Leveraging Human-Relevant Cardiomyocytes in Nonclinical Studies to Provide Mechanistic Insights into Cardiovascular Safety Liabilities: **Overview of Gaps and Challenges.**

Gary Gintant, Ph.D. Dept. Integrative Pharmacology Integrated Sciences and Technology, AbbVie

FDA, Silver Springs MD March 29, 2019

Outline

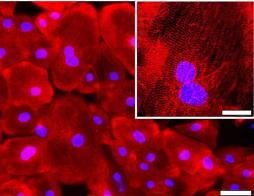
- Models and Expectations
- General Areas of Interest/Application
 - Model = Biology + Experimental Approaches
- Key Concerns and "Fit for Purpose" Applications

Expectations of Models: George Box – Engineer & statistician. 1919-2013

"Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful."

- Samuel Langley believed a full sized airplane could be build and flown largely from **theory alone**... Disasterous flight experiments ... almost drowned his pilot.

- The Wright Brothers designed, built, and flew the first successful airplane after hundreds of **experiments**, multiple years with **multiple models**.


For this talk: Understanding and defining the <u>limits of biological models</u> as translational tools for cardiac safety evaluations

Where we start: Commercially available human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs)

- Dec 2009: First hiPSC-CM commercial product launched
 More sources now (Commercial, academic, patient-specific)
- Enthusiasm for NEW (improved) human-derived model
 - Unlimited supply, reduce (eliminate) animal-based studies
 - Cardiac markers present, but...
 - Morphology not ventricular-like, cells spontaneously active,
 - Predominant ventricular electrical phenotype demonstrated, focuses attention on proarrhythmia studies
 - New techniques: field potential [MEA], optical (voltage sensing dyes), High Throughput Screening (HTS) <u>approaches</u>

Model(s) & Techniques both "Novel"

Require Evaluation of Strengths, Limitations

Ma et al., Am J Physiol., 2011

hiPSC-CMs: Three General Areas of Interest

Areas of Interest:

- Electrophysiology (Proarrhythmia)
- Contractility (Inotropy)
- Structural Cardiotoxicity (Injury, Damage)
- Each with different approaches/technology platforms
- Opportunity for integration of multiple responses with one preparation (removing the "silos")

General Utility- Expectations May Differ:

- Safety
 - Early Drug Screening (Internal decision making)
 - Later Candidate Selection (Regulatory evaluations)
 - Drug Combination Studies (?)
 - Qualitative vs. Quantitative Assessments
- Efficacy
 - Drug Discovery Efforts
 - Personalized Medicine: Safety & Efficacy Studies

Overall Considerations/Limitations

Myocytes Often Display "Immature" Phenotype

- Gene expression profile of 2D myocytes resemble fetal/neonatal
- More complex preps (patterning, fibroblasts, smc's endothelial cells) (imitating native environment) affecting more adult phenotype

Acute and Subacute Direct Effects Amenable to Study:

- Indirect effects (cardiovascular signaling) not readily tested
 - Those requiring integrated systems may use "organs on a chip"
- Optimal stable "windows" for studies/screening need to definition
 - Studies of disease alteration/toxicity progression (pts in dish)
 - Multi-parameter studies possible

Model Utility Based on Limitations, Context of Use

hiPSC-CMs: Heterogeneity of Biological Models

Different Starting Biological Preparations: Heterogeneity

- "Generic/Standard myocytes" (assuming uniform conditions)
 - Single-type myocytes vs. population-based studies
 - Tissues with multiple cell types (myocytes 30% of adult heart)
- "Diseased"- or "personalized" myocyte models
 - For efficacy and safety study applications

<u>Assay = Biological Model + Experimental Approach(s)</u>

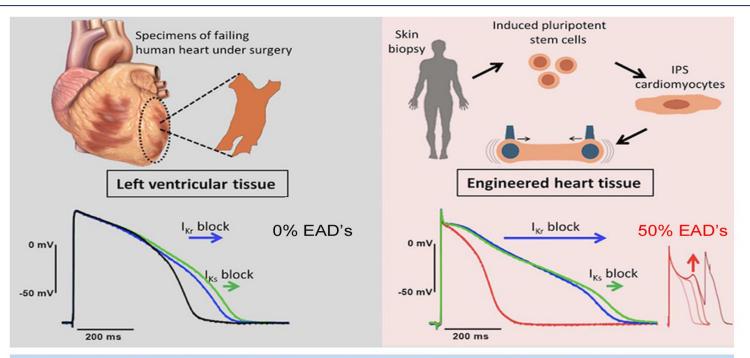
- Numerous (unique) combinations provide challenges for understanding the assay and its "translation" to the clinic

hiPSC-CMs: Bioengineering Meets Assay Development

Heterogeneity of Biological Models

- More complex models may better replicate native myocytes
 - Single cells, 2D monolayers, Organoids, Spheroids, Tissues
- More complex models **may hamper reproducibility, availability**
- Standardization of Models Remains a Challenge
 - Ex: 2D constructs cell sources, plating density, culture time, substrate). Biological engineering.
 - Different from ex vivo preparations (rat papillary muscles)
 - Assay calibration essential for model characterization
 - Early efforts at standardization may be premature,
 - No clear definition of similarity to native preparations (single, or multicellular).

What's a Researcher/Regulator to Do?



Human-derived models

Non-human ex-vivo models

Key Concerns:Translational FidelityReproducibility,Cost/Availability

hiPSC-Cardiomyocytes as Evolving Test Systems: Sensitivity vs. Adult Human Ventricular Myocytes

Human iPS cardiomyocytes in engineered heart tissue vs. left ventricular tissue

- Upstroke velocity ↔
- Action potential duration
- Ivabradine-sensitive diastolic depolarization
- Reverse use-dependence ↑

- Action potential prolongation to I_{kr} block ↑
- EAD sensitivity to E-4031 个
- No EADs due to moxifloxacin or verapamil ↔
- I_{Ks} contribution \leftrightarrow

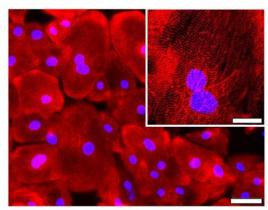
adapted from Lemoine et al., Circ (Arrhythmias/Electrophysiology); 2018

Assay Calibration Essential to Define Experimental Sensitivity, Translational Fidelity

Need to:

- Define "fit for purpose" applications
 - Not all models or approaches may be suitable for questions being addressed. How to define limits?
- <u>"Validate" assay vs. appropriate clinical "gold standards"</u>
 - "Standards" may not be available
 - Surrogate endpoints: limiting, lacking, not well understood
- Be transparent in describing experimental details
 - Aid in establishing reproducibility
 - Promote evolving standards, comparisons to demonstrate advantages/utility of new models

Models from an Artist's Perspective

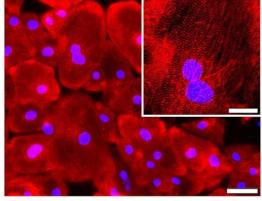

Picasso, Museum Fine Arts, Boston

How Perfect Must a Model Be to be Useful?

Summary

"Remember that all models are **wrong**; the practical question is how wrong do they have to be to not be useful."

Ma et al., Am J Physiol., 2011



Summary

"Remember that all models are **wrong**; the practical question is how wrong do they have to be to not be useful."

Remember that all models are **right**; the practical question is **how right is the question asked** based on a models' characteristics and limitations.

Ma et al., Am J Physiol., 2011

Thank you for your attention