tr>
<td>Cook/ZILVER</td>
<td>48</td>
<td>51</td>
<td>0.82</td>
<td>0.82</td>
<td>[0.45; 0.85]</td>
<td>37.7%</td>
<td>33.3%</td>
</tr>
<tr>
<td>Fixed effect model</td>
<td>568</td>
<td>346</td>
<td>0.79</td>
<td>0.79</td>
<td>[0.66; 0.95]</td>
<td>100.0%</td>
<td>--</td>
</tr>
<tr>
<td>Random effects model</td>
<td>568</td>
<td>346</td>
<td>0.78</td>
<td>0.78</td>
<td>[0.69; 1.03]</td>
<td>--</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Heterogeneity: $I^2 = 56\%$, $\tau^2 = 0.0326$, $p = 0.11$
Number Needed to Treat (NNT)

- The number needed to treat (on average) to avoid one clinically driven TLR is defined as:
 \[\frac{1}{\text{Absolute risk difference}} \]

 Absolute risk difference between treatment and the control group

- Absolute risk difference (RD) estimate is obtained from the meta-analysis

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Studies</th>
<th>RD (treatment-control)</th>
<th>Absolute-RD</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>-0.10</td>
<td>0.10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>-0.11</td>
<td>0.11</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>-0.10</td>
<td>0.10</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-0.10</td>
<td>0.10</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>-0.08</td>
<td>0.08</td>
<td>13</td>
</tr>
</tbody>
</table>
Number Needed to Treat (NNT)

- The number needed to treat (on average) to avoid one clinically driven TLR is defined as:

 \[
 \frac{1}{\text{Absolute risk difference between treatment and the control group}}
 \]

- Absolute risk difference (RD) estimate is obtained from the meta-analysis

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Studies</th>
<th>RD (treatment - control)</th>
<th>Absolute-RD</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>-0.10</td>
<td>0.10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>-0.11</td>
<td>0.11</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>-0.10</td>
<td>0.10</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-0.10</td>
<td>0.10</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>-0.08</td>
<td>0.08</td>
<td>13</td>
</tr>
</tbody>
</table>
Number Needed to Harm (NNH)

- **NNH**: The number patients (on average) need to be exposed to the treatment to experience one adverse event (mortality). NNH is derived as:

\[
\frac{1}{\text{Absolute risk difference between treatment and the control group}}
\]

Absolute risk difference (RD) estimate (for mortality) is obtained from the meta-analysis

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Studies</th>
<th>RD (treatment-control)</th>
<th>Absolute-RD</th>
<th>NNH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>0.01</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0.02</td>
<td>0.02</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.04</td>
<td>0.04</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0.05</td>
<td>0.05</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0.07</td>
<td>0.07</td>
<td>14</td>
</tr>
</tbody>
</table>
Number Needed to Harm (NNH)

- **NNH**: The number patients (on average) need to be exposed to the treatment to experience one adverse event (mortality). NNH is derived as:

\[
\frac{1}{RD}
\]

Absolute risk difference between treatment and the control group

- Absolute risk difference (RD) estimate (for mortality) is obtained from the meta-analysis

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Studies</th>
<th>RD (treatment - control)</th>
<th>Absolute-RD</th>
<th>NNH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>0.01</td>
<td>0.01</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0.02</td>
<td>0.02</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.04</td>
<td>0.04</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0.05</td>
<td>0.05</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0.07</td>
<td>0.07</td>
<td>14</td>
</tr>
</tbody>
</table>
Benefit/Risk – Considerations

• Class of PTX devices have shown consistent benefit in the reduction of reintervention to treat femoropopliteal disease
• \(\text{NNT}_{(5 \text{ YEARS})} \) avoid clinically driven TLR = 13 pts
• \(\text{NNH}_{(5 \text{ YEARS})} \) experience mortality event = 14 pts
FDA Presentation – Day Two

Section 1: Recap from Day One
Section 2: Pre-clinical Background
Section 3: Animal Safety Studies
Section 4: Dose Analyses
Section 5: Benefit/Risk – TLR
Section 6: Next Steps: PAS and Labeling
Section 7: Other Indications
Section 8: Day Two Summary
Limitations of Data & Analysis

• Availability of Long Term Data
 – <1,000 RCT pts with long term data
 – May not be sufficient to fully characterize presence, magnitude and causality of mortality signal

• Substantial Missing Data
 – 3-26% missing data at 5 years (14.8% pooled)
 – Reduces robustness of conclusions and introduces uncertainty
Limitations of Data & Analysis

• Additional Unknown Paclitaxel Treatments
 – Additional PTX exposure uncertain
 – PTX devices for PAD, other indications or IV use

