

Statistical Considerations for Procalcitonin-Guided Evaluation and Management of Lower Respiratory Tract Infections and Sepsis

Qin Li, Ph.D. Division of Biostatistics FDA/CDRH/OSB

Outline

- Evaluation of diagnostic tests
- Meta-analysis hypotheses and results
- Limitations of Meta-analysis
- Study design and analysis considerations
- Conclusion

Evaluation of Diagnostic Devices Fryback-Thornbury Model*

Level	Objective	Study Type**
1	Technical efficacy	Analytical performance
2	Diagnostic accuracy efficacy	Clinical performance
3	Diagnostic thinking efficacy	
4	Therapeutic efficacy	
5	Patient outcome efficacy	Clinical outcome
6	Society efficacy	

* Fryback DG and Thornbury JR. The Efficacy of Diagnostic Imaging. *Med Decis Making* 1991; 11(2): 88-94.
** FDA CDRH/CBER Guidance. *Design Considerations for Pivotal Clinical Investigations for Medical Devices*, 2013 (Sections 7.7, 8).

Evaluation of Diagnostic Performance of PCT

- Diagnostic accuracy of PCT for bacterial infection can be difficult to assess because of the biological and technological difficulties in identifying the truth.
- Sensitivity, specificity, positive predicted value (PPV) and negative predicted value (NPV) vary greatly in literature.

Heterogeneity in Diagnostic Accuracy Estimates, LRTI

Evaluation of Diagnostic Devices

Level	Objective	Study Type*
1	Technical efficacy	Analytical performance
2	Diagnostic accuracy efficacy	Clinical performance
3	Diagnostic thinking efficacy	
4	Therapeutic efficacy	
5	Patient outcome efficacy	Clinical outcome
6	Society efficacy	

- Meta-analysis
- Therapeutic efficacy: Patient management based on diagnostic test result
- Patient outcome efficacy: Clinical outcome improvement

Outline

- Evaluation of diagnostic tests
- Meta-analysis hypotheses and results
- Limitations of Meta-analysis
- Study design and analysis considerations
- Conclusion

Clinical Outcome Study

- Meta-analysis, compare PCT guidance vs. standard care
- Effectiveness (Therapeutic efficacy, Level 4)
 - Antibiotic (AB) initiation (LRTI)
 - AB duration, exposure
- Safety (Patient outcome efficacy, level 5)
 - All cause mortality at 30 days
 - Complications at 30 days
 - Length of hospital, ICU stay
- Hypothesis
 - Lower AB use in PCT guidance group
 - No success criteria (e.g., non-inferiority) for safety

Meta-analyses

Meta-	Publication	Disease	Selected RCT	Sample size		
Analysis	Imetrame	туре	Studies	РСТ	Cntrl	
Study-	Study- January 2004 – Level May 2016	LRTI	11 RCTs	2040	2050	
Level		Sepsis	10 RCTs	1735	1754	
Patient-	January 2004 – May 2011	LRTI	13 RCTs	1536	1606	
Level	Level (Based on Schuetz 2012)	Sepsis	5 RCTs	287	311	

Study Design of RCTs in Literature Marker Strategy Design

Effectiveness endpoints: Significant reduction in AB use

LRTI	PCT group	Control	OR or Diff	p val
Study level	2040	2050	_	
Initiation, n (%)	pooled from	n 10 trials	0.26 (0.13, 0.52)	<0.001
Duration median days	pooled from	n 3 trials	-1.3 (-2.9, 0.4)	0.14
Exposure median days	pooled from	n 5 trials	-2.8 (-4.6, -1.0)	0.003
Patient level	1536	1606	_	
Initiation, n (%)	1096(71.4%)	1420(88.4%)	0.27 (0.22, 0.33)	<0.001
Duration median days	7(4,10)	10(7,12)	-2.9 (-3.3, -2.5)	<0.001
Exposure median days	5(0,8)	9(6,12)	-3.6 (-4.0, -3.2)	<0.001
Sepsis	PCT group	Control	OR or Diff	p val
Study level	1375	1754		
Duration median days	pooled from	n 8 trials	-1.5 (-2.3, -0.7)	<0.001
Patient level	287	311		
Exposure median days	8(5,15)	12(8,18)	-3.2 (-4.3, 2.1)	<0.001

