

Models in support of oncology drug combinations and dosing

Sergey Aksenov

Yuri Kosinsky, Kirill Peskov, Veronika Voronova, Lulu Chu, Nidal Al-Huniti, Helen Tomkinson, Sergey Aksenov, Donald Stanski, Gabriel Helmlinger

Quantitative Clinical Pharmacology, Early Clinical Development M&S Decisions, Moscow, Russia

FDA-ISoP Public Workshop: Model Informed Drug Development (MIDD) for Oncology Products February 1, 2018

Outline

- AstraZeneca drug-disease modeling approach in oncology integrates PK/PD and pathophysiology from animal and human and clinical data to predict clinical outcomes.
- A quantitative systems pharmacology model of mouse treated with radiation and anti-PDL1 was qualified to describe immune-tumor interactions and predict tumor response to immunooncology combinations.

Drug-disease modeling integrates drug PK/PD, physiology and clinical data to predict clinical outcomes

Quantitative systems pharmacology modeling enables the research of dose, schedule, sequencing of immunotherapy combinations

Joint modeling of tumor size dynamics and survival is used to predict survival outcomes for novel combinations

TS – tumor size ORR – overall response rate PFS – progression-free survival OS – overall survival

Quantitative systems pharmacology model of anti-PDL1 monoclonal antibody and radiation in mouse

Model captures anti-PDL1 effect, key immune cells interactions, and tumor size dynamics.

8 / 25 parameters fitted to data, 17 / 25 parameters estimated from literature and biological constraints.

Ability of T cells to infiltrate tumor tissue was modeled as a distribution across mouse subjects.

The mouse model of immune system/tumor size described the training anti-PDL1 and radiation data well

Black dashes + solid lines: data median + individual responses

Solid red: model-predicted median

Red-shaded areas (light to dark): 90%, 60% and 30% prediction intervals

The mouse model of immune system/tumor size was qualified to describe immune interactions by predicting external anti-CD8 data

Black dashes + solid lines: data median + individual responses

Solid red: model-predicted median

Red-shaded areas (light to dark): 90%, 60% and 30% prediction intervals

The mouse model of immune system/tumor size explained how tumor infiltration by T cells drives tumor response

Intensive and rapid infiltration of T cells into tumor tissue corresponds to complete responders.

Responders have higher maximal mature dendritic cells and intratumor T-effector cells.

Baseline T-effector cells are higher in responders.

Early, effective T cell infiltration overcomes immunosuppressive resistance in the tumor, resulting in response

- non-responders - median behaviour - responders

Efficacy of anti-PDL1 and radiation combo depends on relative timing and is lower in more established tumors

A general mouse model of immune system/tumor size describes the effect targeted therapies

The mouse model of immune system/tumor size predicted proportion of complete mice responders for combinations

Teff	Treg	MDSC	Treatment	Efficacy, %
+	+/-	++	aPD-L1 aCXCR2 OX40L aPD-L1 + aCXCR2	34 18 14 94
÷	++	ŧ	aPD-L1 + OX40L aPD-L1 aCTLA-4 aPD-L1 + aCTLA-4	91 0 0 98
			aCTLA-4 + OX40L aPD-L1 + OX40L aPD-L1 + aCXCR2	6 4 0

Efficacy = % complete responder mice

Summary

- We developed and qualified a QSP model for predicting tumor effect of dose, schedule and sequencing of immunotherapies in mouse using radiation and anti-PDL1 as a "system probe".
- We used an extended QSP model to prioritize combinations of immunotherapies and direct anti-tumor therapies by response predictions in mouse.
- An immune system / tumor size model translated to human, together with a joint model of tumor size dynamics and survival will be used to prioritize combinations for first-in-man trials at AstraZeneca.

