Session II: Key Issues for Clinical Development for Brain Mets

Nancy Lin, MD, Co-Chair, Dana Farber Cancer Institute
Chana Weinstock, MD, Co-Chair, US Food and Drug Administration

Identification of Targets for Brain Metastases Clinical Trials

Priscilla K. Brastianos, MD

Director, Central Nervous System Metastasis Center

Massachusetts General Hospital

Harvard Medical School

Disclosure Information

- I have the following financial relationships to disclose
 - -Consulting: Angiochem, Merck, Genentech-Roche, Lilly
 - —Grant/research support: Merck
 - Honoraria: Merck, Genentech-Roche, Lilly

Molecular epidemiology of brain metastases

- Breast cancer:
 - 30-40% of advanced HER2-positive
 - 40-50% of metastatic triple-negative
- Lung cancer:
 - 25-40% of advanced EGFR-positive disease
 - ALK-positive:
 - 27-40% at baseline
 - 35-71% in second-line
- Melanoma
 - 40-50% of advanced BRAF-positive disease

Brastianos et al. JNCCN 2013
Crino et al. JCO 2016
Griesinger et al. Oncotarget 2018
Hsu et al. Lung Cancer 2016
Kim et al. JCO 2016
Lazaro and Brastianos, CNS Oncol 2017
Maxwell et al. Int J Cancer 2016
Peters et al. NEJM. 2018
Shaw et al. NEJM 2013
Wang et al. Clin Neuro and Neurosurg 2017

Patients will often develop progressive brain metastases in the setting of stable extracranial disease.

Unanswered clinical questions

We have a limited understanding of how brain metastases genetically evolve from their primary tumor

 Intracranial progression due to incomplete drug penetration or different genetic drivers?

 What are the targetable mutations in brain metastases?

 Can we rely on a primary biopsy to make decisions for systemic targeted agents in brain metastases? Massively parallel sequencing of one brain metastasis

and matched primary tumor

Few *de novo* genetic alterations in brain metastasis (*n* = 1)

Proteomic analysis of resected brain & extracranial melanoma: PI3K pathway activation in CNS mets

 7 paired brain & extracranial metastases and 2 un-paired brain and 13 un-paired extracranial metastases

Significant (p<0.05)		
Matched Brain vs	BM/EM	Paired t-
Extracranial Mets	(log2)	test, p
Akt_pS473	1.028	0.022
Rb_pS807_S811	0.863	0.004
mTOR_pS2448	0.414	0.042
Bax	0.337	0.027
eEF2K	0.212	0.005
JNK_pT183_pT185	0.159	0.011
14-3-3_epsilon	-0.178	0.045
Smad1	-0.241	0.034
VASP	-0.252	0.011
Src	-0.264	0.023

Creation of a large tumor bank of brain metastases and rapid autopsy program

Study design

 Whole-exome sequencing of 104 brain metastases matched with primary and normal tissue

Including 15 with additional extracranial sites or temporally/regionally/

anatomically separated brain metastases

Branched evolution: brain metastasis and primary tumor

evolve separately

Charles Darwin 1837

Brain metastases harbor clinically actionable mutations not detected in primary tumors

Renal cell carcinoma

WHL p.L188P
PBRM1 p.T43fs
MTOR p.K1452N

Brain metastasis

PIK3CA p.E542K
CDKN2A/B Del

Primary

Clinically actionable alterations occur in all phylogenetic branches

> **Brain Primary** biopsy met

Shared

of actionable SSNV / SCNA events

53% of cases have a clinically actionable alteration in the brain metastasis, not detected in the primary biopsy.

Opportunities to target brain metastases

51% of cases with alterations in the CDK pathway.

Opportunities to target brain metastases

43% of cases with alterations predicting sensitivity to PI3K/AKT/mTOR inhibitor

HER2/EGFR Alterations

One-third of cases with alterations predicting sensitivity to HER2/EGFR inhibitors

Anatomically distinct brain metastases share all actionable drivers

Pre-XRT, preresection cerebellar

Post-XRT, pre-resection of parietal met

Brastianos, Carter et al. Cancer Discovery 2015

Example: Lymph node not reliable genetic surrogate of brain metastasis

Oxidative phosphorylation is enriched in melanoma brain metastases compared to patient-matched extracranial metastases

Fischer...Davies. Cancer Discovery, In Press

Efficacy of PI3K inhibitor in patient derived xenograft model of breast cancer brain metastases

GDC-0084 inhibits tumor growth in vivo in a *PIK3CA*-mutant cell line and not in a PIK3CA-wt cell line

Ippen...Brastianos. Clinical Cancer Research 2019

Efficacy of Oxphos inhibitor in murine model of melanoma brain metastases

- Treated nude mice with human xenografts with vehicle or IACS-010759
- Mice treated with IACS-010759 lived significantly longer

A375-R1 (Acquired MAPKi-Resistant) MBMs

SKMEL5 (*De Novo* MAPKi-Resistant) MBMs

National biomarker driven trial in brain metastases

Study Chairs: Priscilla Brastianos, Eva Galanis

Correlative PI: Scott Carter

- Progressive brain metastases
- Histologically confirmed solid malignancy
- Measurable CNS disease
- · Any brain metastasis tissue and extracranial site for sequencing

Primary endpoint

CNS response rate

Secondary endpoints

- os
- CNS, systemic PFS
- Systemic response
- Safety

Exploratory endpoints

Correlation of response with biomarkers

Brain MRI and systemic staging

progression

- **Duration of response**
- First site of progression

Conclusions

- Brain metastases harbored **distinct** clinically actionable genetic alterations, compared to their primary tumors.
- Different brain metastasis regions are relatively homogeneous.
- Extracranial metastases are not a reliable surrogate for brain metastases.
- Alterations in the **CDK** and **PI3K pathways** are frequent in brain metastases.
- A national genomically guided trial is planned.

Acknowledgements

Brastianos Lab:

Christopher Alvarez-Breckenridge

Ugo Chukwueke

Taylor Conroy

Nate Goss

Franziska Ippen

Ben Kuter

Matt Lastrapes

Mohini Singh

Joana Mora

Naema Nayyar

Brian Shaw

Jackson Stocking

Matt Strickland

Megha Subramanian Michael White

Carter Lab

Scott Carter

Matt Lastrapes

David Shih

MGH:

Daniel Cahill

Tracy Batchelor

David Louis

Broad Institute:

Eric Lander

Gad Getz

Alex Shalek

Amaro Taylor-Weiner

Comprehensive Cancer Center

Vienna

Anna Berghoff Matthias Preusser

Vall D'Hebron University

Josep Tabernero Joan Seoane Elena Martinez-Saez

DFCI

Toni Choueiri Nancy U. Lin Bruce Johnson Eric Winer

Seoul National University College of Medicine

Sun Ha Paek Sung-Hye Park

Santagata Lab:

Sandro Santagata Parker Merrill

Medical University of Gdansk

Jacek Jassem

Miltary Institute of Medicine Poland

Renata Duchnowska

Funding