Safety Endpoints: No Significance Observed

LRTI	PCT group	Control	OR or Diff	p val
Study level	2040	2050		
Mortality, n (%)	pooled from	9 trials	0.94 (0.69, 1.28)	0.68
LOH days	pooled from	7 trials	-0.2 (-0.6, 0.3)	0.51
Patient level	1536	1606		
Mortality, n (%)	103(6.7%)	119(7.4%)	0.95 (0.77, 1.16)	0.62
LOH median days	7(0,12)	6(0,13)	-0.2 (-0.9, -0.5)	0.61

Sepsis	PCT group	Control	OR or Di	ff	p val
Study level	1375	1754			
Mortality, n (%)	pooled from	10 trials	0.90 (0.79,	1.03)	0.11
ICU median days	pooled from	10 trials	-0.8 (-2.5,	0.8)	0.33
Patient level	287	311			
Mortality, n (%)	57(19.9%)	74(23.8%)	0.87 (0.64,	1.18)	0.36
LOH median days	21(11,37)	23(13,38)	-1.4 (-4.4,	1.7)	0.39
ICU median days	12(6, 23)	12(6,22)	1.1 (-1.2,	3.4)	0.37

Subgroup Analyses (Patient-Level)

- Type of LRTI
 - CAP
 - Bronchitis
 - AECOPD
- Setting for LRTI
 - Inpatients
 - Outpatients
- Initial PCT value
 - -<0.10, 0.10-0.25, 0.26-0.5, >0.5 for LRTI
 - <0.5, >=0.5, NA for sepsis

Overall Impression

- Meta-analysis was conducted appropriately according to Cochrane Handbook.
- The process of literature search and publication selection appears appropriate.
- The hypotheses and analyses were pre-specified and the statistical analysis plan was followed.
- Bias of meta-analysis was examined through
 - quality assessment of studies
 - examination of publication bias with funnel plots
- Study heterogeneity incorporated into analysis with random effects for studies.

Interpretation of Results

- Effectiveness
 - PCT algorithm is designed to reduce antibiotic initiation, duration, and exposure.
 - Antibiotic use will be reduced if PCT recommendation is followed for some patients.
 - Statistical significance of reduction is not at issue.
 - Magnitude of reduction is important in the evaluation of device clinical significance.
- Safety
 - Patients for whom PCT algorithm recommends same antibiotic use as control arm dilute differences between arms in endpoints (e.g., mortality, length of stay), making the two arms appear more similar.
- Meta-analysis is subject to potential sources of bias.
- Study heterogeneity complicates interpretation.

Outline

- Evaluation of diagnostic tests
- Meta-analysis hypotheses and results
- Limitations of Meta-analysis
- Study design and analysis considerations
- Conclusion

Bias Assessment, LRTI

Author, year	Random sequence generation (selection b ias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)
Branche, 2015	+	÷		+	+	+
Briel, 2008	+	+	+	?	+	+
Burkhardt, 2010	+	+	+	+	+	+
Christ-Crain, 2004	+)	?		?	+	+
Christ-Crain, 2006	?	+		2	1	+
Corti, 2016	+	÷	1. State 1.	÷	+	+
Kristoffersen, 2009	ŧ	ŧ		2	+	+
Long, 2011	?	e.		+	+	+
Schuetz, 2009	+	+	+	?	+	+
Stolz, 2007	?	?	+	+	+	+
Verduri, 2015	ŧ	+		ġ.	+	?

Low risk

high risk

FDA

Bias Assessment, Sepsis

FDA

First author, year	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)
Annane, 2013	÷	+	+	÷	+	+
Bouadma, 2010	÷.	÷		+	+	+
de Jong, 2016	+	?	-	•	-	+
Deliberato, 2013	+	+			1.00	+
Hochreiter, 2009	?	?	-	-	?	+
Layios, 2012	?	đ	1. j. 1 .	्रत	÷	+
Najafi, 2015	+	?	?	?	+	-
Nobre, 2008	+	+	1.5	?	+	+
Schroeder, 2009	?	?	?	?	+	+
Shehabi, 2014	+	+	?	+	+	. 4
Low risk		unclear		high risk		18

Blinding (Performance Bias)

- Lack of blinding of participants and personnel is common across included studies.
- Physicians may consciously or unconsciously manage patients differently in the PCT group than the standard care group.
 - \rightarrow Hawthorne effect

Funnel Plots (Publication Bias)

Risk ratio (log scale)

FDA

Missing Data (Attrition Bias)

- Follow-up time is different across studies: ranges from 5 days, 1 month to 6 months.
- Follow-up rate varied across studies:
 - LRTI: range was 83% to 99% with 1 study unreported
 - Sepsis: range was 67% to 99% with 4 studies unreported
- In patient-level analysis for safety events (lost to follow-up rate < 10%), patients lost to follow-up were assumed not to have experienced the event.
- There may be other reasons for missing data.

