Alpha Lipoic Acid

Pharmacy Compounding Advisory Committee Meeting
September 12, 2018

Michael Brave, MD
Medical Officer
Division of Oncology Products I
Office of Hematology and Oncology Products
Office of New Drugs
Alpha Lipoic Acid Review Team

Ben Zhang, PhD, Staff Fellow, OPQ

Michael Brave, MD, Clinical Reviewer, DOP1, OHOP, OND

Yen-Ming Chan, PhD, ORISE Fellow, ODE4, OND

Wafa Harrouk, PhD, Senior Pharmacologist, ODE4, OND

Elizabeth Hankla, PharmD, Consumer Safety Officer, OUDLC, OC

Charles Ganley, MD, Office Director, ODE4, OND
Nomination

• Proposed uses
 – Diabetic neuropathic pain
 – (Amanita) mushroom poisoning
 – Pancreatic cancer
 – Liver disease, cirrhosis (plus “toxic disease”)
 – Fibromyalgia (plus “muscle pain”)

• Proposed routes of administration
 – Oral
 – Intravenous
 – Topical
Physical and Chemical Characterization of ALA

• An 8-carbon dithiol compound derived from octanoic acid
• Part of a redox pair where the reduced form is dihydrolipoic acid (DHLA)
• R-(+) isomer is an essential cofactor for mitochondrial enzymes
• Most commercial formulations are racemic mixtures of R and S isomers
• Sensitive to light and high temperature (> 40°C)
• More stable when prepared as a solid oral formulation than a liquid formulation under normal storage conditions (room temperatures, dark containers)
Physical and Chemical Characterization of ALA (2)

- Synthesis from cyclohexanone and vinyl ethyl ether

![Chemical Reaction Diagram]

- Trace impurities are unlikely to be toxic

Conclusion:
- ALA synthesis is well characterized
- ALA is very sensitive to light and high temperatures
- ALA is stable in solid oral dosage forms; unstable in aqueous formulations
General Pharmacology of ALA

• The R form of ALA occurs naturally in all prokaryotic and eukaryotic cells
• Part of several 2-oxo acid dehydrogenases and is involved in energy production
• Transfers acyl groups from one part of the enzyme complex to another
• Is reduced to DHLA, which is re-oxidized by lipoamide dehydrogenase in the presence of NADH

NADH: Nicotinamide adenine dinucleotide disodium reduced
NAD+: Nicotinamide adenine dinucleotide
DHLA: Dihydrolipoic acid
LipDH: Lipoamide dehydrogenase
Nonclinical Pharmacokinetics (PK)

- ALA is absorbed quickly following oral administration in rats and dogs
- ALA exposure is dose proportional in rats and dogs
- Following absorption, ALA undergoes rapid biphasic elimination; its main metabolite, DHLA, is mostly eliminated via the urine
- When applied topically in rats, maximum skin concentrations occur within 2 hours of exposure in the stratum corneum, followed by percutaneous absorption
Nonclinical Safety

- In acute toxicity studies, the cat was the most sensitive species, followed by the monkey, dog, mouse and rat.
- Route of administration impacts toxicity (intravenous was most toxic, followed by intraperitoneal, subcutaneous, and oral).
- The liver and kidney were targets of toxicity in short term studies in rats and cats.
- No toxicity was seen following chronic exposure in dogs.
- No data are available for reproductive/developmental toxicity.
- ALA is not mutagenic in the Ames and micronucleus genotoxicity assays.
- Carcinogenicity assessment was negative.
ALA Clinical Safety

• No randomized clinical trial reported serious toxicity; however, most did not appear designed to rigorously collect adverse event data
• No case series reported serious toxicity, but nausea, vomiting, and vertigo reported in up to 10% of patients at doses of 1800 mg daily
• Center for Food Safety and Nutrition Center’s Adverse Event Reporting System (CAERS) contained 73 case reports as of June 2018
• FDA Adverse Event Reporting System (FAERS) contained 46 individual case reports as of April 26, 2016
Effectiveness in Diabetic Neuropathy

Ten randomized controlled trials (RCTs) in patients with peripheral diabetic neuropathy

- Route of administration: oral (4 trials), intravenous (3 trials), and both oral and intravenous (3 trials) at doses from 100 to 1800 mg/day
- Primary outcome measure in six RCTs was the Total Symptom Score
- Seven of 10 RCTs and 3 meta analyses concluded that ALA modestly improved short-term neuropathic symptoms and/or nerve conduction parameters, and 3 RCTs detect no significant treatment effect
- Few trials included patients with type 1 diabetes
- No trial showed improvement in autonomic neuropathy
- No trial demonstrated long-term effect on natural history of neuropathy
Effectiveness in Amatoxin Poisoning

<table>
<thead>
<tr>
<th>Author</th>
<th>Time Period</th>
<th>Patient Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moroni(^a)</td>
<td>Pre-1976</td>
<td>33 of 33 (100%)</td>
</tr>
<tr>
<td>Nat'l Inst. of Health(^b)</td>
<td>Aug 1974 to Nov 1978</td>
<td>67 of 75 (89%)</td>
</tr>
<tr>
<td>Dluholucky(^c)</td>
<td>1977 to 2003</td>
<td>34 of 34 (100%)</td>
</tr>
<tr>
<td>Fantozzi(^d)</td>
<td>Autumn 1981</td>
<td>40 of 44 (91%)</td>
</tr>
<tr>
<td>Sabeel(^e)</td>
<td>1979 to 1994</td>
<td>19 of 19 (100%)</td>
</tr>
<tr>
<td>Floersheim(^f)</td>
<td>1971 to 1980</td>
<td>159 of 205 (78%)</td>
</tr>
<tr>
<td>Total</td>
<td>352 of 410 (86%)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Moroni. Arch Toxicol 1976;36:111.
Effectiveness in Amatoxin Poisoning (2)

• Limits to interpretation of available data
 – Inability to isolate the treatment effect
 – Use of historical controls for comparison
 – Use of exclusively IV formulations

