Model Informed Development of Abemaciclib: Collaboration, Computation, and Communication

FDA-ISoP Public Workshop: Model Informed Drug Development (MIDD) for Oncology Products

1 February 2018

Kellie Turner, Pharm.D., Ph.D.

- Team
- Abemaciclib background
- Models informing development and filing

Collaborators

- PK/PD/Pharmacometrics
 - Emmanuel Chigutsa
 - Jan-Stefan van der Walt
 - Siva Rama Prasad Kambhampati
 - Damien Cronier
 - Sonya Tate
 - Amanda Sykes
 - Lisa Ferguson-Sells
- ADME
 - Maria Posada
 - Gemma Dickinson
 - Steve Hall
 - Palaniappan Kulanthaivel
- Clinical Pharmacology
 - Jill Chappell

- Dataset creation
 - Gordon Morrow
 - Jin Su
- CMC
 - Stephen Stamatis
 - John Rose
- Statistics
 - Martin Frenzel
 - Yong Lin
 - Tammy Forrester
- Medical
 - Ian Smith
- Special Thanks to Study Participants!

Abemaciclib

- CDK 4 & 6 inhibitor approved in HR+ HER2advanced/metastatic breast cancer based on MONARCH 1 and MONARCH 2
- CYP3A4 substrate
- Active metabolites equipotent to parent and represent ~45% of plasma exposure
- 200 mg orally twice daily (single agent)
- 150 mg orally twice daily (with fulvestrant)
- Dose reductions for individual tolerability in 50 mg units to 50 mg twice daily

Models with a purpose

Pre-Clinical PK/PD Model to Identify Potentially Effective Clinical Dose Range

Clinical Cancer Research

Published OnlineFirst May 21, 2014; DOI: 10.1158/1078-0432.CCR-13-2846

Cancer Therapy: Preclinical

Semi-Mechanistic Pharmacokinetic/Pharmacodynamic Modeling of the Antitumor Activity of LY2835219, a New Cyclin-Dependent Kinase 4/6 Inhibitor, in Mice Bearing Human Tumor Xenografts

Sonya C. Tate¹, Shufen Cai², Rose T. Ajamie², Teresa Burke², Richard P. Beckmann², Edward M. Chan², Alfonso De Dios², Graham N. Wishart¹, Lawrence M. Gelbert², and Damien M. Cronier¹

Preclinical PK/PD Model Impact

- Sustained inhibition of CDK4/6 required for durable cell cycle arrest
- Supports a chronic dosing strategy
- Selection of a PD biomarker
- Identified a target C_{min,ss} needed to maintain durable cell cycle arrest

Target Exposure and Maximal Target inhibition Achieved at 150 and 200 mg Q12H

Dose

Justification

Identify a

"target"

Clin Pharmacokinet DOI 10.1007/s40262-017-0559-8 CrossMark

ORIGINAL RESEARCH ARTICLE

A Population Pharmacokinetic and Pharmacodynamic Analysis of Abemaciclib in a Phase I Clinical Trial in Cancer Patients

Sonya C. Tate¹ · Amanda K. Sykes¹ · Palaniappan Kulanthaivel² · Edward M. Chan² · P. Kellie Turner² · Damien M. Cronier¹

How can we model PK data from multiple studies and manage computational intensity of covariate screen?

 Precursor to mechanistic model that included parent and 2 active metabolites, eased computational burden of covariate screening

> Identify patient subgroups who may need dose adjustment (e.g., sex, weight, renal function)

What Mechanism Describes Abemaciclib PK and Active Metabolite Formation for E-R Analysis/Modeling?

Mechanistic PopPK Model Impact

- Described the disposition of parent and 2 active metabolites
- Useful as input to exposure-response analysis that could help to understand relative contribution of parent and metabolites to response endpoints
- Determination of covariate effects that could impact dose

Conundrum: Exposure-Response Static Analysis in MONARCH 2

How did abemaciclib concentration affect tumor size change in MONARCH 2?

Positive Relationship between Exposure and Response (Tumor Shrinkage) in MONARCH 2

MONARCH 2 PopPK/PD Model Showed Higher Abemaciclib Concentrations Reduced Hazard of Progression

Positive Relationship Between Dose and Response (PFS) in MONARCH 2

- Confirmed appropriateness of starting dose and dose reductions used in registration study in light of the results from the static analysis
- Defined the efficacy portion of the therapeutic window, which could be used to evaluate scenarios such as impact of food effect and drug interactions

What was the relationship between abemaciclib exposure and neutropenia in MONARCH 2?