Heterogeneity

- Statistical heterogeneity is inevitable in a metaanalysis (Higgins 2003).
- Measurement of heterogeneity: $I^2 = (\frac{Q - df}{Q})^2 \in (0, 100\%)$

where Q is the chi-squared statistic and df is its degree of freedom.

- Considerable heterogeneity:
 - $-I^2 = 93.1\%$ AB initiation, LRTI
 - $I^2 = 94.9\%$ AB duration, LRTI
 - $I^2 = 81.3\%$ AB duration, sepsis
 - $I^2 = 80.1\%$ ICU stay, sepsis

Different PCT Devices in the Selected Studies FDA

- LRTI (study level)
 - 2 out of 11 studies used VIDAS BRAHMS PCT
 - 9 out of 11 studies used BRAHMS PCT sensitive Kryptor
- Sepsis (study level)
 - 1 out of 10 studies used VIDAS BRAHMS PCT
 - 2 out of 10 studies used VIDAS BRAHMS PCT as one of multiple assays
 - 5 out of 10 studies used BRAHMS PCT sensitive Kryptor
 - 2 out of 10 studies used BRAHMS PCT LIA
- LRTI (patient level)
 - 2 out of 13 studies used BRAHMS PCT LIA
 - 10 out of 13 studies used BRAHMS PCT sensitive Kryptor
 - 1 did not report
- Sepsis (patient level)
 - 2 out of 5 studies used BRAHMS PCT LIA
 - 3 out of 5 studies used BRAHMS PCT sensitive Kryptor

Some Discordance Between VIDAS and KRYPTOR

	он — — — — — — — — — — — — — — — — — — —	KRYPTOR					
		≤ 0.10 ng/mL	>0.1 and ≤0.25 ng/mL	> 0.25 and < 0.50 ng/mL	≥ 0.5 and < 2.00 ng/mL	≥ 2.00 ng/mL	TOTAL
	\leq 0.10 ng/mL	99	15	0	0	0	114
	> 0.1 and ≤ 0.25 ng/mL	12	19	3	0	0	34
VIDAS	> 0.25 and < 0.50 ng/mL	. 0	2	8	0	0	10
VIDAS	≥ 0.5 and < 2.00 ng/mL	0	0	2	19	0	21
	≥ 2.00 ng/mL	0	0	0	5	19	24
	TOTAL	111	36	13	24	19	203
		Posit Agreer (%	ive nent)	CI 95%	Nega Agree (%	ntive ment 6)	CI 95%
	0.10 ng/mL	. 83.	7 7	74.5 - 90.6	89	.2	81.9 - 94.
	0.25 ng/mL	94.	6 8	35.1 - 98.9	98	.6	95.2 - 99.
	0.50 ng/mL	100	.0 9	1.8 - 100.0	98	.8	95.6 - 99.
	2.00 ng/mL	100	.0 8	2.4 - 100.0	97	.3	93.8 - 99.

Different Algorithm/Thresholds, LRTI AB Initiation FDA

Study	Antibiotics strongly discouraged	Antibiotics discouraged	Antibiotics encouraged	Antibiotics strongly encouraged
Bouadma (2010) (P)	< 0.25	0.25 - 0.49	0.5 - 0.99	≥1
Branche (2015) (S)	≤ 0.1	0.11 - 0.25	≥0.25 - 0.49	≥ 0.5
Briel (2008) (S)(P)	< 0.1	0.10 - 0.25	> 0.25	-
Burkhardt (2010) (S)(P)	-	< 0.25	≥ 0.25	-
Christ-Crain (2004) (S)(P)	≤ 0.1	0.11 - ≤0.25	0.25 - 0.49	≥ 0.5
Christ-Crain (2006) (S)(P)	< 0.1	0.1 - 0.25	0.25 - 0.5	> 0.5
Corti (2016) (S)	≤ 0.15	0.16 - 0.25	> 0.25	-
Hochreiter (2009) (P)	-	-	-	-
Kristoffersen (2009) (S)(P)	-	< 0.25	0.25 - 0.5	> 0.5
Long (2009) (P)	-	< 0.25	≥ 0.25	-
Long (2011) (S)(P)	< 0.1	0.1 - 0.25	> 0.25	-
Nobre (2007) (P)	-	-	-	-
Schroeder (2009) (P)	-	-	-	-
Schuetz (2009) (S)(P)	< 0.1	0.1 - 0.25	0.26 - 0.5	> 0.5
Stolz (2007) (S)(P)	< 0.1	0.1 - 0.25	> 0.25	-
Verduri (2015) (S)	-	-	-	-
Applicant proposal	< 0.10	0.10 - 0.25	0.26 - 0.50	> 0.50

