7DENVER LABORATORY WORK INSTRUCTION	DOCUMENT NUMBER	REVISION: 02
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 1 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL		ORIGINAL EFFECTIVE DATE: 03/15/17
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		REVISED: 03 2018

1. Purpose & Scope

The objective of this work instruction is to provide instruction on the routine multi-class, multi-residue LC-MS/MS screening of aquaculture samples using components of LIBs 4562 and 4614, and DEN-LAB validation package # 13-37, 15-12, 15-13, 15-15, 15-22, 15-32 & 16-16.

2. Procedure

2.1 Sample Preparation

- 2.1.1 Aquaculture sample matrices which are appropriate for analysis include but are not limited to: tilapia, eel, swai, pangasius, basa, pompano, red drum, bass, croaker, catfish, trout, salmon, sablefish, scallops, shrimp, and frog legs.
- 2.1.2 Preparation of homogeneous samples of fish depends on whether skin and/or bones are considered edible for the particular species and product. Skin is removed from species whose skin is considered inedible (*e.g.*, catfish), as are other inedible portions, such as heads, tails, scales, fins, viscera, and inedible bones.
- 2.1.3 Remove at least 50 g of edible tissue from each of 12 subs. Combine the 600 g tissue in robot coupe with dry ice to homogenize into a fine powder. Note: It is effective to pulse the dry ice block in the robot coupe prior to adding the tissue.
- 2.1.4 Shrimp sample preparation
 - 2.1.4.1 Thoroughly remove any breading before analysis.
 - 2.1.4.2 Prepare one composite by combining portions of all subsamples. If 12 subsamples are collected (3 lb. or less per unit), select at random approximately 100 grams of shrimp (chipped from block if frozen) from each subsample.
 - 2.1.4.3 If 6 subsamples (>3 lb. units) were collected, select randomly two 100 g portions taken from opposite ends of the subsample for the composite.
 - 2.1.4.4 Homogenize sample by grinding with dry ice. Loosely close bag to allow carbon dioxide to sublime.
- 2.1.5 Catfish/Basa and other Pangasius species
 - 2.1.5.1 Homogenize muscle (i.e. no skin).
- 2.1.6 Transfer composite into whirl-pak bag, and identify using a <u>red colored</u> permanent marker. (Black markers are known to contain crystal violet, an analyte of interest).

7DENVER LABORATORY WORK INSTRUCTION	DOCUMENT NUMBER DEN-LB-WI-C.009	REVISION: 02
FOOD AND DRUG ADMINISTRATION		PAGE 2 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		ORIGINAL EFFECTIVE DATE: 03/15/17
		REVISED: 03 2018

- 2.1.7 Store composited samples at -20°C until the time of analysis. Place composites in designated area so extracting analyst knows which samples to run in the next batch.
- 2.1.8 Note for Domestic Samples:
 - 2.1.8.1 For domestic samples retain 225 g as the 702(b) portion from each of the 12 fish samples in the lot.

2.1.9 **DNA Sequencing**

- 2.1.9.1 When a matrix has not been validated by LIB 4562; the Denver laboratory has determined that a new matrix can be verified by accomplishing 2 additional procedures.
- 2.1.9.2 This procedure also requires the prepping analyst to perform an inhouse sample split in FACTS.

2.1.10 Microbiology

- 2.1.10.1 The Microbiology department will perform DNA identification.
- 2.1.10.2 ~20g from each of the first four subsamples will be collected before compositing the sample for the screening procedure.
- 2.1.10.3 The raw tissue will be placed into 4 separate 50mL Falcon tubes. Note: Each sub sample must be prepared aseptically.
- 2.1.10.4 Each tube will be identified with the sample number, sub number, initials, and the date of preparation.
- 2.1.10.5 The prepping analyst will then notify the Aquaculture supervisor to inform Microbiology that a sample is ready for DNA identification.

2.1.11 Chemistry

- 2.1.11.1 The analyst performing the screening analysis will perform an analysis on this sample in triplicate.
- 2.1.11.2 Sub 1 will be treated as a negative control.
- 2.1.11.3 Subs 2 & 3 will be treated as a spike and a duplicate. See § 2.2.2.5 for spiking and IS procedure.