• Cause of Death Adjudication
 – No adjudicated drug-related deaths
 – Detail of assessment
 – “Other” & “Unknown” categories
Mortality Signal Conclusions

• Primary Conclusions
 – Trend of increased mortality 3-5 years
 – Numerous limitations with data/analysis
 – Cause of late mortality signal is not evident
Post Approval Study (PAS) Data Collection

• New Post Approval Study (PAS) or a 522 Postmarket Surveillance Study
 – Individual manufacturer or industry consortium can proactively design a new study
 – Under Section 522, FDA can require data collection

• Collection of real-world evidence (RWE)
 – Wealth of available data
 – Limitations - sub-optimal data quality; reliability; lack of follow-up; lack of internal control; selection bias
PAS Considerations

• Sources of new data
 – Continued follow-up of ongoing pivotal trials that have not reached 5 years
 – Non-US RCTs
 – Non-randomized datasets
 – New RCT

• Important study elements
 – Clinically acceptable relative risk
 – Appropriate type I error rate
 – Feasible sample size
 – Optimal duration of follow-up to assess mortality rates
 – Data Safety Monitoring Board
PAS – Sample Size Estimates

Binary Outcome: Sample size of a 1:1 RCT, non-inferiority test based on Relative Risk (RR)*

\[H_0: RR \geq RR_b \text{ vs. } H_1: RR < RR_b \]

<table>
<thead>
<tr>
<th>Year</th>
<th>Control Mortality Rate</th>
<th>(RR_b\ 1.1)</th>
<th>(RR_b\ 1.2)</th>
<th>(RR_b\ 1.3)</th>
<th>(RR_b\ 1.1)</th>
<th>(RR_b\ 1.2)</th>
<th>(RR_b\ 1.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.074</td>
<td>43276</td>
<td>11846</td>
<td>5734</td>
<td>34904</td>
<td>9338</td>
<td>4524</td>
</tr>
<tr>
<td>5</td>
<td>0.128</td>
<td>23560</td>
<td>6450</td>
<td>3124</td>
<td>18562</td>
<td>5084</td>
<td>2464</td>
</tr>
</tbody>
</table>

Farrington & Manning test, Power: 80%

Time-to-Event: Sample size of a 1:1 RCT, non-inferiority test based on Hazard Ratio (HR)*

\[H_0: HR \geq HR_b \text{ vs. } H_1: HR < HR_b \]

<table>
<thead>
<tr>
<th>Min. F-U Time</th>
<th>Study Time</th>
<th>Control Hazard Rate</th>
<th>(HR_b\ 1.1)</th>
<th>(HR_b\ 1.2)</th>
<th>(HR_b\ 1.3)</th>
<th>(HR_b\ 1.1)</th>
<th>(HR_b\ 1.2)</th>
<th>(HR_b\ 1.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>0.0274</td>
<td>31854</td>
<td>8350</td>
<td>3880</td>
<td>25090</td>
<td>6576</td>
<td>3054</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0.0274</td>
<td>21832</td>
<td>5730</td>
<td>2666</td>
<td>17196</td>
<td>4512</td>
<td>2100</td>
</tr>
</tbody>
</table>

Log-rank test (Jung et al. 2005), Power: 80%

Time to Event Assumptions

2-year study Enrollment Accrual Time, Constant hazard rate, Constant hazard ratio
PAS – Sample Size Estimates

Binary Outcome: Sample size of a 1:1 RCT, non-inferiority test based on Relative Risk (RR)*

\[H_0: \text{RR} \geq \text{RR}_b \text{ vs. } H_1: \text{RR} < \text{RR}_b \]

<table>
<thead>
<tr>
<th>Year</th>
<th>Control Mortality Rate</th>
<th>RR(_b) 1.1</th>
<th>RR(_b) 1.2</th>
<th>RR(_b) 1.3</th>
<th>RR(_b) 1.1</th>
<th>RR(_b) 1.2</th>
<th>RR(_b) 1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.074</td>
<td>43276</td>
<td>11846</td>
<td>5734</td>
<td>34094</td>
<td>9338</td>
<td>4524</td>
</tr>
<tr>
<td>5</td>
<td>0.128</td>
<td>23560</td>
<td>6450</td>
<td>3124</td>
<td>18562</td>
<td>5084</td>
<td>2464</td>
</tr>
</tbody>
</table>

*Farrington & Manning test, Power: 80%

Time-to-Event: Sample size of a 1:1 RCT, non-inferiority test based on Hazard Ratio (HR)*

\[H_0: \text{HR} \geq \text{HR}_b \text{ vs. } H_1: \text{HR} < \text{HR}_b \]

