StemoniX

Accelerating the Discovery of New Medicines

Morphologies, Motions and Markers of In Vitro Cardiovascular Screening Assessments

Blake Anson, PhD

The speaker is a paid employee of StemoniX Inc., a human-based stem cell company that provides screening services and next-generation iPSC-derived cardiomyocytes and neurons in patterned and 3D ready-to-use formats.

Morphologies, Motions and Markers of In Vitro Cardiovascular Screening Assessments

Goal:	Provide an overview of iPSC cardiomyocyte biology and use in functional toxicity testing
Outline:	iPSC Primer
	iPSC Cardiomyocyte Functional Overview
	Screening endpoints (markers)
	Electrophysiology
	 Ca²⁺ Signaling
	Contraction
	Energetics
	Morphology
	Summary

Human induced Pluripotent Stem Cells (hiPSCs) Provide Human Material for Basic and Applied Research

Membrane Electrical Activity Ca²⁺ signaling (EC Coupling) Contraction (Ion channels, receptors, etc) SA node Sarcolemma -tubul urkinje fiber Endocardium SR DHP Aidmyocardiun eceptor SERCA Electrical activity at the membrane causes calcium release from the SR which in turn enables contraction DNA Sarc. α Actinin **cTnT** rence L. Brunton, Randa Hilal-Dandan, Björn C. Knollmi Gilman's: The Pharmacological Basis of Therapeutics,

Energetics

Functional activity is highly energy dependent

Each of these nodes is critical for proper cardiac function and thus offer markers for CV toxicity assessment

Drug Block

Arrhythmogenic Triggers

iPSC cardiomyocytes show 'typical' electrophysiology and drug induced effects

A basic biomarker is altered electrical activity

Translation to the clinic

Basic electrophysiology markers translate to clinical effects

IPSC Cardiomyocytes and Ca²⁺ handling

A Caffeine Healthy Compound Caffeine, to Compound Caffeine, to Cycling Schick et al., 2018

Compounds, such as caffeine, target Ca²⁺ cycling Additional testing with compounds targeting RYR and/or SERCA under normal and stressed conditions may be necessary to isolate Ca²⁺ cycling specific effects.

Stemoni**X**

Typically, Ca²⁺ cycling follows membrane voltage, making it difficult to separate the two processes

IPSC Cardiomyocytes and Contractility

Contraction is multidimensional in non-patterned iPSC cardiomyocytes

SI8000 Motion Vector Software

iPSC cardiomyocytes show comparable potency to gold standard canine sarcomeric shortening

Scott et al., 2014

iPSC cardiomyocytes show comparable assay parameters to other preclinical models

Assay parameter	hiPSC-CM impedance	Rat CM impedance	Dog CM sarcomere shortening
Sensitivity	90%	77%	83%
Specificity	74%	74%	84%
Accuracy	82%	74%	82%
Neg predictivity	82%	67%	76%
Pos predictivity	84%	82%	89%

iPSC-cardiomyocyte impedance measurements show good correlation across preclinical species

ATP levels are relatively constant under various environmental conditions

Metabolic processes shifted depending on environmental conditions

Similar to adult cardiomyocytes, iPSC-cardiomyocytes utilize available energy resources

Overt toxicity can be masked when glucose is available

Biomarkers for mitochondrial toxicity need to directly measure mitochondrial function

Biological process /	Biomarker	Measurement Techniques	
Electrophysiology	Trans-membrane current Action potential	Manual and automated patch clamp MEA Voltage sensitive dyes Ca ²⁺ sensitive dyes (surrogate) Impedance (surrogate)	
Intracellular Ca ²⁺	Calcium sensitive dyes	Ca ²⁺ sensitive dyes	
	Shape / attachment relative to substrate	Impedance	
Contractility	Movement	Vector Analysis Video microscopy	
Mito abondrial Taxiaity	Mitochondrial respiration	Oxygen consumption	
wittochondhar toxicity	Mitochondrial membrane potential	Various dyes and kits	

A variety of robust biomarkers and measurement techniques exist for functional assessment of cardiotoxicity

IPSC Cardiomyocytes and Morphology

Boyer et al., 2010

Stemonix

iPSC Cardiomyocytes on unstructured plates have an unstructured morphology

IPSC Cardiomyocytes Provide Markers for Functional Assessment

Typical 2D plating

Stemonix

Plating on grooved surface

Stemonix microHeart

iPSC Cardiomyocytes can be structured

DNA Sarcomeric αActinin Plakoglobin

Gap junctions are located more distally on the fiber

SI8000 Motion Vector Software

Alignment/Morphology has Consequences – Ephys / Ca²⁺ handling

High Throughput Calcium Flux Acquisition Rate: 100Hz Beat Rate Peak Amplitude Control 35 30 M 25 RO Control MicroHeart Control MicroHeart microHear Peak Rise Time Peak Decay Time 0.30 0.25 (s) <u></u> 0.20 0.15 0.10 Control MicroHeart Control MicroHeart n=**308** ImageXpress micro Confocal **FLIPR**^{TETRA} * p<0.001

Stemoni**X**

High Speed Calcium Imaging

Thank-you

Goal:	Provide an overview of iPSC and use in functional toxicity	cardiomyocyte biology y testing		
Outline:	iPSC Primer iPSC Cardiomyocyte Functional Overview			
	 Screening endpoints (marke Electrophysiology Ca²⁺ Signaling Contraction Energetics 	rs) Critical functions have multiple biomarkers with good translation		
	Morphology	Can have a structural and functional impact		