2.2 Preparation of Standards (from neat material)

- 2.2.1 Standards are prepared as indicated in LIB 4562. See LIB 4562 for catalog # for individual standards. Alternatively, prepared solutions of mixed standards may be purchased from manufacturers such as SPEX CertiPrep. See section 2.3 for preparation and use of these pre-mixed solutions.
 - 2.2.1.1 Stock solutions are prepared at an approximate concentration of ~200 µg/mL for each residue.

7DENVER LABORATORY WORK INSTRUCTION	DOCUMENT NUMBER	REVISION: 02
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 3 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		ORIGINAL EFFECTIVE DATE: 03/15/17
		REVISED: 03 2018

- 2.2.1.2 This concentration should correspond to the active drug compound, so the amounts weighed are adjusted to take into account purity and any counter-ions that are present.
- 2.2.1.3 Stock standards expire 1 year from preparation date (sooner if neat material expires). Exceptions: Dye analytes (MG, CV, BG, LMG, LCV) which expire 3 months from preparation date. Stock standards are stored at -20°C.
- 2.2.1.4 All stocks are prepared in methanol except OXO and LCV. OXO is prepared in DMSO. All Dyes are prepared in acetonitrile.
- 2.2.1.5 Vigorously shake and sonicate if needed to dissolve material.
- 2.2.1.6 CIP and NOR require additional heating in a 50°C water bath and further sonication to dissolve.
- 2.2.1.7 OXO will be a solid when stored at -20°C. Thaw and sonicate prior to use.
- 2.2.2 Intermediate standard mixes
 - 2.2.2.1 Intermediate standards expire 6 months from preparation date (sooner if neat material expires). Exceptions: Dye analytes (MG, CV, BG, LMG, LCV) expire 3 months from preparation date. Intermediate standards are stored at -20°C.
 - 2.2.2.2 Utilizing the table below, determining the volume of the individual analytes to achieve the desired concentration. The volumes listed are approximate values. Exact volumes depend on concentration of stock standards.
 - 2.2.2.3 Each class of analyte is combined into a single 10.0 mL volumetric and brought to volume with methanol.

7DENVER LABORATORY WORK INSTRUCTION			REVISION: 02
FOOD AND DRUG ADMINISTRATION		PAGE 4 OF 47	
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL		ORIGINAL EFFECTIVE DATE: 03/15/17	
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		REVISED: 03 2018	

2.2.2.4 Preparation of IMS (intermediate mixed standards)

7DENVER LABORATORY WORK INSTRUCTION	DOCUMENT NUMBER	REVISION: 02
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 5 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC	ORIGINAL EFFECTIVE DATE: 03/15/17	
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		REVISED: 03 2018

Mix #	Analyte	Class	Level of Interest (ng/mL)	Approx. Volume of Inter Std (µg/mL) added to IMS (mL)	Conc. of analyte in IMS (ng/mL)	Final volume (mL) of IMS
	CIP	Fluoroquinolone	5	0.250	5,000	
	ENR	Fluoroquinolone	5	0.250	5,000	10
	NOR	Fluoroquinolone	5	0.250	5,000	
	DIF	Fluoroquinolone	5	0.250	5,000	
IMS 1	SAR	Fluoroquinolone	5	0.250	5,000	
	DAN	Fluoroquinolone	5	0.250	5,000	
	OXO	Quinolone	10	0.500	10,000	
	NAL	Quinolone	10	0.500	10,000	
	FLU	Quinolone	10	0.500	10,000	
	SAA	Sulfonamide	10	0.500	10,000	
	SDZ	Sulfonamide	10	0.500	10,000	
	SPD	Sulfonamide	10	0.500	10,000	
	STZ	Sulfonamide	10	0.500	10,000	
	SMR	Sulfonamide	10	0.500	10,000	
	SMP	Sulfonamide	10	0.500	10,000	
	SCP	Sulfonamide	10	0.500	10,000	
IMS 2	SEP	Sulfonamide	10	0.500	10,000	10
	SMX	Sulfonamide	10	0.500	10,000	
	SDM	Sulfonamide	10	0.500	10,000	
	SDX	Sulfonamide	10	0.500	10,000	
	SQX	Sulfonamide	10	0.500	10,000	
	SMN	Sulfonamide	10	0.500	10,000	
	TMP	Potentiator	10	0.500	10,000	
	MT	Hormone	0.8	0.040	800	†
	CV	Dyes	1	0.050	1,000	
	MG	Dyes	1	0.050	1,000	
IMS 3	BG	Dyes	1	0.050	1,000	10
	LCV	Dyes	1	0.050	1,000	
	LMG	Dyes	1	0.050	1,000	
	FFA	Amphenicol	1000	2.00	50,000	
IMC 4	CAP	Amphenicol	0.3	0.050	1,000	10
IMS 4	FF	Amphenicol	1	0.050	1,000	10
	TAP	Amphenicol	5	0.250	5,000	
	MBZ	Benzimidazole	5	0.250	5,000	
IMS 5	MBZ-nh2	Benzimidazole	5	0.250	5,000	10
	MBZ-oh	Benzimidazole	5	0.250	5,000	
	OTC	Tetracycline	2000	2.00	50,000	
IMS 6	TC	Tetracycline	2000	2.00	50,000	10
	CTC	Tetracycline	2000	2.00	50,000	
	SMZ- ¹³ C ₆	IS for Sulfas	10	1.00	10,000	
18407	CAP-d5	IS for Amp	1	1.00	1,000	10
IMS7	CV-d6	IS for CV	1	0.05	1,000	
	MG-d5	IS for MG	1	0.05	1,000	
	NOR-d5	IS for NOR	1	0.250	5,000	
IMS7 (cont)	LCV-d6	IS for LCV	1	0.05	1,000	10
(55111)	LMG-d5	IS for LMG	1	0.05	1,000	