<table>
<thead>
<tr>
<th>Min. F-U Time</th>
<th>Study Time</th>
<th>Control Hazard Rate</th>
<th>HR(_b) 1.1</th>
<th>HR(_b) 1.2</th>
<th>HR(_b) 1.3</th>
<th>HR(_b) 1.1</th>
<th>HR(_b) 1.2</th>
<th>HR(_b) 1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>0.0274</td>
<td>31854</td>
<td>8350</td>
<td>3880</td>
<td>25090</td>
<td>6576</td>
<td>3054</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0.0274</td>
<td>21832</td>
<td>5730</td>
<td>2666</td>
<td>17196</td>
<td>4512</td>
<td>2100</td>
</tr>
</tbody>
</table>

*Log-rank test (Jung et al. 2005), Power: 80%

Time to Event Assumptions
- 2-year study
- Enrollment Accrual Time, Constant hazard rate, Constant hazard ratio
PAS – Sample Size Estimates

Binary Outcome: Sample size of a 1:1 RCT, non-inferiority test based on Relative Risk (RR)*

\[H_0: RR \geq RR_b \text{ vs. } H_1: RR < RR_b \]

<table>
<thead>
<tr>
<th>Year</th>
<th>Control Mortality Rate</th>
<th>alpha=0.025</th>
<th>alpha=0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RR_b 1.1</td>
<td>RR_b 1.2</td>
<td>RR_b 1.3</td>
</tr>
<tr>
<td>3</td>
<td>0.074</td>
<td>43276</td>
<td>11846</td>
</tr>
<tr>
<td>5</td>
<td>0.128</td>
<td>23560</td>
<td>6450</td>
</tr>
</tbody>
</table>

*Farrington & Manning test, Power: 80%

Time-to-Event: Sample size of a 1:1 RCT, non-inferiority test based on Hazard Ratio (HR)*

\[H_0: HR \geq HR_b \text{ vs. } H_1: HR < HR_b \]

<table>
<thead>
<tr>
<th>Min. F-U Time</th>
<th>Study Time</th>
<th>Control Hazard Rate</th>
<th>alpha=0.025</th>
<th>alpha=0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Study Time</td>
<td>Control Hazard Rate</td>
<td>HR_b 1.1</td>
<td>HR_b 1.2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>0.0274</td>
<td>31854</td>
<td>8350</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0.0274</td>
<td>21832</td>
<td>5730</td>
</tr>
</tbody>
</table>

*Log-rank test (Jung et al. 2005), Power: 80%

Time to Event Assumptions
2-year study Enrollment Accrual Time, Constant hazard rate, Constant hazard ratio
PAS – Sample Size Estimates

Binary Outcome: Sample size of a 1:1 RCT, non-inferiority test based on Relative Risk (RR)*

\[H_0: \text{RR} \geq \text{RR}_b \text{ vs. } H_1: \text{RR} < \text{RR}_b \]

<table>
<thead>
<tr>
<th>Year</th>
<th>Control Mortality Rate</th>
<th>Control</th>
<th>RR<sub>b</sub> 1.1</th>
<th>RR<sub>b</sub> 1.2</th>
<th>RR<sub>b</sub> 1.3</th>
<th>RR<sub>b</sub> 1.1</th>
<th>RR<sub>b</sub> 1.2</th>
<th>RR<sub>b</sub> 1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.074</td>
<td>43276</td>
<td>11846</td>
<td>5734</td>
<td>34094</td>
<td>9338</td>
<td>4524</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.128</td>
<td>23560</td>
<td>6450</td>
<td>3124</td>
<td>18562</td>
<td>5084</td>
<td>2464</td>
<td></td>
</tr>
</tbody>
</table>

*Farrington & Manning test, Power: 80%

Time-to-Event: Sample size of a 1:1 RCT, non-inferiority test based on Hazard Ratio (HR)*

\[H_0: \text{HR} \geq \text{HR}_b \text{ vs. } H_1: \text{HR} < \text{HR}_b \]

<table>
<thead>
<tr>
<th>Min. F-U Time</th>
<th>Study Time</th>
<th>Control Hazard Rate</th>
<th>HR<sub>b</sub> 1.1</th>
<th>HR<sub>b</sub> 1.2</th>
<th>HR<sub>b</sub> 1.3</th>
<th>HR<sub>b</sub> 1.1</th>
<th>HR<sub>b</sub> 1.2</th>
<th>HR<sub>b</sub> 1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>0.0274</td>
<td>31854</td>
<td>8350</td>
<td>3880</td>
<td>25090</td>
<td>6576</td>
<td>3054</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0.0274</td>
<td>21832</td>
<td>5730</td>
<td>2666</td>
<td>17196</td>
<td>4512</td>
<td>2100</td>
</tr>
</tbody>
</table>

*Log-rank test (Jung et al. 2005), Power: 80%

Time to Event Assumptions

- 2-year study Enrollment Accrual Time, Constant hazard rate, Constant hazard ratio
PAS – Sample Size Estimates

