Secondary pharmacology and off-target profiling as a way to provide mechanistic insights into drug-induced cardiovascular safety liabilities

Jean-Pierre Valentin, PhD Development Science, UCB Biopharma

FDA Public Workshop, FDA Headquarters, White Oak, Silver Spring MD,

29th March, 2019

Cardiovascular safety - beyond QT

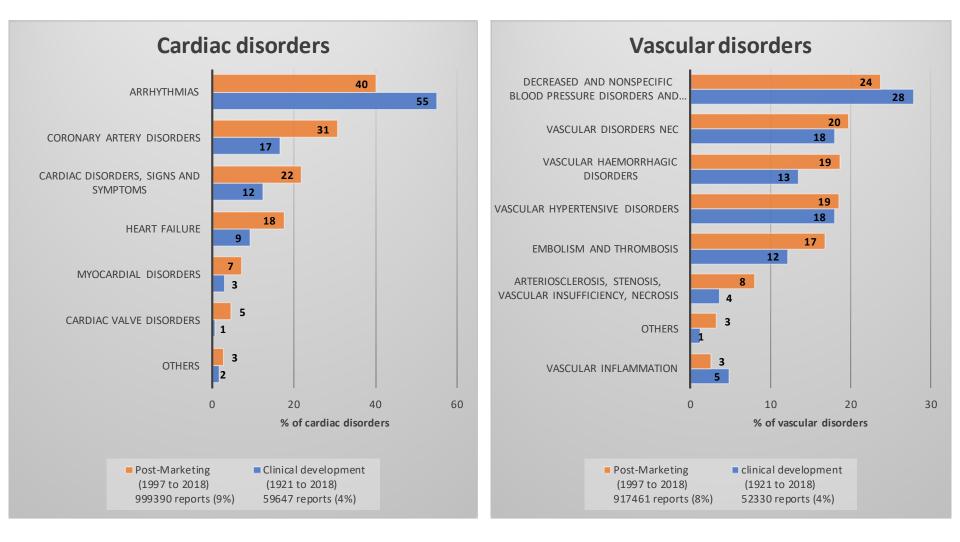
The breath of potential cardiovascular safety issues

A range of potential structural & functional effects impacting on the CV system

- <u>Functional</u>
 - Chronotropy
 - Dromotropy
 - Inotropy
 - Lusitropy
 - Arrhythmias (ECG)

<u>Structural</u>

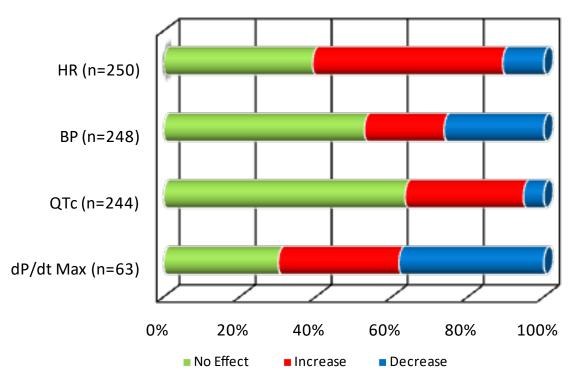
- Cardiomyocyte hypertrophy,
- Degeneration/Necrosis/apoptosis
- Cardiomyocyte vacuolation,
- Myocardial infarct/fibrosis
- Inflammation (myocardium/valve)
- Edema (myocardium/valve)
- Mineralization/pigment/amyloid
- Valvular stromal proliferation


Blood Vessels

- <u>Functional</u>
 - Blood pressure changes
 - Orthostatic hypotension
- <u>Structural</u>
 - Endothelial hypertrophy,
 - Intimal thickening
 - Medial/mural hypertrophy
 - Medial/mural haemorrhage
 - Medial/mural degeneration /necrosis/inflammation
 - Medial/mural mineralization/amyloid
 - Medial/adventitial vacuolation
 - Perivascular inflammation/fibrosis
 - Aneurysm/angiostasis
 - Thrombus/embolus/intramural plaque

