Model-informed analysis during NDA/BLA review

Insights from two FDA case reviews

Chao Liu, Ph.D., M.Stat.
Division of Pharmacometrics
Office of Clinical Pharmacology
OTS/CDER/FDA

Disclaimer: My remarks today do not necessarily reflect the official views of the FDA
Take Home Message

• Analysis on PK and exposure-response relationship facilitates FDA’s assessment on efficacy and safety.

• Modeling informed analysis can be used to inform trial design in the post-marketing setting.
Outline

• Relevance of model-informed analysis for NDA/BLA review
 – Case Study
 • Analysis
 – Rociletinib
 • Design
 – Lenvatinib + Everolimus in renal cell carcinoma

• Summary
Case Study 1: Rociletinib

Proposed Indication
• Treatment of patients with metastatic EGFR T790M mutation-positive NSCLC, who have progressed on or after EGFR TKI therapy.

Applicant Proposed dose
• 625 mg PO BID

Primary Efficacy
• Rociletinib efficacy were primarily assessed under three dose levels from two clinical studies

<table>
<thead>
<tr>
<th>Analysis Value</th>
<th>500 mg (N=79)</th>
<th>625 mg (N=170)</th>
<th>750 mg (N=76)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR (95% CI)</td>
<td>22.8% (14.1, 33.6)</td>
<td>32.4% (25.4, 39.9)</td>
<td>32.9% (22.5, 44.6)</td>
</tr>
</tbody>
</table>

Adverse Reactions of Special Interest
• *QTc Prolongation, Hyperglycemia, etc.*

Patients were NOT randomized into different dose cohorts
Rociletinib PK

- Highly variable
- No accumulation (3.7 hours half-life)
- Practically insoluble (<0.1 mg/mL) when pH >2
- Food effect: high-fat meal increases AUC by 54% (Taken with food)
- Metabolism
 - Mainly by amide hydrolysis and N-acetylation

Rociletinib PK Highlights & Biotransformation Pathway

\[T_{1/2} \text{(M502)}: \text{20 hours} \]
\[T_{1/2} \text{(M460)}: \text{51 hours} \]
Similar Rociletinib Exposure from 500 to 1000 mg BID

Dose-Exposure Relationship is flat
Flat Exposure-Response Relationship for Efficacy

From 500 to 750 mg BID
- Rociletinib exposure was comparable
- No E-R relationship for ORR was identified

No meaningful difference in efficacy would be expected from 500 mg BID to 750 mg BID
Steep Exposure-Safety Relationships

Hyperglycemia

- Grade 3/4 hyperglycemia (%)
- Metabolite M502 AUCss (ng*h/mL)
 - 1000 mg N=4
 - 750 mg N=63
 - 625 mg N=122
 - 500 mg N=39

QTc Prolongation

- ΔQTcF (ms)
- Metabolite M460 Concentrations (ng/mL)
Summary of Case 1

• Dose-exposure relationship is flat from 500 to 1000 mg BID

FDA Approach: Pooling of the efficacy and safety data across several dose groups may provide a reasonable estimate of the true effect of rociletinib on tumor response, and of the drug toxicity.

• Exposure-efficacy relationship is flat, while exposure-safety relationship is steep

625 mg BID not adequately supported

• FDA’s analysis was discussed and accepted at the advisory committee meeting

ODAC vote: 12:1 against approval based on available data

FDA issued a complete response letter on this submission.
The applicant terminated the development program.
Case Study 2: Lenvatinib for RCC

Tyrosine kinase inhibitor (TKI) for

- Differentiated Thyroid Cancer (DTC)
- Advanced Renal Cell Carcinoma (RCC)

 - Approved Dose: 18-mg Lenvatinib + 5-mg Everolimus QD
 - 89% patients required dose reduction/interruption

PMR To Conduct a Dose Optimization Study

Which Dosing Regimen to Study?

PMR: Post-marketing Requirement
Dose Adjustment: Challenges for E-R Modeling

- Shorter survival → Higher Exposure
- Longer survival → Lower Exposure

- Exposure not constant over time
- Biased ER relationship

E-R: Exposure-Response; AE: Adverse Event
E-R Analysis incorporating Dose Adjustment

- Time – vary exposure
 - Exposure at each time interval
- Longitudinal tumor size used
 - Capture the varying drug effect over time
- Adverse event (AE) was associated with the concurrent exposure

- Dynamically generate dose/exposure profile in the simulation
E-R Relationship Estimation

• E-R for Efficacy:
 – An exposure - tumor dynamics model:
 \[
 \text{Tumor Growth Rate} = \text{Natural Growth Rate} - (\text{Suppression by lenvatinib} + \text{Suppression by everolimus})
 \]

• E-R for Safety:
 – An exposure – dosing altering AE model:
 o AE leading to dose adjustment was treated as one repeated event
 o A longitudinal logit mixed effect model for dose-altering AE was developed by sponsor
 o Basis for dosing history generation in the simulation step
Clinical Trial Simulation:
Evaluate different dosing regimens

I. Various candidate dosing regimens
 • Rules of dose adjustment were pre-defined

II. Dosing history generated
 • E-R model for safety utilized

III. Tumor dynamics generated
 • Exposure-tumor model utilized
Efficacy Profile Prediction

• Tumor dynamics was simulated based on the simulated dosing record
• Lower Starting Doses + Uptitration could provide comparable efficacy
Regulatory Decisions on Lenvatinib

- Post-marketing requirement (PMR) issued for dose optimization
 - Lower starting doses with the option of dose escalation
 - 14 mg Lenvatinib with up-titration + 5 mg everolimus

Summary of Case 2

- Dynamics dose adjustment should be appropriately integrated.
- Modeling and simulation can be used to inform the trial design for optimizing the dosing regimen
Take Home Message

• Analysis on PK and exposure-response relationship facilitates FDA’s assessment on efficacy and safety.

• Modeling informed analysis can be used to inform trial design in the post-marketing setting.
 – Frequent dose modification should be appropriately incorporated in exposure-response analysis for dose evaluation.
Acknowledgements

FDA
- Yaning Wang
- Jian Wang
- Qi Liu
- Pengfei Song
- Jingyu Yu
- Yuan Xu
- Jiang Liu
- Christy John
- Lola Fashoyin-Aje

- James Xu
- Virginia Maher
- Patricia Keegan
- Brian Booth
- Atiqur Rahman
- Geoffrey Kim (former)

Scientists from sponsors
THANK YOU