Different Algorithm/Thresholds, LRTI AB Discontinuation

Study	Stop 1	Stop 2
Bouadma (2010) (P)	Refer to initiation cut-offs (≤ 0.49)	decrease by \geq 80% of the initial PCT level
Branche (2015) (S)	Refer to initiation cut-offs (≤ 0.24)	-
Briel (2008) (S)(P)	≤ 0.25	-
Burkhardt (2010) (S)(P)	-	-
Christ-Crain (2004) (S)(P)	< 0.25	-
Christ-Crain (2006) (S)(P)	Refer to initiation cut-offs (≤ 0.25)	If PCT(on admission) > 10 ng/mL, use decrease by > 90% of the initial PCT
Corti (2016) (S)	Refer to initiation cut-offs (\leq 0.25)	If PCT(on admission) > 5 ng/mL, use decrease by > 80% of the peak PCT
Hochreiter (2009) (P)	< 1	≥ 65-75% change from initial PCT level AND current PCT level > 1 ng/mL
Kristoffersen (2009) (S)(P)	< 0.25	-
Long (2009) (P)	Refer to initiation cut-offs (< 0.25)	-
Long (2011) (S)(P)	Refer to initiation cut-offs (< 0.25)	-
Nobre (2007) (P)	< 0.25 ng/mL if initial PCT level ≥ 1, or <0.1 ng/mL if initial PCT level <1	> 90% change if initial PCT ≥ 1 ng/mL
Schroeder (2009) (P)	≤1	≥ 65-75% change from initial PCT level
Schuetz (2009) (S)(P)	Refer to initiation cut-offs (≤ 0.25)	If PCT(on admission) > 10 ng/mL, use decrease by ≥ 80% of the initial PCT
Stolz (2007) (S)(P)	-	-
Verduri (2015) (S)	< 0.1 ng/mL or < 0.25 ng/mL for patients without severe disease	_
Applicant proposal	PCT level ≤ 0.25 ng	g/mL or decrease > 80% 26

Different algorithm/cutoffs for Sepsis AB Discontinuation

C+u.d.	Antibiotics stop	Antibiotics stop	Antibiotics stop			
Study	(option 1)	(option 2)	(option 3)			
Annane (2013) (S)	< 0.5	-	-			
Bouadma (2010) (S)(P)	< 0.5	-	> 80% decrease			
De Jong (2016) (S)	≤ 0.5	-	≥ 80% decrease from peak PCT level			
Deliberato (2013) (S)	< 0.5	-	> 90% decrease from peak PCT level			
Hochreiter (2009) (S)(P)	< 1	-	≥ 65-75% decrease from initial PCT level if current PCT level >1			
Laiyos (2012) (S)	< 0.5	-	-			
Najafi (2015) (S)	≤ 0.5	-	-			
Nobre (2007) (S)(P)	< 0.25 if initial	< 0.1 if initial	> 90% decrease if			
	PCT level \geq 1	PCT level < 1	initial PCT ≥ 1			
Schroeder (2008) (S)(P)	≤1	-	≥ 65-75% decrease from initial PCT level			
	. 0.40	0.10-0.25 if	> 90% decrease from			
Shehabi (2014) (S)	< 0.10	infection unlikely	baseline PCT level			
			≥ 80% decrease from			
51012 (2009) (8)	≥0.5	-	initial PCT level			
Applicant proposal	PCT level ≤ 0.5 ng/mL or decrease > 80%					

Thresholds for AB initiation, LRTI

PCT Result	<0.10 ng/mL	0.10-0.25 ng/mL	0.26-0.50 ng/mL	>0.50 ng/mL
Interpretation	Antibiotic therapy strongly discouraged. Indicates absence of bacterial infection.	Antibiotic therapy discouraged Bacterial infection unlikely.	Antibiotic therapy encouraged. Bacterial infection possible.	Antibiotic therapy strongly encouraged. Suggestive of presence of bacterial infection.