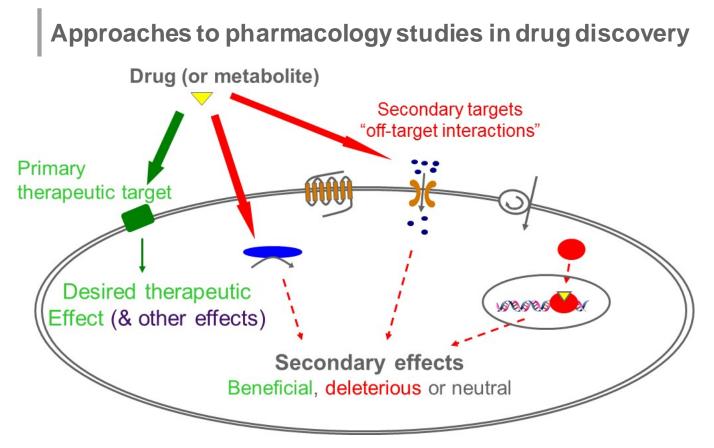
2

Cardiovascular adverse events in clinical development and post-approval



Source: Pharmapendium®; querry dated 2018-08-02 (FDA; EMA; Meyler's; Mosby's Drug Consult™; Pharmapendium Published Toxicity)

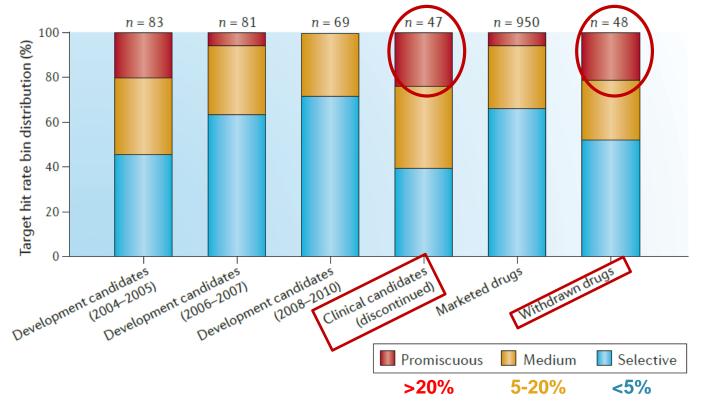
Incidence of cardiovascular side effects in preclinical studies


High incidence in safety pharmacology & toxicology studies

Data from 273 candidate drugs (CDs) evaluated in 36 anesthetised dog and 214 dog telemetry studies from 1999 to 2010. *

Out of 135 CDs: Cardiac pathologies were identified in 12% of dog toxicology studies of up to 1 month duration. Areas included the myocardium, AV/aortic valves, and atrium, with morphologic changes that included degeneration, vacuolation and inflammation. **

Pharmacology mediated side effects

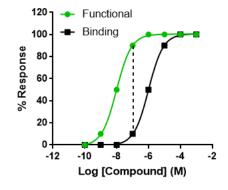

- Side effects may result from activity at primary or secondary targets
- ICHS7A secondary pharmacodynamics definition: 'Studies on the mode of action and/or effects of a substance not related to its desired therapeutic target'

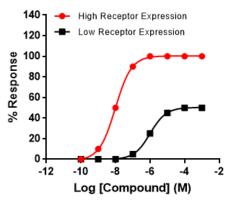
Adapted from Valentin & Hammond, JPTM, 2008; and Bowes et al (2006) in The Process of New Drug Discovery and Development, 2nd Edition Smith & O'Donnel Ed. CRC Press p104

Definition, target panel and profiling strategies

Rationale for a strategy: A high promiscuity rate translates into a high attrition rate

Promiscuity = target hit rate (% of targets with >50% binding at 10µM); Data set excludes antipsychotics


 In vitro off-target promiscuity is a valuable measure of "probability of success" in early discovery


Methodology: Data generation and analysis

Binding versus functional: impact on data generated

- Binding and functional assays are routinely used
- Each format has strengths and limitations with respect to risk
 assessment

Factor	Binding	Functional				
Affinity measurement	Direct	Indirect or none				
Site on the target	Single, defined	Any (even allosteric)				
Technology	Widely established	Diverse, require extensive technical expertise				
Identification of mode of action (ago, antago)	No	Yes				
Radioligand	Needed	Usually not needed				
Possible gaps	High-efficacy/low affinity agonists or allosteric compounds	Potency and efficacy dependent on receptor expression/coupling				

Adapted from Bowes et al 2012 Nature Rev Drug Discov; 11:909-922.