7DENVER LABORATORY WORK INSTRUCTION	DOCUMENT NUMBER DEN-LB-WI-C.009	REVISION: 02
FOOD AND DRUG ADMINISTRATION		PAGE 6 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		ORIGINAL EFFECTIVE DATE: 03/15/17
		REVISED: 03 2018

- 2.2.2.5 Preparation of spiking standard from IMS standards.
- 2.2.2.5.1 Spiking Standard-CCV: Aliquot 1.00 mL of each IMS1 through IMS6 into a 10.0 mL volumetric flask and bring to volume with methanol. Spiking standard concentrations: 500 ng/mL fluoroquinolones, 1,000 ng/mL quinolones, 1,000 ng/mL sulfonamides and TMP, 100 ng/mL triphenylmethane dyes, 80 ng/mL MT, 5000 ng/mL tetracyclines, 500 ng/mL benzimidazoles, 100 ng/ml chloramphenicol/florfenicol, 500 thiamphenicol, and 5000 ng/mL florfenicol amine. Repeat for ICV set.
- 2.2.2.5.2 Internal Standard: Aliquot 1.00 mL of IMS 7 into a 10.0 mL volumetric flask; add 1 mL of 10,000 ng/mL SMZc13 and bring to volume with methanol. Internal standard concentrations: 1,000 ng/mL SMZc13, 100 ng/mL Cap-d5, 100 ng/mL CV-d6, MG-d5 100 ng/mL, NOR-d5 500 ng/mL, LCV-d6 100 ng/mL, and LMG-d5 100 ng/mL.
 - 2.2.2.6 Spiking and Internal standards expires 3 months from preparation date and are stored at -20°C. Note: These should be removed from freezer only to remove an aliquot for sample preparation.
 - 2.2.2.7 Matrix standard/Spikes; 1.0x level: Fortify 1.0x level matrix standard (CCV & ICV) and spike/duplicate by adding 0.040 mL of Spiking standard (§2.2.2.3.1) + 0.040 mL of internal standard spiking solution (§2.2.2.3.2) to 4.00g (±0.03) portion of control tissue (assuming IMS concentrations are as indicated in Table 2.2.2.2.
- 2.2.2.7.1 Example spiking calculation:

0.040 mL	1,000 ng	= 10.0 ng
4.00 g tissue	mL	q

Equivalent amount (ng/mL) in vial due to 2x concentration factor (4 g tissue to 2 mL final volume):

10.0 ng	4.00 g	= 20.0 ng
g	2.00 mL	mL

2.2.2.8 Solvent Standard for LC-MS/MS: Prepare a solvent standard at the 1x level of interest to assess instrument suitability by adding 0.040 mL of spiking standard and 0.040 mL of internal standard spiking solution to an autosampler vial. Add 1.92 mL of dissolution solution to give a final volume of 2 mL.