• Current recommendations for the treatment of Amatoxin poisoning do not include ALA
The FDA identified no convincing reports that ALA has clinical activity or benefit in pancreatic cancer, liver disease (or cirrhosis or toxic disease), or fibromyalgia and associated muscle pain.
Effectiveness Conclusion

- **Diabetic neuropathy**
 Several RCTs found that ALA is associated with a modest improvement in neuropathic symptoms

- **Amatoxin poisoning**
 Some but not all case series suggest that the addition of ALA to comprehensive treatment protocols increases the odds of survival with full recovery

- **Pancreatic cancer, liver disease and fibromyalgia**
 FDA found no convincing reports of clinical activity
Historical Use in Compounding

- Compounding pharmacy journals suggest ALA has been compounded for at least 19 years.
- Internet advertising suggests that ALA has been compounded as an injection, suppository, topical and troche formulations.
- ALA is compounded for intravenous administration to treat diabetes and diabetic nephropathy.
- Insufficient data are available to determine the extent of ALA use in compounded drug products.
Summary

• ALA is adequately characterized chemically
• ALA may be unstable in aqueous formulations
• Available clinical reports revealed no serious safety concerns
• Clinical data suggest therapeutic potential for patients with diabetic neuropathy
• No credible evidence of meaningful clinical effectiveness in pancreatic cancer, liver disease, or fibromyalgia
• ALA appears to be compounded as an injection, suppository, topical product, and troche formulations
Recommendation

A balancing of the four evaluation criteria weighs in favor of ALA solid oral dosage forms being added to the list of bulk drug substances that can be used in compounding under section 503A of the FD&C Act.
Coenzyme Q₁₀

Pharmacy Compounding Advisory Committee Meeting
September 12, 2018

Susan Johnson, PharmD, PhD
Associate Director
Office of Drug Evaluation IV
Office of New Drugs
Coenzyme Q$_{10}$ Review Team

Ben Zhang, PhD, Staff Fellow, ONDP, OPQ

Nour Debiat, ORISE Fellow, ODE IV, OND

Yen-Ming Chan, PhD, ORISE Fellow, ODE IV, OND

Wafa Harrouk, PhD, Senior Pharmacology/Toxicology Reviewer, ODE IV, OND

Susan Johnson, PharmD, PhD, Associate Director, ODE IV, OND

Elizabeth Hankla, PharmD, Consumer Safety Officer, OUDLC, OC
Nomination

- Coenzyme Q$_{10}$ has been nominated for inclusion on the list of bulk drug substances for use in compounding under section 503A of the Federal Food, Drug, and Cosmetic Act (FD&C Act)

- It is proposed for oral use in the treatment of mitochondrial disorders
Physical and Chemical Characterization

- Coenzyme Q$_{10}$ is a term that can refer to one of two different benzoquinone molecules
 - Each molecule has 10 isoprenoid units in the side chain
 - Ubiquinone is the fully oxidized form and ubiquinol is fully reduced form
 - Ubiquinol was previously reviewed as a bulk drug substance for the 503A list

- The nominated substance is the all-trans isomer of **ubiquinone**
 - Also called ubidecarenone
 - Commonly referred to as CoQ$_{10}$

- CoQ$_{10}$ a well characterized structure

![Chemical Structure of CoQ$_{10}$](image-url)
Physical and Chemical Characterization (2)

- **CoQ\textsubscript{10}** is insoluble in water
 - Affects oral bioavailability
 - Compounding of intravenous formulations is not recommended

- Structure of CoQ\textsubscript{10} suggests that it would be stable under ordinary storage conditions for oral formulations

- Possible synthetic routes:
 - Chemical synthesis or semi-synthesis is feasible, but is low yield
 - Industrial production is usually via microbial fermentation

Conclusion:
- CoQ\textsubscript{10} is well characterized
- It is likely to be stable in oral formulations under normal storage conditions
• In healthy humans, CoQ\textsubscript{10} is endogenously synthesized in mitochondria
 – The total body pool of CoQ\textsubscript{10} is estimated to be 0.5 - 1.5 g

• CoQ\textsubscript{10} is found in all plants and animals, and many microorganisms
 – Humans have exogenous supply via foods; intake is 2 - 20 mg/day

• CoQ\textsubscript{10} is a
 – transporter of electrons during oxidative phosphorylation
 • generates adenosine triphosphate (ATP)
 • creates more than 90% of the energy needed by the body
 – cofactor for several mitochondrial dehydrogenases involved in fatty acid beta oxidation
 – cofactor for uncoupling proteins
 – cellular antioxidant that contributes to pyrimidine biosynthesis
 – modulator of the mitochondrial permeability pore that controls cellular apoptosis
Nonclinical Pharmacokinetics

• In rats
 – Single oral dose study of CoQ\textsubscript{10} compared the pharmacokinetics of a crystalline CoQ\textsubscript{10} formulation with several emulsion formulations
 – Time to maximum concentration (T\textsubscript{max}) did not significantly differ (~ 2.5 hrs) among the various formulations
 – Area under the curve (AUC) and the maximum concentration (C\textsubscript{max}) were higher with the emulsion formulations than with the crystalline formulation
 – 2-3% of orally administered dose is absorbed; human absorption is thought to be the same

• In dogs
 – Repeat dose (13 week) study showed an increase in C\textsubscript{max} and AUC from day 1 through week 7, when levels plateaued
Clinical Pharmacokinetics

• Without CoQ\textsubscript{10} supplementation, normal plasma levels are 0.3 – 1.48 µg/mL
 – Tissue concentrations are generally highest where energy requirements are greatest
 – Optimal concentrations have not been established