Discussion: Data interpretation and contextualisation

Assessment of individual target effects

Literature evidence for each target/adverse drug reaction (ADR) pair from:

- Online Mendelian Inheritance in Man (OMIM)
- Knock-out/in animals
- IUPHAR Guide to Pharmacology
- Pharmacological reference compounds
- Marketed/withdrawn drugs (primary target or known off-target)
- FDA Adverse Event Reporting System (FAERS)
- Databases e.g. Pharmapendium, Off-X,...

Cognisant that polypharmacology could lead to different responses

Build understanding of physiological function of target and effects of disruption

- Lynch et al (2017) J Pharm Tox Method \$1056-8719(16):30147-30152.
- Bowes et al (2012) Nature Rev Drug Discov 11:909-922.
- Hamon et al (2009) Future Med Chem 1:645-665
- Whitebread et al (2005) Drug Discovery Today 10(21):1421-1433.

No centrally / publicly available repository

Discussion: Data interpretation and contextualisation

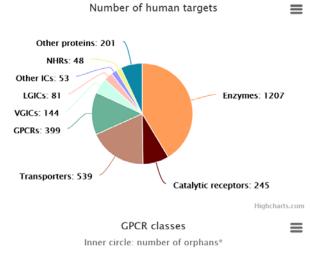
Examples of « off-target » side effects

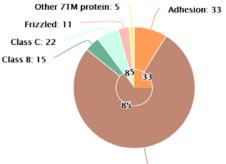
Effects can be on organ system function or structure, such as:

Target	Organ	MOA	Potential physiological effects	Potential structural effects				
hERG	CVS	Inhibitor	Increased APD, prolonged QTc, TdP	Embryonic malformations and death due to reduced cardiac output and hypoxia				
5-HT _{2B}	CVS	Agonist	Pulmonary hypertension	Cardiac valvulopathy				
Adrenergic beta 2	CVS CVS	Agonist Antagonist	Tachycardia, hypotension Bronchospasm	Vascular smooth muscle necrosis, cardiac lesions (dogs)				
Transporter, Dopamine (DAT)	CNS Repro Skin	Inhibition Inhibition Inhibition	Effects on cognition & locomotor activity, drug abuse, depression	Rat specific uterine tumours Acne				
COX1	Upper GI	Inhibition	Increased acid secretion and reduced mucus production	Erosion/ulceration of gastric mucosa				
COX2	CVS Immune	Inhibition Inhibition	Hypertension Anti-inflammatory effect	Myocardial infarction, atherothrombosis				

MOA, Mechanism Of Action

Bowes et al 2012 *Nature Rev Drug Discov* 11:909-922. Lynch et al 2017 *J Pharm Tox Method* S1056-8719(16)30147-2. Papoian et al 2015 *Nature Rev Drug Discov* 14(4):294-296 Hamon et al 2009 *Future Med Chem* 1:645-665.


Source of information: the IUPHAR database



An expert-driven guide to pharmacological targets and the substances that act on them.

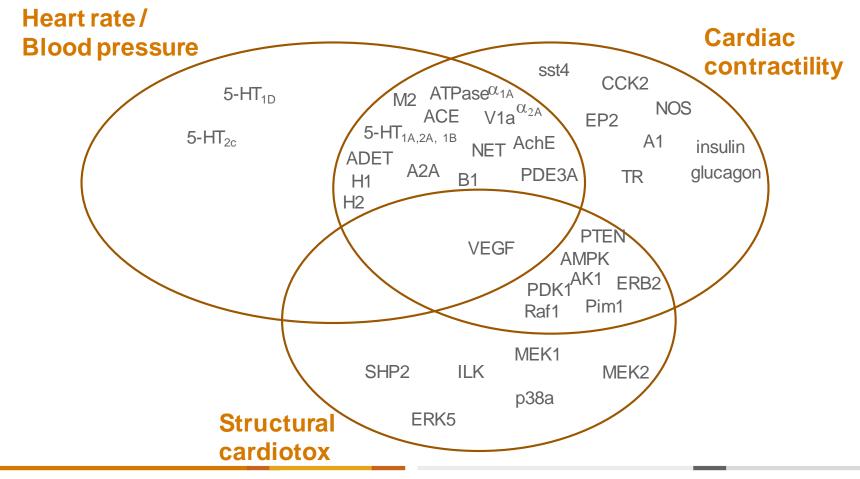
Out of 2917 targets, 221 are associated with 'cardiac' and 272 with 'vascular' => Does not necessarily mean causal relationship with adverse events