- In the PCT group, the initiation of antibiotic therapy was guided based on a single cutoff. initiate AB if PCT > 0.25 do not initiate AB if PCT≤ 0.25
- The additional cutoffs were not evaluated.

Adherence

- Physicians can override the PCT recommendation.
- The subgroup in which physicians did not adhere to the PCT recommendation may dilute difference(s) of interest between PCT and control groups.
- Adherence rate to the PCT level recommendation in PCT group:
 - LRTI: Adherence rate reported in 8 out of 11 studies
 - Sepsis: Adherence rate reported in 4 out of 10 studies.
- Adherence rate varied across studies reporting it:
 - LRTI: Range was 59% to 91%.
 - Sepsis: Range was 47% to 93%.

Generalizability using Non-US Studies

Meta- Analysis	Disease type	Selected RCT Studies	Sample size		LIS sites
			РСТ	Cntrl	
Study- Level	LRTI	11 RCTs	2040	2050	1 (year 2015) PCT: n=151 Cntrl: n=149
	Sepsis	10 RCTs	1735	1754	
Patient- Level	LRTI	13 RCTs	1536	1606	
	Sepsis	5 RCTs	287	311	1 in Stolz 2009

Outline

- Evaluation of diagnostic tests
- Limitations of Meta-analysis
- Study design and analysis considerations
- Conclusion

Marker Strategy Design

- Device effect size on (e.g., safety) endpoints may be under-estimated.
- Differences between PCT and control groups on endpoints are diluted by subgroups of patients for whom PCT algorithm recommends the same antibiotic use as given in the control group.
- Adherence effect on safety is unknown.

Key Subgroups for Adjunctive Tests

- Marker-strategy design compares PCT + SoC and SoC groups on <u>whole population</u>.
- Alternatively, the comparison can be restricted to those subgroups for whom PCT mattered (<u>changed</u> the treatment decision):

	SoC + PCT			
SoC	no ABI	ABI		
no ABI	No Change	Change		
ABI (Change	No Change		

ABI = antibiotic initiation

Marker Strategy Design

- Differences in outcomes between PCT and control groups can depend on several factors:
 - treatment effect on outcome
 - diagnostic accuracy of PCT for bacterial infection.
 - adherence to PCT level recommendation
 - proportion of subjects for whom PCT and SoC indicate the same treatment decision.
 - any differential between the arms in management of subjects apart from influence of PCT level.
- Effect of diagnostic accuracy on group differences cannot be separated from these other factors.

Safety Endpoints: No Significance Observed

LRTI	PCT group	Control	OR or Diff	p val
Study level	2040	2050		
Mortality, n (%)	pooled from	9 trials	0.94 (0.69, 1.28)	0.68
LOH days	pooled from	7 trials	-0.2 (-0.6, 0.3)	0.51
Patient level	1536	1606		
Mortality, n (%)	103(6.7%)	119(7.4%)	0.95 (0.77, 1.16)	0.62
LOH median days	7(0,12)	6(0,13)	-0.2 (-0.9, -0.5)	0.61
Sepsis	PCT group	Control	OR or Diff	p val
Study level	1375	1754		
Mortality, n (%)	pooled from	10 trials	0.90 (0.79, 1.03)	0.11
ICU median days	pooled from	10 trials	-0.8 (-2.5, 0.8)	0.33
Patient level	287	311		
Mortality, n (%)	57(19.9%)	74(23.8%)	0.87 (0.64, 1.18)	0.36
LOH median days	21(11,37)	23(13,38)	-1.4 (-4.4, 1.7)	0.39
ICU median days	12(6, 23)	12(6,22)	1.1 (-1.2, 3.4)	0.37