• With supplemental CoQ\textsubscript{10}
 – 2 - 3% of dose is absorbed, based on animal models, and is likely both passive and active
 – Taken up by liver cells and incorporated with lipoprotein transporters
 – Enterohepatic circulation
 – 95% of ubiquinone reduced to ubiquinol based on in vitro models
 – Three compartment pharmacokinetic model is best fit
 • Tmax is 6-8 hours after dosing
 • Distribution to peripheral tissues 6-12 hours
 • Terminal elimination half life of 33 hours
 – Steady state is reached in 3-4 weeks
 – Plasma concentration of 5 – 10 µg/mL at doses of 1200 mg/day
 – Metabolic pathways have not been well established
Nonclinical Safety

• Repeat oral dose toxicity studies did not show toxicities
 – In rabbits, no toxicities were seen with doses up to 600 mg/kg/day for 23 days
 – In rats, no toxicities were seen with doses up to
 • 1000 mg/kg/day for 4 weeks
 • 1200 mg/kg/day for 13 weeks
 • 3000 mg/kg/day for 90 days
 • 1200 mg/kg/day for 52 weeks
 – In dogs, no toxicities were seen with doses of 600 mg/kg/day after 13 weeks of dosing

• No evidence of genotoxicity in standard assay panel

• Developmental and reproductive toxicity
 – No adverse effects in pregnant rats and mice (up to 600 mg/kg/day CoQ_{10}) by oral gavage during the organogenesis stage of fetal development (gestational days 6-15)
 – No developmental studies were found in the literature

• In senescence study in mice, CoQ_{10} did not impact lifespan or tumor formation
Clinical Safety

• Adverse Events
 – FDA Adverse Event Reporting System (FAERS)
 • 19 reports
 • 2 deaths in pediatric patients with mitochondrial disorders; both appear to be related to underlying condition
 – CFSAN Adverse Event Reporting System (CAERS)
 • 837 reports; most confounded by use of multiple supplements preventing causality assessment
 • 8 deaths reported due to stroke (n = 2), cancer (n = 2), myocardial infarction (n = 1), pulmonary embolism (n = 1), and unspecified cause (n = 2); not identified as mitochondrial disease patients
 • 22 cases in which CoQ_{10} was only dietary supplement or drug mentioned; no apparent safety signal
 – Three clinical studies of CoQ_{10} in healthy individuals
 • Oral dosing up to 3000 mg daily
 • Most common adverse events reported were gastrointestinal symptoms
Clinical Safety (2)

- No studies have been designed to assess the safety of CoQ$_{10}$ in patients with mitochondrial disorders
 - Glover et al. (2010) found CoQ$_{10}$ treatment to be positively associated with urinary levels of 8-hydroxy-2-deoxyguanosine
 - The authors presumed this was a marker of “deleterious” oxidative stress that may be associated with higher doses of CoQ$_{10}$ (e.g., 1200 mg per day) taken for prolonged periods
 - Remes et al. (2002) reported death of a patient on 39th day of treatment with 3 mg/kg daily of CoQ$_{10}$
 - Autopsy revealed cardiomyocyte degeneration and active fibrotic changes in the myocardium; not attributed to CoQ$_{10}$
 - Second patient died during nicotinamide crossover treatment; found to have 50% stenosis in left anterior descending coronary artery and other changes; not attributed to treatments
 - Three additional patients died shortly after the 24 month trial
 - Authors conclude that CoQ$_{10}$ and/or nicotinamide could be harmful in patients with severely disturbed mitochondrial function
Safety Conclusion

• CoQ\textsubscript{10} appears to be associated with non-serious adverse events
 – Primarily gastrointestinal symptoms
 – Most available safety data are derived from healthy individuals

• Minimal information is available to establish safety in patients with various types of mitochondrial disorders
 – Safety profile may differ from that of healthy individuals
Synthesis of CoQ$_{10}$ in Mitochondria

(Acosta et al. 2016)
Effectiveness in Primary CoQ$_{10}$ Deficiency

- Rare disease
 - Autosomal recessive mitochondrial disorder
 - Directly related to CoQ$_{10}$ biosynthesis
 - Five main clinical phenotypic groups, each associated with one or more of nine genetic mutations

- Clinical improvement observed in association with CoQ$_{10}$ supplementation
 - No clinical trials
 - Use is recommended in Mitochondrial Medicine Society (MMS) guidelines (Parikh et al. 2015)
 - Early treatment appears key to preventing long term impairment
Effectiveness in Other Mitochondrial Disorders

• Numerous rare diseases affecting mitochondrial functions
 – Biosynthesis of CoQ\textsubscript{10} is not necessarily affected
 – Each of the many identified genetic defects is associated with various phenotypic presentations
 – Treatments are largely supportive

• One randomized, double-blind, placebo-controlled crossover study (Glover et al. 2010)
 – 60 day treatment periods separated by 70 day washout period
 – CoQ\textsubscript{10} dose of 600 mg twice daily
 – 30 patients; unequal representation of 5 different diagnoses
 – “Lack of effect on most measured variables” per authors
 – Established that systemic exposure to CoQ\textsubscript{10} increased with supplementation

• MMS guidelines
 – Evidence for use of CoQ\textsubscript{10} is “sparse”
 – Recommend that CoQ\textsubscript{10} “should be offered to most patients with a diagnosis of mitochondrial disease”
Effectiveness Conclusion

• Based on a small amount of clinical data, clinical guidelines recommend the use of CoQ_{10} in the treatment of primary CoQ_{10} deficiency

• There are no compelling data that establish efficacy in the support of the treatment with CoQ_{10} of other mitochondrial diseases
 – The results of CoQ_{10} therapy have been described in numerous publications
 – In the absence of FDA approved therapies, it is recommended by therapeutic experts in the treatment of other mitochondrial disorders
 – Data do not definitively support effectiveness for particular uses or particular doses
Historical Use in Compounding

• CoQ_{10} has been compounded in oral and other dosage forms for a variety of medical conditions since at least 1999

• Advertised online as a component of some “mito cocktails,” which are various combinations of vitamins and dietary supplements commonly used in adults and children with mitochondrial disease