Target Class	Number of human targets [‡]
7TM receptors	399
G protein-coupled receptors including orphans	394
Orphan G protein-coupled receptors*	126
Other 7TM proteins	5
Nuclear hormone receptors	48
Catalytic receptors	245
Ligand-gated ion channels	81
Voltage-gated ion channels	144
Other ion channels	53
Enzymes	1207
Transporters	539
Other protein targets	201
Total number of targets	2917

Class A: 287

Physiological, pharmacological and toxicological considerations of drug-induced structural cardiac injury

Adverse preclinical and clinical cardiac effects – approved kinase inhibitors used in oncology (adapted from Mellor et al., 2011)

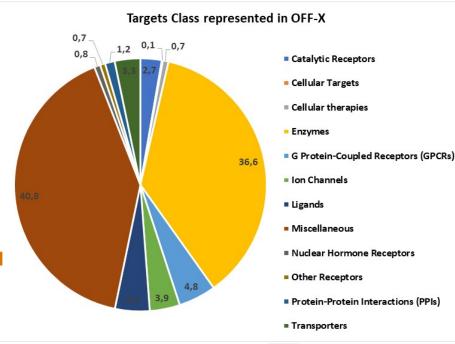

Kinase/phosphatase conditional knockout mouse models associated with cardiovascular functional effects (adapted from Mellor et al., 2011)