Patient Level Data, LRTI

DCTdO stratum	PCT group	AB initiation (death)		
PC Ido stratum		no	yes	
PCT<0.1	Control	120 (0, 0%)	334 (11, 3.3%)	
	РСТ	254 (<mark>1, 0.4%</mark>)	140 (1, 0.7%)	
0.1<=PCT<=0.25	Control	52 (0 <i>,</i> 0%)	361 (23, 6.37%)	
	РСТ	175 (<mark>3, 1.7%</mark>)	234 (15, 6.41%)	
0.25 <pct<=0.5< th=""><th>Control</th><th>11 (0, 0%)</th><th>204 (22, 10.8%)</th></pct<=0.5<>	Control	11 (0, 0%)	204 (22, 10.8%)	
	РСТ	5 (0, 0%)	212 (15, 7.1%)	
PCT>0.5	Control	3 (0, 0%)	521 (63, 12.1%)	
	РСТ	6 (1, 16.7%)	510 (67, 13.1%)	

Patients lost-to-follow-up are assumed to have not died.

Association between PCT Group and Death, FDA Controlling for Baseline PCT

DCT d0 strata	PCT group	AB initiation (death, %)		
PCT UU SITALA		no	yes	
PCT < 0.1	Control	120 (0, 0%)	334 (11, 3.3%)	
	РСТ	254 (<mark>1, 0.4%</mark>)	140 (1, 0.7%)	
$0.1 \le \text{PCT} \le 0.25$	Control	52 (0, 0%)	361 (23, 6.37%)	
	РСТ	175 (<mark>3, 1.7%</mark>)	234 (15, 6.41%)	
0.25 < PCT ≤ 0.5	Control	11 (0, 0%)	204 (22, 10.8%)	
	РСТ	5 (0, 0%)	212 (15, 7.1%)	
PCT > 0.5	Control	3 (0, 0%)	521 (63, 12.1%)	
	РСТ	6 (1, 16.7%)	510 (67, 13.1%)	
All rows	Common OR	1.81* [.28,11.5]	0.93 [.70,1.23]	
CMH test	p value	0.172	0.598	

*Based on a correction of 0.5 in zero cells.

Association between PCT Group and Death, Controlling for baseline PCT

DCTdQ strate	PCT group	AB initiation (death, %)		
PCIUU SIIala		no	yes	
PCT<0.1	Control	120 (0, 0%)	334 (11, 3.3%)	
	РСТ	254 (<mark>1, 0.4%</mark>)	140 (1, 0.7%)	
0.1<=PCT<=0.25	Control	52 (0, 0%)	361 (23, 6.37%)	
	РСТ	175 (<mark>3, 1.7%</mark>)	234 (15, 6.41%)	
0.25 <pct<=0.5< th=""><th></th><th></th><th></th></pct<=0.5<>				
		5 (0)		
PCT>0.5				
	РСТ	6 (1)	510 (67, 13.1%)	
First 2 rows	Common OR	1.77* [.20,15.70]	.79 [.42,1.46]	
CMH test	p value	0.242	0.452	

*Based on a correction of 0.5 in zero cells.

Enrichment Design

Simon, R. (2010) Clinical trial designs for evaluating the medical utility of prognostic and predictive biomarkers in oncology, *Personalized Medicine*, 7(1), 33–47.

FD/

DOOR RADAR approach

- Composite endpoint: Construct outcome ranking based on the multiple endpoints.
- Desirability of Outcome Ranking (DOOR)
- Response adjusted for duration of antibiotic risk (RADAR)
- Compare arms using statistical test for rank data (Mann-Whitney test)

Evans, S. et al. (2015) Desirability of Outcome Ranking (DOOR) and Response Adjusted for Duration of Antibiotic Risk (RADAR), *Clin Infect Dis*, 61(5): 800-6.

Conclusion

- The meta-analysis was conducted to demonstrate
 - effectiveness of using PCT to reduce antibiotic use compared with standard of care, and
 - to compare the safety of using PCT for the intended indications with standard of care.
- The meta-analysis demonstrated (not surprisingly) that antibiotic use is reduced when PCT is utilized for patient management under the proposed indications.
- No statistically significant differences in adverse outcomes were observed when PCT was utilized.

Conclusion

- The studies available in the literature have inherent limitations for evaluating safety and effectiveness.
- The studies selected for meta-analysis are heterogeneous in design and population studied.
- Precise data on diagnostic accuracy of the device would increase our understanding of its safety.
- The benefit of reducing antibiotic use could outweigh the risk of mistreating some patients based on PCT guided therapy if that subset were small enough.
- Unfortunately, the risk to patients of using PCT to guide their therapy is difficult to estimate precisely based on available data (and the BMx meta-analysis).