

Presented by: William B Mattes, PhD, DABT

NCTR, U.S. Food and Drug Administration

Disclaimer: The information in these materials is not a formal dissemination of information by FDA and does not represent agency position or policy.

Division Staff

- Government Positions (# full time employees)
 - Research Scientists, Staff Fellows & Visiting Scientists: 21
 - Support Scientists: 9
 - Administrative : 3
 - FDA Commissioner Fellows: 0
- ORISE Post Docs, Graduate Students, etc.: 4
- Total = 37 staff members

Outreach

- Collaborations with
 - NCTR divisions
 - All
 - FDA regulatory centers
 - All
 - Government agencies
 - NTP, NIH (NCATS), VA, USDA, NIST
 - Universities
 - UAMS, MCW, UNC, Univ. Pitt., OSU

Collaborations of Note

CDER

- Refinement of iPSC-cardiomyocyte models for cardiotoxicity prediction
- In vitro toxicity assessment of opioids on neural precursor cell development

CBER

- Microphysiological system (MPS) model of testis function
- Metabolomics in MAIT knockout mice

USDA

E. coli detection and quantitation

Mission:

To address problems of food, drug, and medicalproduct safety using systems biology approaches and innovative technology.

Why Systems Biology?

- Tools and approaches to bridge:
 - Non-clinical models
 - adverse events and individual responses
 -- with ---
 - Clinical settings
 - adverse events and individual responses
 - "Translational Toxicology"
 - "Precision Safety Assessment"

Systems Thinking

Systems Tools

Goals

- Translational prognostic and/or predictive biomarkers of hepatotoxicity and cardiotoxicity
- Mechanistic basis for species, tissue, sex, and sub-population specificity in drug toxicity
- In vitro models for better evaluation of reproductive, developmental, and clinical toxicity
- In silico models for predicting relevant toxicities
- Robust technologies for pathogen detection and outbreak characterization

Strategies

- Explore classes of drugs with known toxicities: such as anthracyclines, acetaminophen, tyrosine kinase inhibitors
- Characterize systems biology effects with state of the art tools: mRNA and miRNA transcriptomics, epigenomics, metabolomics, proteomics
- Integrate data with systems biology informatics accounting for species, tissue, sex, and sub-population differences
- Incorporate innovative in vitro, computational and instrumental technology

- General Themes
 - Translational Safety Biomarkers and Mechanisms
 - Alternative Models to Assess Drug Safety
 - Technology to Assess Food Safety
 - Computational Modeling
 - Cross-Species Predictions

With an eye toward application in use and evaluation of FDAregulated products

Top Accomplishments During the Last 5 Years

- Cytotoxicity of 34 FDA approved small-molecule kinase inhibitors in primary rat and human hepatocytes
 - Zhang, J., et al. (2018). *Toxicol Lett* **291: 138-148.**
- Immune response proteins as predictive biomarkers of doxorubicin-induced cardiotoxicity in breast cancer patients.
 - Yu, L. R., et al. (2018). Exp Biol Med (Maywood) 243(3): 248-255.

Top Accomplishments During the Last 5 Years

- Why are most phospholipidosis inducers also hERG blockers?
 - Slavov, S., et al. (2017). Arch Toxicol 91(12): 3885-3895.
- Sex and age differences in liver microRNAs expression during the life span of F344 rats
 - Kwekel, J. C., et al. (2017). Biol Sex Differ 8: 6.
- Level 2 validation of a flow cytometric method for detection of Escherichia coli O157:H7 in raw spinach
 - Williams, A. J., et al. (2015). Int J Food Microbiol 215: 1-6.

Human vs. Rat Hepatotoxicity

The tyrosine kinase

Doxorubicin Study Design

100 breast cancer patients receiving DOX

Plasma Proteins Predictive of <u>Doxorubicin Cardiotoxicity</u>

The levels of these three cytokines (CCL23, CCL27, and CXCL6) measured at time 0 (before treatment) are predictive of a patient's potential for treatment – induced cardiac dysfunction

SDAR Modeling of hERG and PLD

hERG and PLD toxicophores.

The PLD toxicophore is a subset of the hERG toxicophore!

Sex and Age-Specific Liver miRNAs

Rats of different sex and ages have distinct populations of certain microRNAs, which predict functional pathways that may underlie individual susceptibilities to liver toxicity and disease.