Drug/ Biological	Target(s)	Oncology Indications	Precilnical cardiac findings	Clinical cardiac findings	References	Protein	Signalling role	Knockout animal model	Effect on cardiac function	Reference
Axitinib (Inlyta®)	VEGFR1/2/3	RCC	Modest dose-dependent elevation in systolic BP in rats	Hypertension	Inlyta [®] FDA Pharm Review Inlyta [®] Prescribing Information	PTEN	Lipid phosphatase Negative regulator of PI3-kinase signalling	Muscle-specific PTEN knockout mouse	Basal hypertrophy Mild reduction in contractility Reduced hypertrophy in response to pressure overload compared with wt	Crackower et al. (2002) Oudit et al. (2008)
Bevacizumab (Avastin®) Cabozantinib	VEGF Ret. Met.	CRC, NSCLC; breast cancer; Metastatic	None reported Cardiac inflammation noted in	HF, hypertension, ischaemia Hypertension	Choueiri <i>et al.</i> (2011) Chen <i>et al.</i> (2013) Avastin [®] Prescribing Information Cometrig [®]	АМРК	Serine/threonine kinase Activated by increase in AMP: ATP Acts to preserve/generate	Heterozygous AMPKα2 knockout mouse	Mild reduction in contractility Worsened hypertrophy in response to pressure overload compared with wt	Zhang <i>et al.</i> (2008)
(Cometriq [®])		medullary thyroid cancer	a single female dog when	nypertension	Prescribing Information	SHP2	ATP Tyrosine phosphatase Regulates leptin and insulin signalling	Muscle-specific Shp2 knockout mouse	Severe dilated cardiomyopathy HF and premature death	Kontaridis <i>et al.</i> (2008) Princen <i>et al.</i> (2009)
Crizotinib (Xalkori [®])	ALK, c-Met (HGFR), and ROS	ALK-positive NSCLC	Dose-dependent inhibition of the hERG current, decrease in HR and increase in left ventricular end-diastolic	QT-interval prolongation, bradycardia	Xalkori® FDA Pharm Review Xalkori® Prescribing Information	ERB2	Receptor tyrosine kinase Co-receptor in neuregulin/EGRF signalling	Ventricular myocyte-specific ERB2 knockout mouse	Severe dilated cardiomyopathy Decreased contractility HF and sudden death	Crone et al. (2002) Ozcelik et al. (2002)
Dabrafenib (Tafinlar®)	B-Raf	MM	pressure in dogs, myonecrosis in rats Adverse cardiovascular effects in dogs consisting of coronary arterial	QT-interval prolongation, decreased LVEF	Taflinar [®] Prescribing Information	PDK1	AGC serine/threonine kinase Activates AKT and p70S6K	Muscle-specific PDK1 knockout mouse Tamoxifen-inducible heart-specific PDK1 knockout mouse	Apoptotic death of cardiomyocytes Impaired LV contractility Severe and lethal HF	Ito <i>et al.</i> (2009) Mora <i>et al.</i> (2003)
			degeneration/necrosis and haemorrhage, as well as cardiac atrio-ventricular valve hypertrophy/haemorrhage			Pim1	Serine/threonine kinase Acts downstream of AKT to block apoptosis Induction and stabilization of c-myc	Cardiac-specific Pim-1 dominant-negative in mouse	Progressive dilation Reduced contractility Increased LVEDP Decreased LVDP Alterations in Ca ²⁺ handling	Muraski <i>et al</i> . (2008)
Dasatinib (Sprycel®)	Bcr-Abl, Src family, Kit, PDGFRβ, EphA2	CML, ALL	QT prolongation, increased BP. Vascular and cardiac fibrosis, cardiac hypertrophy, myocardial necrosis, haemorrhage of the valves,	QT-interval prolongation, HF, pericardial and pleural effusion, pulmonary hypertension	Brave <i>et al.</i> (2008) Montani <i>et al.</i> (2012) Sprycel [®] Prescribing Information	Raf-1 (c-Raf)	Serine/threonine kinase Involved in the ERK signalling pathway	Cardiac-specific Raf-1 knockout mouse	Reduced contractility Increased heart size Decreased posterior wall thickness	Yamaguchi <i>et al.</i> (2004)
Erlotinib	ErbB1 (EGFR)	RCC	ventricle and atrium and cardiac inflammation None reported	Myocardial	Tarceva® Prescribing	ILK	Serine/threonine kinase Phosphorylates Akt and GSK-3β	Muscle-specific ILK knockout mouse	Increased heart size Dilated cardiomypathy Cardiac fibrosis Sudden death	White <i>et al.</i> (2006)
(Tarceva®) Imatinib mesylate (Gleevec®)	Bcr-Abl, PDGFR α and β , Kit	MDS/MPD, ASM, HES,	Decrease in arterial BP after single i.v. dose in rats. No	infarction/ischaemia Decreased LVEF, LVD, rare frequency of HF	Information Kerkelä <i>et al.</i> (2006) Gleevec [®] FDA Pharm Review	AK1	Kinase/phosphotransferase Adenine nucleotide homeostasis	AK1 knockout mouse	Reduced contractility – coronary flow relationship Recovery of flow after I/R was compromised	Dzeja <i>et al.</i> (2007)
Levelinik		CEL, DFSP	effect on the rate of beating or force of contraction in the isolated atria of guinea pigs	Democrad IV/FF_UF	Gleevec® Prescribing Information	p38α	MAPK phosphorylates MAPKAP kinase 2, ATF-2, Mac and MEF2	Cardiac-specific p38α dominant-negative in mouse	Cardiac hypertrophy reduced fractional shortening LV and septal wall thinning Lethal cardiomyopathy	Braz et al. (2003)
Lapatinib (Tykerb [®])	EGFR (ErbB1), HER-2 (ErbB2)	HER-2+ ve breast cancer	Dose-responsive increase in BP in dog. Focal fibrosis and myocyte degeneration in rat and dog. No QT changes in rat and dog	Decreased LVEF, HF, asymptomatic cardiac events, QT-interval prolongation.	Perez <i>et al.</i> (2008) Tykerb [®] FDA Pharm Review Tykerb [®] Prescribing Information	ERK5	MAPK (serine/threonine kinase) phosphorylates MEF2C, Sap1a, p90RSK	ERK5 knockout mouse ERK5 –/– cardiomyocyte knockout	Embryonically fatal at E9.5–10.5 Defective cardiac development, heart looping, angiogenesis and vascular maturation	Regan <i>et al.</i> (2002) Kimura <i>et al.</i> (2010)
Nilotinib (Tasigna®)	Bcr-Abl, PDGFRα and β, Kit	Abl, PDGFR α CML nd β , Kit	VL QT-interval prolongation	QT-interval prolongation, sudden death (possibly ventricular repolarization related)	Kantarjian <i>et al.</i> (2007) Tefferi (2013) Weisberg <i>et al.</i>				Mice develop normally but have reduced cardiac hypertrophic remodelling	
				Ischaemia, peripheral ischemia	(2005) Tasigna® Prescribing Information	kinase; I/R, isc	haemia/reperfusion; LVDP, left	ventricular diastolic pressure	r 2; GSK-3β, glycogen synthase kina ; LVEDP, left ventricular end-diastoli -1; PTEN, phosphatase and tensin ho	pressure; MEF2, myocyte