• Insufficient data are available from which to determine the extent of use of CoQ_{10} in compounded drug products

• CoQ_{10} is listed in the British, European, and Japanese Pharmacopeias
Recommendation

A balancing of the four evaluation criteria weighs in favor of coenzyme Q$_{10}$ for oral administration being added to the list of bulk drug substances that can be used in compounding under section 503A of the FD&C Act.
Bioavailability: Ubiquinone vs Ubiquinol

- Ubiquinol (reduced form of coenzyme Q\textsubscript{10}) presented to PCAC May, 2017 for oral use as an adjunct in glycemic control
- Pharmacokinetic information for a single oral dose (180 mg) using various formulations from the same company - measured total coenzyme Q\textsubscript{10} (ubiquinol plus ubiquinone) in plasma (Miles et al. 2002)

<table>
<thead>
<tr>
<th>Formulation</th>
<th>C_{max}</th>
<th>T_{max}</th>
<th>$C_{12\text{ h}}$</th>
<th>$\text{AUC}_{0-144\text{ h}}$</th>
<th>$\text{AUC}_{0-\infty}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Ubiquinone – solubilized* form in liquid syrup, 10 mg/mL</td>
<td>1.03 ± 0.37</td>
<td>6.2 ± 1.6</td>
<td>0.51 ± 0.13a</td>
<td>35.82 ± 14.15</td>
<td>51.67 ± 38.01</td>
</tr>
<tr>
<td>(B) Ubiquinol – in soft gel capsule, 30 mg</td>
<td>1.27 ± 0.66</td>
<td>8.1 ± 6.3</td>
<td>0.55 ± 0.19a</td>
<td>41.09 ± 21.82</td>
<td>55.26 ± 34.53</td>
</tr>
<tr>
<td>(C) Ubiquinone – solubilized* form in soft gel capsule, 30 mg</td>
<td>1.03 ± 0.50</td>
<td>5.8 ± 0.7</td>
<td>0.37 ± 0.06</td>
<td>30.0 ± 9.33</td>
<td>38.80 ± 17.33</td>
</tr>
<tr>
<td>(D) Ubiquinone – non-solubilized powder in hard capsule</td>
<td>0.12 ± 0.05</td>
<td>6.7 ± 1.0</td>
<td>0.05 ± 0.06</td>
<td>2.81 ± 3.46</td>
<td>Not assessed</td>
</tr>
</tbody>
</table>

*Contains emulsifying agent and/or oil based vehicle
a A and B are statistically different than C Control (p< 0.05); D was not included in the statistical comparisons.
Creatine Monohydrate

Pharmacy Compounding Advisory Committee Meeting
September 12, 2018

Susan Johnson, PharmD, PhD
Associate Director
Office of Drug Evaluation IV
Office of New Drugs
Creatine Monohydrate Review Team

Ben Zhang, PhD, Staff Fellow, ONDP, OPQ

Nour Debiat, ORISE Fellow, ODE IV, OND

Farjad Khan, PharmD, ORISE Fellow, ODE IV OND

Yen-Ming Chan, PhD, ORISE Fellow, ODE IV, OND

Wafa Harrouk, PhD, Senior Pharmacology/Toxicology Reviewer, ODE IV, OND

Susan Johnson, PharmD, PhD, Associate Director, ODE IV, OND

Elizabeth Hankla, PharmD, Consumer Safety Officer, OUDLC, OC
Nomination

• Creatine monohydrate has been nominated for inclusion on the list of bulk drug substances for use in compounding under section 503A of the Federal Food, Drug, and Cosmetic Act (FD&C Act)

• It is proposed for oral use in the treatment of mitochondrial disorders

• It has also been reviewed for oral use in the treatment of creatine deficiency syndromes
Physical and Chemical Characterization

• Creatine monohydrate is a crystal form of creatine and both substances are considered the same active pharmaceutical ingredient (API)

• Creatine is a nonessential amino acid with a well characterized structure

\[
\text{H}_2\text{N}\text{C} = \text{N} - \text{C} = \text{O}\text{H}
\]

• Creatine is slightly soluble in water

• Stability
 – Likely to be stable at room temperature if kept in **solid form** and away from moisture
 – Unstable in aqueous solutions, including aqueous formulations intended for oral administration
Physical and Chemical Characterization (2)

- Possible synthetic route via a reaction between cyanamide and N-methylglycine

\[
\begin{array}{c}
\text{H}_2\text{N} - \text{N} - \text{NH}_2 \\
\end{array}
\]

Conclusion:
- Creatine is well characterized
- Solid oral formulations are likely to be stable under normal storage conditions if kept away from moisture; aqueous formulations are unlikely to be stable

www.fda.gov
General Pharmacology

• In healthy humans, creatine is endogenously synthesized
 – Synthesized from amino acids glycine, arginine and methionine at a rate of 1 – 2 g/day
 – Process involves kidney, pancreas and liver

• Transported in plasma to target tissues
 – 95% total body pool in skeletal and cardiac muscle
 – 5% in brain, liver and other organs

• May also be ingested from meat, fish and other animal products
General Pharmacology (2)

• Creatine functions to insure energy supply to muscle:
 – When muscle is at rest, the high energy phosphate bond from adenosine triphosphate (ATP) is transferred at the mitochondrial membrane to creatine which is stored as creatine phosphate (PCr)
 \[
 \text{ADP} + \text{PCr} \quad \xrightarrow{\text{creatine kinase}} \quad \text{Cr} + \text{ATP}
 \]
 – During submaximal exercise, ATP is generated from adenosine diphosphate (ADP) through aerobic glycolysis
 – During intense exercise, anaerobic glycogenolysis employs transfer of high energy phosphate bonds from intracellular PCr to ADP to form ATP
Pharmacokinetics

• From rodent models of oral dosing
 – Creatine is quickly absorbed from the gastrointestinal tract but has low bioavailability
 – Reaches time to maximum concentration (Tmax) within 2 hrs
 – Slowly distributed throughout the body with the highest concentrations in skeletal muscle where it is stored as PCr