Exposure-Response Relationship for Neutrophil Progenitors in MONARCH 2

- Confirmed understanding of the frequency of this adverse event
- Defined an aspect of the safety side of the therapeutic window, which could be used to evaluate scenarios such as impact of food effect and drug interactions

 $Drug_{effect} = \theta_{Fulvestrant} + \theta_{Abemaciclib} \cdot (1 - MT) \cdot (\theta_{C_{max,ss,total}} \cdot \log(1 + C_{max,ss,total}))$

PBPK Model to Predict Effect of Unstudied Scenarios on Total Active Species PK Impacted Label

Posada et al ASCPT 2017

Models Informed Abemaciclib Drug Development

	Pre-Clinical PK/PD	РорРК	PopPK/PD	PBPK
Continuous, twice daily dosing	\checkmark		\checkmark	
Identification/confirmation of a target systemic exposure	\checkmark	\checkmark	\checkmark	
Biomarker selection to demonstrate target engagement in patients	\checkmark			
Covariate evaluation, no dose adjustment needed for weight, etc.		\checkmark	\checkmark	
Acceptability of starting dose and dose adjustments for tolerability			\checkmark	
Understanding the risk for adverse events associated with changes in exposure			\checkmark	
Dose adjustment recommendations for drug interactions not studied				\checkmark

Pred-corrected VPC of Empiric PK model

Kambhampati et al ACoP 2017

Diarrhea Time to Event Model

- Parameterized the observed slight reduction in exposure over time as the effect of diarrhea on PK
- Demonstrated that the risk of diarrhea was higher for doses ≥ 200 mg
 - As precursor to mechanistic model that included parent and 2 active metabolites, eased computational burden of covariate screening

Neutrophil observations in MONARCH 2

Placebo Q12H + fulvestrant Abemaciclib 150 mg Q12H + fulvestrant Abemaciclib 200 mg Q12H + fulvestrant

Pred-corrected VPC of Mechanistic PK Model

Chigutsa et al ACoP 2017

VPC of Final Tumor Size Model with Dropout in MONARCH 2

Abemaciclib and Metabolite Observations and Predictions

CYP3A4 Inhibition Predictions

Analyte	Parameter	Inhibitor					
Analyte		Verapamil	Diltiazem	Clarithromycin	Itraconazole	Ketoconazole	
Abemaciclib	AUC _{0-inf} ratio Geo mean (90%CI)	2.28 (2.10,2.48)	3.95 (3.71, 4.2)	4.95 (4.54,5.39)	7.15 (6.86,7.45)	15.7 (14.2,17.3)	
	C _{max} ratio Geo mean (90%Cl)	1.64 (1.57,1.70)	1.92 (1.85, 1.98)	2.09 (2.01,2.17)	2.19 (2.11,2.27)	2.5 (2.37,2.60)	
M2	AUC _{0-inf} ratio Geo mean (90%CI)	1.06 (1.04,1.09)	1.05 (1.00, 1.09)	0.89 (0.84,0.94)	0.87 (0.81,0.93)	0	
	C _{max} ratio Geo mean (90%CI)	0.61 (0.57, 0.66)	0.42 (0.39, 0.45)	0.29 (0.26,0.32)	0.25 (0.23,0.26)	0	
M20	AUC _{0-inf} ratio Geo mean (90%CI)	1.30 (1.25,1.36)	1.53 (1.46, 1.60)	1.33 (1.25,1.42)	1.60 (1.46,1.74)	0	
	C _{max} ratio Geo mean (90%Cl)	0.74 (0.71,0.77)	0.56 (0.52,0.60)	0.41 (0.37,0.45)	0.37 (0.35,0.39)	0	
M18	AUC _{0-inf} ratio Geo mean (90%CI)	0.6 (0.55, 0.65)	0.34 (0.31,0.36)	0.29 (0.27,0.32)	0.09 (0.08,0.10)	0	
	C _{max} ratio Geo mean (90%CI)	0.33 (0.29, 0.39)	0.12 (0.10 ,0.14)	0.10 (0.09,0.12)	0.03 (0.025,0.028)	0	
Active Species	AUC _{0-inf} ratio Geo mean	1.63	2.41	2.76	3.78	6.87	

Posada et al ASCPT 2017