Binary Outcome: Sample size of a 1:1 RCT, non-inferiority test based on Relative Risk (RR)*
\[H_0: \text{RR} \geq \text{RR}_b \text{ vs. } H_1: \text{RR} < \text{RR}_b \]

<table>
<thead>
<tr>
<th>Year</th>
<th>Control Mortality Rate</th>
<th>\text{RR}_b 1.1</th>
<th>\text{RR}_b 1.2</th>
<th>\text{RR}_b 1.3</th>
<th>\text{RR}_b 1.1</th>
<th>\text{RR}_b 1.2</th>
<th>\text{RR}_b 1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.074</td>
<td>43276</td>
<td>11846</td>
<td>5734</td>
<td>34094</td>
<td>9338</td>
<td>4524</td>
</tr>
<tr>
<td>5</td>
<td>0.128</td>
<td>23560</td>
<td>6450</td>
<td>3124</td>
<td>18562</td>
<td>5084</td>
<td>2464</td>
</tr>
</tbody>
</table>

*Farrington & Manning test, Power: 80%

Time-to-Event: Sample size of a 1:1 RCT, non-inferiority test based on Hazard Ratio (HR)*
\[H_0: \text{HR} \geq \text{HR}_b \text{ vs. } H_1: \text{HR} < \text{HR}_b \]

<table>
<thead>
<tr>
<th>Min. F-U Time</th>
<th>Study Time</th>
<th>Control Hazard Rate</th>
<th>\text{HR}_b 1.1</th>
<th>\text{HR}_b 1.2</th>
<th>\text{HR}_b 1.3</th>
<th>\text{HR}_b 1.1</th>
<th>\text{HR}_b 1.2</th>
<th>\text{HR}_b 1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>0.0274</td>
<td>31854</td>
<td>8350</td>
<td>3880</td>
<td>25090</td>
<td>6576</td>
<td>3054</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0.0274</td>
<td>21832</td>
<td>5730</td>
<td>2666</td>
<td>17196</td>
<td>4512</td>
<td>2100</td>
</tr>
</tbody>
</table>

*Log-rank test (Jung et al. 2005), Power: 80%

Time to Event Assumptions
2-year study Enrollment Accrual Time, Constant hazard rate, Constant hazard ratio
Binary Outcome: Sample size of a 1:1 RCT, non-inferiority test based on Relative Risk (RR)*

\[H_0: \text{RR} \geq \text{RR}_b \text{ vs. } H_1: \text{RR} < \text{RR}_b \]

<table>
<thead>
<tr>
<th>Year</th>
<th>Control Mortality Rate</th>
<th>(\alpha=0.025)</th>
<th>(\alpha=0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.074</td>
<td>43276</td>
<td>34094</td>
</tr>
<tr>
<td>5</td>
<td>0.128</td>
<td>23560</td>
<td>18562</td>
</tr>
</tbody>
</table>

*Farrington & Manning test, Power: 80%

Time-to-Event: Sample size of a 1:1 RCT, non-inferiority test based on Hazard Ratio (HR)*

\[H_0: \text{HR} \geq \text{HR}_b \text{ vs. } H_1: \text{HR} < \text{HR}_b \]

<table>
<thead>
<tr>
<th>Min. F-U Time</th>
<th>Study Time</th>
<th>Control Hazard Rate</th>
<th>(\alpha=0.025)</th>
<th>(\alpha=0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>0.0274</td>
<td>31854</td>
<td>25090</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0.0274</td>
<td>21832</td>
<td>17196</td>
</tr>
</tbody>
</table>

*Log-rank test (Jung et al. 2005), Power: 80%

Time to Event Assumptions
2-year study Enrollment Accrual Time, Constant hazard rate, Constant hazard ratio
Labeling

• Pivotal study subjects all planned for 5-year follow-up as a condition of PMA approval

• Labeling may be updated with required post market clinical data

• Labeling revisions to convey safety information
Other Indications

• FDA Approved or Under Study
 – Arteriovenous fistulae stenosis in renal patients
 • FDA approved - Lutonix DCB
 – Below-the-Knee PAD - Critical Limb Ischemia
 • No FDA approved devices

• FDA Approved, but not Marketed
 – Coronary disease
 • FDA approved – BSC TAXUS DES – no longer marketed

https://www.cms.gov/Medicare/Coverage/IDE/Approved-IDE-Studies.html
Day Two Summary

- FDA re-evaluated animal PK and safety studies, no potential mechanism for increased mortality
- No relationship between mortality and paclitaxel dosage was identified in the RCTs
- Paclitaxel coated devices demonstrate effectiveness/benefit as compared to uncoated devices; reduced TLR
- Impact on other indications