• Clinical
 – Absorption is believed to involve passive and active transport through the intestinal wall
 – The portion of an orally administered dose that is absorbed is unknown
 – Plasma protein binding likely to be low due to hydrophilicity of creatine
 – Creatine transporter (CreaT) has been shown to be responsible for cellular uptake
 – Storage in muscle is saturable; excess creatine is excreted in the urine
 – Creatine in muscle is slowly metabolized to creatinine, released from muscle and eliminated in the urine
 – Approximately 2 g of creatine needs to be synthesized or ingested per day
 – No pharmacokinetics in patients with mitochondrial disorders or creatine deficiency syndromes
Nonclinical Safety

• Repeat Oral Dose Toxicity
 – 15-day toxicity study in rats and chickens (0.25 or 0.50 g/kg/day in drinking water) showed no adverse findings in histology of the liver, kidney, or skeletal muscles
 – In rodent models
 • 28-day study in rats showed no adverse findings when dosed in food up to 2 g/kg/day
 • 2 studies of renal function resulted in conflicting data; one study showed no adverse effects and the other study suggested creatine further reduced renal function in rats with pre-existing kidney disease with the human equivalent dose of 20 g/day for 1 week followed by 5 g/day for 5 weeks (a standard regimen for exercise performance enhancement with creatine dietary supplement)
 • Several studies of hepatic function in rodents resulted in conflicting data, with inflammatory changes seen in mice but not rats

• Genotoxicity
 – Ames assay was negative
 – When heated to high temperatures (e.g., food preparation grilling), creatine was mutagenic

• No developmental and reproductive toxicity data were found

• No carcinogenicity data were found
Clinical Safety

• Adverse Events
 – FDA Adverse Event Reporting System (FAERS)
 • 4 cases, including 2 serious cases
 • 42-year old male died of cardiac arrest while on hemodialysis due to acute renal failure. Patient had taken 5 g per day of creatine for an unspecified period of time, was diagnosed with diabetes, prescribed metformin and developed lactic acidosis, a potential adverse effect of metformin. It is unclear whether the patient had pre-existing diabetic nephropathy.
 • 38 year old who had been taking creatine-containing supplements for past several years was diagnosed with drug-induced cholestatic hepatitis after taking anabolic “prohormones.” Liver injury attributed to the anabolic steroids
 – CFSAN Adverse Event Reporting System (CAERS)
 • 139 reports including 4 deaths, each apparently unrelated to creatine use
 • 8 reports in which creatine supplements were the only substance that the patient was reported to have taken; no serious events and no renal toxicity
Clinical Safety (2)

• Clinical studies
 – No serious adverse events were reported in studies of patients with mitochondrial disease
 – No studies in patients with creatine deficiency syndrome

• Published adverse event cases
 – One case report of urinary crystals being observed in a creatine deficiency syndrome patient taking doses of 800 mg/kg/day; resolved with dose reduction
 – 18 year old male with mitochondrial disease and preexisting nephropathy, who had been given 20 g creatine daily for 12 days, then 5 g daily for 28 months, experienced increased renal insufficiency with urea retention and impaired creatinine clearance. Decline was associated with underlying disease but clinician authors recommend use of creatine with caution in patients with mitochondrial disease.
Clinical Safety (3)

• Creatine renal toxicity review (Gualano et al. 2012)

 – Numerous published cases and anecdotes between late 1990s and 2012; many associated with use of creatine in healthy individuals for the purpose of enhanced athletic performance and muscle strength

 – Doses of approximately 2-5 g/day over a period of months does not appear to be associated with renal toxicity in patients with normal renal function

 – Higher doses (>5 g/day) are not recommended for chronic use

 – Special populations, including those with disease states that may affect renal function, have not been adequately studied
Safety Conclusion

• In healthy adults, creatine appears to be generally associated with non-serious adverse events
 – Urinary crystals were observed at doses of 800 mg/kg/day in a creatine deficiency syndrome patient

• Clinical data may support the potential for creatine to cause renal toxicity particularly in patients who have, or are at risk of, renal impairment.
 – Observed inconsistently in nonclinical data
 – Mitochondrial disorders are often associated with renal impairment
Effectiveness in Creatine Deficiency Syndromes

- Rare diseases
 - Autosomal recessive inborn genetic errors
 - Result in diminished brain pool of creatine based on magnetic resonance spectroscopy (MRS) assessment and related cognitive and functional disabilities
 - Distinct from mitochondrial disorders
 - Two syndromes are due to enzyme deficiencies in creatine synthesis process
 - L-arginine-glycine amidinotransferase (AGAT) deficiency; review in 2015 reported 16 patients in 8 families worldwide
 - Guanidinoacetate methyl-transferase (GAMT) deficiency; review in 2014 reported 48 patients in 38 families worldwide
 - No prospective clinical trials
 - No FDA approved drugs for this indication
 - Used doses up to 800 mg/kg/day, creatine has been documented to increase brain creatine levels and improve symptoms
 - Differing views on use in CreaT transporter deficiency
Effectiveness in Mitochondrial Disorders

• Rare diseases involving various functions of mitochondria
 – Numerous identified genetic defects, each responsible for various phenotypic presentations
 – No approved FDA drugs; treatments are largely supportive

• Three placebo-controlled crossover studies
 – Use of exercise performance metrics (strength, torque, plasma lactate, etc)
 – Minor improvement on subset of endpoints in first study only during high-intensity aerobic and anaerobic activities; not replicated
 – Dosing up to 20 g creatine per day; creatine plasma levels were shown to have increased during treatment

• Mitochondrial Medicine Society guidelines
 – Do not provide a recommendation for the use of creatine
Effectiveness Conclusion

- Based on a small amount of clinical data, creatine is used in the treatment of creatine deficiency syndromes, AGAT deficiency and GAMT deficiency.