Targets associated with cardiovascular safety liabilities

Based on genetic, pharmacological and clinical (adverse events) evidences

Targets associated with cardiotoxicity: OFF-X


Research by targets, by drugs, or by adverse events Out of 7,446 targets, 286 targets were reported to be associated with cardiotoxicity

cardiotoxicity (cardiac)

TARGET - ACTION 👙		ALERT TYPE 🛈				ALERT PHASE					
		CLASS ALERT		DRUG ALERT		TARGET DISCOVERY / PRECLINICAL		CLINICAL / POST MARKETING		NUMBER OF ALERTS	
		¢	*	\$	\$	\$	\$	\$	\$	\$	\$
All Target - Actions	286	279	37	408	(108)	382	\bigcirc	305	79	687	(124)

Filters can be applied to the following criteria

The translational safety intelligence portal

Discussion: Data interpretation and contextualisation

How to estimate safety margins

- Can we use exposure data and ADR or efficacy data from marketed and withdrawn drugs to estimate appropriate safety margins?
 - It can be challenging to generate clear and robust translation due to
 - Limited availability of clinical data (especially PK)
 - Differences in in vitro results between laboratories
 - Reference compounds must be tested in the same in vitro assay
 - Polypharmacology of reference and test compounds
 - Physiological compensation mechanisms (e.g. reflex tachycardia)
 - Examples of successful translational safety studies include
 - hERG 30x free Cmax
 - hNav1.5 30-100x Free Cmax
 - 5-HT_{2B} Ki/FCmax ratio or Ki relative to 5-HT
 - ENT-1 4-13x disease state dependent

(Redfern 2003) (Harmer 2011) (Papoian 2017) (Rosenbrier Ribeiro 2017)

• Using legacy safety studies; Sharing pre-competitive data

• 1000 publications / year on hERG/QT/TdP to understand the issue

New technologies and future focus

• Accessing a wider range of targets

- Implementing different screening technologies e.g. proteomics
- Understanding previously poorly characterized targets
- Defining the strategic and scientific approach to explore novel mechanisms of action, novel modalities, new classes or proteins
- Increasing understanding of pathway-level impact
 - E.g., potential for additive, synergistic, antagonistic effects within a pathway (kinases pathways)
- Increasing understanding of pharmacokinetic/pharmacodynamic relationships and of target safety liabilities (and annotation)
- In silico approaches
 - Individual target quantitative structure-activity relationship (QSAR) models
 - Profile prediction tools
 - Machine Learning
 - Natural language processing to mine literature, FAERS, etc

Summary and conclusion

- In vitro profiling is an integral part of the drug discovery and development process
- Implemented widely across medium/large pharma
- Well established technologies and operating principles
- Can be deployed to deconvolute drug-induced cardiac toxicity
- Future challenges focus on:
 - Increased biological understanding for individual targets
 - Generating quantitative translation for each target
 - Accessing wider range of targets (technology shifts)
 - Improving predictivity
 - Improving understanding of the "fingerprint" vs individual targets

Thanks to:

Colleagues from Toxicology, Development Science, UCB-Biopharma in particular Annie Delaunois, Vitalina Gryshkova and Julia Roquigny

Colleagues from the IQ-DruSafe In vitro Secondary Pharmacology WG

Questions?