Rapid-B Detection of E. coli O157:H7 in Raw Spinach

Examples of Current Projects

- Rat model of transient and adaptive responses to hepatotoxicity (collaboration with CDER, UNC, Lilly)
- Evaluation of biomarkers predictive of anthracyclineinduced cardiotoxicity in pediatric cancer patients (collaboration with CDER and ACH)

Examples of Current Projects

- Matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) of opioids and neurotransmitters in rat brains
- Prediction of tyrosine kinase inhibitor (TKI) induced cardiotoxicity using induced pluripotent stem cell derived cardiomyocytes (collaboration with MCW)

Examples of Current Projects

 Exploration of a microfluidic system (MPS) with luminal structure for in vitro mouse spermatogenesis (Collaboration with CBER)

Rat Model of Transient Hepatotoxicity

Serum ALT

Transiently and idiosyncratically increased by acetaminophen treatment in Sprague-Dawley rats (Coloring by individual animal ID)

Replicates what is seen clinically

Most treated rats had only mild liver necrosis after sacrifice

Biomarker Study in Pediatric Patients

Proposed Study Design

- Twenty pediatric oncology patients (< 20 years of age)
- Any malignancy
- Any anthracycline (anthra.), any stage of therapy, any level of prior anthra. exposure
- Blood sample (3 mL) collected at the beginning and at the end of anthra. and non-anthra. treatment cycle

Clinical Markers to Explore

Literature	Canonical Name	UniProt
NT-prBNP	natriuretic peptides B preproprotein	P16860
PIGF	phosphatidylinositol glycan anchor biosynthesis class F	Q07326
GDF-15	growth differentiation factor 15	Q99988
sFlt1	fms related tyrosine kinase 1	P17948
hs-CRP	C-reactive protein	P02741
H-FABP	fatty acid binding protein 3	P05413
galectin-3 (Gal-3)	galectin 3	P17931
soluble ST-2	interleukin 1 receptor like 1	Q01638
myeloperoxidase	myeloperoxidase	P05164
CCL23	C-C motif chemokine ligand 23	P55773
BSP	Bone sialoprotein 2	P21815
CD177	CD177 antigen	Q8N6Q3
vWF	von Willebrand factor	P04275
Tnl	troponin I3, cardiac type	P19429
NOTCH1	NOTCH1	P46531

MALDI IMS of Neurotransmitters from a Mouse Brain

Optical Image GABA m/z 104.18 H&E 5mm Glutamate m/z 148.06 Acetylcholine m/z 147.17 Epinephrine m/z 184.05 Norepinephrine m/z 170.01 Tryptophan m/z 205.23 Isoleucine/leucine m/z 132.13

Human Stem-Cell Model of Individual Sensitivities to Chemotherapy

HyperGEN – NHLBI Family Blood Pressure Program:

250 iPSC lines and Cardiomyocytes (iPSC-CMs)

- · African-American and Caucasian Cohort
- Phenotyping: Cardiovascular phenotypes and risk factors
- · Family-based ascertainment
- Whole Exome Sequencing data available
- Several chemotherapeutic kinase inhibitors (KIs) tested in cell lines from different individuals
- Some KIs are similarly toxic to all cell lines
- Other KIs (e.g., Nilotinib) are toxic only to certain cell lines
- Potential for facilitating precision medicine!

<u>Testis – Microphysiological System</u>

A Microfluidic Method to Mimic Luminal Structures in the Tumor Microenvironment

José A. Jiménez-Torres, David J. Beebe, and Kyung E. Sung

Fig. 3 Device assembly. First the device top and bottom layers are bonded together, followed by PDMS rods placement in the chamber. After performing the coatings described in Subheading 3.3, **step 5**, ECM gel is added and polymerized. PDMS rods are removed revealing the lumens that are lined with cells

Future Directions

- Further development of:
 - MALDI-IMS for detecting neuropharmacology impact
 - Expansion of transient hepatotoxicity model for biomarker discovery
 - Characterization of individual iPSC-CM lines for screening

- Single-cell RNAseq analysis?
 - Differences in individual cell responses to drugs
 - Explanation for focal lesions?

Feedback Requested

- For the approaches we are currently advancing (e.g., MALDI-IMS, MPS, iPSC-cells) are there areas we should explore other than those mentioned?
 - E.g. Whole-body MALDI imaging of drug / metabolites in rodents and/or zebrafish

 What developments (e.g., technology) on the horizon that would impact FDA are we missing?