- There are no compelling data that establish efficacy in the support of creatine treatment of mitochondrial diseases.
Historical Use in Compounding

- Insufficient data are available from which to determine how long creatine has been used in compounded drug products and the extent of use.
- Advertised online as a component of some “mito cocktails,” which are various combinations of vitamins and dietary supplements commonly used in adults and children with mitochondrial disease.
- Creatine is not listed in the British, European, and Japanese Pharmacopeias.
A balancing of the four evaluation criteria weighs in favor of creatine monohydrate solid oral dosage forms being added to the list of bulk drug substances that can be used in compounding under section 503A of the FD&C Act.
Backup Slides
Stability of Creatine in Solution

• Based on published literature, stability concerns are most prominent at low pH (e.g., pH 1.5 – 4)
 (References Edgar 1925 and Cannan 1928)

• Degradation also occurs in solution at higher pH (e.g., pH 6 – 7)
 – Degradation process is slower
 – Relevant to compounded formulations
Pyridoxal-5-Phosphate Monohydrate

Pharmacy Compounding Advisory Committee Meeting
September 12, 2018

Susan Johnson, PharmD, PhD
Associate Director
Office of Drug Evaluation IV
Office of New Drugs
Pyridoxal-5-Phosphate Monohydrate
Review Team

Ben Zhang, PhD, Staff Fellow, ONDP, OPQ
Nour Debiat, ORISE Fellow, ODE IV, OND
Farjad Khan, PharmD, ORISE Fellow, ODE IV OND
Yen-Ming Chan, PhD, ORISE Fellow, ODE IV, OND
Wafa Harrouk, PhD, Senior Pharmacology/Toxicology Reviewer, ODE IV, OND
Susan Johnson, PharmD, PhD, Associate Director, ODE IV, OND
Elizabeth Hankla, PharmD, Consumer Safety Officer, OUDLC, OC
Charles Ganley, MD, Director, ODE IV, OND
Nomination

- Pyridoxal-5-phosphate monohydrate has been nominated for inclusion on the list of bulk drug substances for use in compounding under section 503A of the Federal Food, Drug, and Cosmetic Act (FD&C Act)
- It is proposed for oral and intravenous use in the treatment of epilepsy and seizure disorders
Physical and Chemical Characterization

- Pyridoxal-5-phosphate monohydrate and pyridoxal-5-phosphate (PLP) are considered the same active pharmaceutical ingredient (API)
- PLP has a well characterized structure
- PLP is soluble in water
Physical and Chemical Characterization (2)

• Stability
 – In aqueous solution, PLP is stable at neutral and weak acidic or alkaline conditions (pH 5.0 – 8.0) up to 98°C
 – No stability issues were found in association with the solid form of PLP

• PLP can be synthesized from pyridoxamine

![Chemical Reaction Diagram]

Conclusion:
- PLP is well characterized
- It is likely to be stable under normal storage conditions as oral or intravenous dosage forms
- Aqueous dosage forms will be most stable at neutral and weak acidic or alkaline conditions
• Vitamin B₆ is comprised of 6 structurally related compounds (vitamers)
 – Pyridoxal (PL), pyridoxine (PN), and pyridoxamine (PM) PLUS their phosphorylated esters
 PNP, PMP and PLP
 – They can be interconverted in the human body

• PLP is the metabolically active form of vitamin B₆

• PLP is an essential cofactor for at least 140 different enzymatic reactions
 – Amino acid metabolism
 – Heme and neurotransmitter synthesis
 – Metabolism of glycogen, lipids, steroids, vitamins
 – Conversion of tryptophan to niacin

• PLP is found in animal food sources
 – FDA recommends a tolerable upper limit of 100 mg/day of vitamin B₆ in food
Pharmacokinetics

• No nonclinical pharmacokinetic data were found for PLP

• With oral ingestion in healthy humans
 – Generally, only non-phosphorylated vitamers are absorbed
 – Vitamers that are phosphorylated when ingested (PNP, PMP and PLP) are hydrolyzed by intestinal phosphatases
 – The non-phosphorylated forms (PN, PM and PL) are rapidly absorbed (40% of dose in 10 minutes for PL) using an energy dependent process
 – Following absorption, PN, PM and PL are phosphorylated, a reaction catalyzed by pyridoxal kinase, found primarily in the liver
 – PNP and PMP are converted to the metabolically active form, PLP, via pyridoxine-5-phosphate oxidase, also known as pyridoxamine-5-phosphate oxidase or PNPO

• At high doses, PLP is absorbed without being hydrolyzed, reducing the dependence on PNPO conversion of PNP and PMP to PLP
Pharmacokinetics (2)

- Following oral administration of a 100 mg dose of PN, PM or PL, most is excreted unchanged in urine by 36 hours after dosing (Ink and Henderson 1984)

- Drugs interactions
 - Drugs that can react with carbonyl groups have the potential to interact with PLP: isoniazid, L-dopa
 - Women using high-dose oral contraceptives may have decreases in vitamin B\textsubscript{6} status indicators
Nonclinical Safety

• No toxicity data were found specific to PLP

• For vitamin B₆
 – Repeat dosing of high doses results in neuronal damage and sensory and motor effects in multiple species; dose and duration dependent
 – Developmental and reproductive toxicity in rats
 • Vitamers have been shown to cross the placenta barrier and reach the fetus
 • Decreased weight of the epididymides and decreased number of sperm in rats dosed with vitamin B₆ for 6 weeks (IP injection of 125-1000 mg/kg/day)
 • When dosed between gestation days 6-15 (IP injection of 20-80 mg pyridoxine/kg/day), no teratogenicity was seen
 • At higher doses ≥400 mg/kg, there was a significant decrease in body weight of pups
 – No genotoxicity or carcinogenicity studies were found
Clinical Safety

• Adverse Events
 – FDA Adverse Event Reporting System (FAERS)
 • 20 cases for PLP; 12 cases are likely related to concomitant medication or underlying disease
 • In 8 cases, including 6 deaths, limited information did not provide sufficient details to assess causality
 – CFSAN Adverse Event Reporting System (CAERS)
 • 98 reports for PLP; no deaths
 • Use of multiple ingredient supplements was reported in each case and confounded causality assessment
 – Clinical studies
 • No studies designed to assess safety
 • Literature reports of neuronal damage and sensory and motor effects with vitamin B₆ at high doses; can be expected to occur with PLP as well
 • At high doses, PLP can interfere with platelet function
 • Dermatologic, gastrointestinal and hepatic events have been reported
Safety Conclusion

• PLP is generally safe and well tolerated
• With prolonged high doses, it may be associated with peripheral nerve injury
• Dermatologic, gastrointestinal and hepatic events have been reported
Effectiveness

- **Pyridoxal-5-phosphate (PLP) dependent epilepsy**
 - Caused by enzyme deficiency of PNPO
 - Autosomal recessive rare disease due to inborn error of metabolism, a mutation in the PNPO gene
 - Onset is generally within the first 2 weeks of life
 - Myoclonic seizures that may become status epilepticus
 - Patients are often encephalopathic
 - Not responsive to anticonvulsants or to pyridoxine (in patients with residual PNPO function)

- **Oral administration of PLP at high doses**
 - Results in cessation of seizures quickly and contributes to confirmation of diagnosis
 - Multiple published treatment guidelines and case studies
 - Doses of 10 – 100 mg/kg/day divided into 4 – 6 doses as oral suspension
 - Treating disorder early in life is the key to avoiding irreversible neurologic damage

- Generally not recommended for treatment of adult seizures, but related research is ongoing
Effectiveness Conclusion

- PLP is effective for treating PLP dependent epilepsy in neonates and infants caused by PNPO deficiency
Historical Use in Compounding

• PLP has been used in pharmacy compounding since at least 2010 in oral suspension, injectable, and transdermal dosage forms

• PLP is known to be compounded to treat PLP-dependent epilepsy and as adjunct therapy for autism spectrum disorders

• Insufficient data are available from which to determine the extent of use of PLP in compounded drug products

• PLP is not listed in the British, European, or Japanese Pharmacopeias
A balancing of the four evaluation criteria weighs in favor of pyridoxal-5-phosphate monohydrate oral and intravenous dosage forms being added to the list of bulk drug substances that can be used in compounding under section 503A of the FD&C Act.
Quercetin Dihydrate

Pharmacy Compounding Advisory Committee Meeting
September 12, 2018

Charles Ganley, MD
Office Director
Office of Drug Evaluation IV
Office of New Drugs
Quercetin Review Team

Ben Zhang, PhD, Staff Fellow, ONDP, OPQ
Yen-Ming Chan, PhD, ORISE Fellow, ODE IV, OND
Nour Debiat, ORISE Fellow, ODE IV, OND
Dana Valentine, ORISE Fellow, ODE IV, OND
Wafa Harrouk, PhD, Senior Pharmacology/Toxicology Reviewer, ODE IV, OND
Charles Ganley, MD, Office Director, ODE IV, OND
Elizabeth Hankla, PharmD, Consumer Safety Officer, OUDLC, OC
Nomination

• Quercetin dihydrate has been nominated for inclusion on the list of bulk drug substances for use in compounding under section 503A of the Federal Food, Drug, and Cosmetic Act (FD&C Act)

• Proposed uses:
 – Asthma
 – Allergy
 – Hypertension
 – Cancer prevention and treatment

• Proposed routes of administration:
 – Oral
 – Sublingual
 – Intravenous
 – Intramuscular
Physical and Chemical Characterization

- Quercetin is a naturally occurring flavonol found in fruits and vegetables.
- It is a yellow crystalline solid chemical with a well characterized structure.
- Quercetin exists in different crystalline forms based on the degree of hydration.
- It is stable in its solid form when protected from oxygen.
Physical and Chemical Characterization (2)

• Quercetin **dihydrate** is the most thermodynamically stable hydrate form which may contribute to a lower bioavailability.
• It is less stable in aqueous solutions due to rapid oxidation and other degradations under basic conditions and is unlikely to be stable when compounded as aqueous solutions.
• Possible synthetic route: Extraction from plant tissues
 – Rapid extraction from powdered quercetin bark with dilute ammonia and boiling of the extract with sulfuric acid.
Physical and Chemical Characterization (3)

Summary

• Quercetin is a naturally occurring, well characterized flavonol
• Quercetin extraction and synthesis is well developed
• It is likely to be stable in a solid form when protected from oxygen, but not in aqueous formulations
• Quercetin dihydrate is the most thermodynamically stable hydrated form which may affect the bioavailability
General Pharmacology

- The average quercetin dietary intake from food sources for humans ranges from 25-205 mg/person/day; in some individuals with high intake of fruit and vegetables it may increase to 1250 mg/day
- In its natural form in food, quercetin exists as quercetin glycoside or rutinoside
- Approximately 150 glycosides of quercetin have been described and includes mono-, di-, or oligosaccharides
In the gut, quercetin glycosides are converted to quercetin aglycone and sugar moieties; this is important because quercetin is lipophilic while the glycoside forms are polar.

Based on in vitro and in vivo models, quercetin may act as an antioxidant, anti-inflammatory, anti-proliferative, anti-angiogenic agent; many of these models are conducted with quercetin aglycone and not quercetin metabolites.
Pharmacokinetics

• The bioavailability of quercetin is generally poor and variable
• For solid dosage formulations, the chemical form of quercetin makes a difference
• In a study comparing absorption of quercetin from quercetin dihydrate and onion skin extract, the bioavailability of quercetin was greater with the extract (Burak et al. 2017)
Pharmacokinetics (2)

- Elimination of quercetin is via conjugation reactions or ring fission to eventually produce benzoic acid which is excreted in the kidneys
- Conjugation occurs quickly in the intestinal cell; the aglycone form undergoes glucuronidation, sulfation and methylation; these are the primary forms of circulating quercetin
- Conjugated forms have little or no activity

- Conjugated forms excreted in the bile fluid can undergo enterohepatic circulation
Pharmacokinetics: Metabolism
Pharmacokinetics (4)

• Various foods and drinks can affect quercetin absorption

• There are potential drug interactions through different mechanisms
 – Quercetin interacts with different CYP P450s that have not been fully characterized (e.g. 2C9, 1A2, 2C19, 2D6)
 – Quercetin may enhance or inhibit the transport of P-glycoprotein substrates (e.g. vincristine) depending on the concentration of quercetin
Nonclinical Safety

Acute toxicity
• There is limited data on the acute toxicity of quercetin; observational studies were limited to animal symptoms without histopathology

Repeat Dose toxicity
• No toxicities seen in rabbits for orally fed quercetin (1%) for 410 days
• In a 2-year rat carcinogenicity study, increased severity of chronic nephropathy, slight increase in focal hyperplasia of the renal tubule epithelium and an increased incidence of parathyroid hyperplasia were seen in males at ≥ 10,000 ppm
• A 6-month interim report of the 2-year study showed reduction in body weight among females (40,000 ppm) and increases in relative kidney and liver weights in both sexes (40,000 ppm)
Nonclinical Safety (2)

• Genotoxicity
 – Positive genotoxic signal for in vitro studies (Ames, chromosomal aberrations and sister chromosome aberrations)
 – Negative genotoxic signal for in vivo studies (micronuclei, sister chromatid exchange)

• Developmental and reproductive toxicity
 – No adverse effects reported in the literature

• Carcinogenicity
 – Oral administration of quercetin (0.1% in diet for 540 days) in rats did not increase the incidence of tumor formation when compared to concurrent controls
Clinical Safety

FDA Adverse Event Reporting System (FAERS)
• 7 reports submitted to FDA for an FDA approved drug included concomitant use of quercetin
• Attribution to quercetin not possible because of multiple concomitant drugs or limited information
• One report of possible interaction with apremilast (metabolized by CYPs with subsequent glucuronidation)

CFSAN Adverse Event Reporting System (CAERS)
• 20 reports: 7 hospitalizations reported; none appear to be directly related to taking quercetin.
• Majority of cases were confounded by multiple medications and/or underlying disease or there was insufficient information for assessment.
Clinical Safety (2)

• No adverse events reported in clinical trials for orally administered quercetin
• No safety related case reports were found in the literature
• Serious adverse events occurred after administration of high dose intravenous quercetin to patients with cancer including:
 – Pain at the site of injection (≥ 60 mg/m²)
 – Dyspnea (≥ 1400 mg/m²)
 – Vomiting (≥ 1700 mg/m²)
 – Significant renal toxicity (≥ 630 mg/m²; some patients had residual renal injury after treatment stopped)
• Drug-drug interaction studies:
 – Quercetin significantly induced CYP3A activity to substrate midazolam and the induction was partly related to CYP3A5 genotype
 – Quercetin isolated from St. John’s Wort has been shown to inhibit activities of cytochromes 1A2, 2C19 and 2D6
Clinical Effectiveness

Cancer prevention and treatment

- There are mechanistic in vitro studies, sporadic small clinical studies and extensive literature on purported mechanisms for treating a wide variety of cancer, but no compelling clinical studies evaluating effectiveness.
- For prevention, there are no clinical studies and most information is based on dietary intervention with multiple dietary ingredients. None of which is supportive of use to prevent cancer.

Allergy

- Most clinical studies conducted to date have evaluated combinations or mixtures of ingredients either in the form of an herbal product or in a food substance. There is insufficient data from clinical studies to support the effectiveness of quercetin in the treatment of allergy.
Clinical Effectiveness (2)

Hypertension

• In a meta-analysis of available randomized controlled trials evaluating the impact of quercetin on blood pressure (BP), the authors suggested a statistically significant effect of quercetin supplementation in the reduction of BP when used at doses higher than 500 mg/day
 • However, in evaluating each study in the meta-analysis, we did not find a single study that showed a significant effect on blood pressure compared to placebo
 • In the studies reporting a statistically significant effect on blood pressure, the authors conducted within treatment comparisons (baseline minus end-study visit) and not between treatment comparisons; the change in blood pressure for quercetin versus placebo did not show a significant difference

Asthma

• No clinical studies where quercetin was administered and evaluated for the treatment of asthma were found
Clinical Effectiveness: Conclusion

• There is insufficient data to support the effectiveness of quercetin in the treatment of cancer, allergy, hypertension or asthma
Historical Use in Compounding

• Insufficient information is available to determine how long quercetin has been used in pharmacy compounding

• Insufficient data are available from which to draw conclusions about the extent of use of quercetin in compounded drug products

• Quercetin is not listed in the British, European or Japanese Pharmacopeias
Recommendation

Chemistry
• Quercetin dihydrate is well characterized and stable in a solid dosage form if protected from oxygen
• It is likely to be unstable in aqueous solutions and readily undergoes oxidation

Safety
• With oral administration, there appear to be no serious adverse effects; for intravenous administration, serious adverse events include dyspnea, vomiting and kidney toxicity
• Oral absorption is poor and variable
• There is rapid metabolism to glucuronides and sulfates which raise questions about the bioavailability of quercetin aglycone
• There are potential interactions with CYP enzymes that have not been fully explored which raise concerns about potential drug interaction if used with approved drug products that are metabolized by CYP enzymes; there may be interactions with transporters
Recommendation (2)

Effectiveness

• There is insufficient data to support the effectiveness of quercetin in the treatment of cancer, allergy, hypertension or asthma

Historical Use in Compounding

• Insufficient data are available from which to draw conclusions about the extent of use of quercetin in compounded drug products
Recommendation (3)

- A balancing of the four evaluation criteria weighs **against** quercetin dihydrate being added to the list of bulk drug substances that can be used in compounding under section 503A of the FD&C Act.