7DENVER LABORATORY WORK INSTRUCTION	DOCUMENT NUMBER	REVISION: 02
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 7 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		ORIGINAL EFFECTIVE DATE: 03/15/17
		REVISED: 03 2018

- 2.3.1 When ordering these custom mixes, you must provide a quote to SPEX CertiPrep. Certificates of analysis are provided in appendices D, E and F and include CAS numbers necessary for ordering information.
 - 2.3.1.1 Dyes mix (10 μ g/mL), cat # LC-FDACO-21, expiration date is indicated on certificate of analysis. Store at 2-8 °C.
 - 2.3.1.2 Fluoroquinolones (50 μ g/mL)/Quinolones (100 μ g/mL each) mix, cat #LC-FDACO-15, expiration date is indicated on certificate of analysis. Store at 2-8 °C.
 - 2.3.1.3 Sulfonamides (100 μg/mL) / trimethoprim (100 μg/mL) / methyl testosterone (8 μg/mL) mix. Cat # GO-FDACO-16, expiration date is indicated on certificate of analysis. Store at 2-8°C.
- 2.3.2 Preparation of intermediate mixed standard (IMS) dilution to equivalent levels in IMS 1-7 in table 2.2.2.2.
- 2.3.3 IMPORTANT: Sonicate all SPEX ampules for 15 minutes prior to taking an aliquot for dilution.
 - 2.3.3.1 Three individual intermediates are prepared by aliquotting 1mL of each of the three custom mixes and diluting each to 10.0 mL with methanol in a volumetric flask (separate intermediates). Diluted mixed standards are stored at -20°C and expire 6 months from the preparation date. Wrap the dye mix with aluminum foil to protect from light.
- 2.3.4 Spiking standard prepared from diluted SPEX mixes:
 - 2.3.4.1 1mL of each of the three IMS solutions prepared in 2.3.4.1 are combined in a 10.0 mL volumetric flask and diluted to volume with methanol. Mixed spiking standard is stored at at -20°C and expires 3 months from the preparation date. Wrap the dye mix with aluminum foil to protect from light.
- 2.3.5 Prepare a second set of solutions from a different lot or a different ampule of the same lot to serve as ICV IMS and spiking solutions.

2.4 Reagents (equivalent reagents may be substituted)

- 2.4.1 Acetonitrile, LC-MS grade (Burdick and Jackson, Muskegon, MI)
- 2.4.2 Methanol, LC-MS grade (Burdick and Jackson, Muskegon, MI)
- 2.4.3 Dimethyl sulfoxide (DMSO) (Burdick and Jackson, Muskegon, MI)
- 2.4.4 Citric acid monohydrate, cat #M-9605 (Fisher Scientific, Fair Lawn, NJ).
- 2.4.5 Sodium phosphate dibasic anhydrous (Na₂HPO₄) cat #E5513 (Fisher Scientific, Fair Lawn, NJ).
- 2.4.6 p-toluenesulfonic acid monohydrate (p-TSA), ACS reagent ≥98.5%, cat # 402885-500G (Sigma Aldrich, St. Louis, MO)

7DENVER LABORATORY WORK INSTRUCTION	DOCUMENT NUMBER	REVISION: 02
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 8 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		ORIGINAL EFFECTIVE DATE: 03/15/17
		REVISED: 03 2018

- 2.4.7 N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride (TMPD) >95%, Cat # T3134-5G (Sigma Aldrich, St. Louis, MO)
- 2.4.8 Ethylenediamine tetra acetic acid disodium salt dihydrate (EDTA) Cat # BP120 (Fisher Scientific, Fair Lawn, NJ)
- 2.4.9 Potassium hydroxide (KOH), >85% cat # P1767 (Sigma Aldrich, St. Louis, MO)
- 2.4.9.1.1 To prepare 100 mL of 1 M KOH: dissolve 5.6 g of KOH in 100 mL DI water.

 2.4.9.2 Extraction Buffer (EDTA-McIlvaine buffer)
- 2.4.9.2.1 To prepare 200 mL of McIlvaine buffer: Weigh 2.6 g citric acid monohydrate, 2.18 g Na₂HPO₄, 7.4 g Na₂EDTA dihydrate, and 5.8 g NaCl into a 250-mL mixing cylinder. To this, add 150 mL DI water with a stir bar and heat with stirring to dissolve the crystals. Allow to cool, then adjust the pH to 4.5 with 1.0 M potassium hydroxide and bring volume to 200 with DI water.
 - 2.4.9.3 Dissolution solution: acetonitrile-formic acid-water (10+0.4+89.6) by volume
- 2.4.9.3.1 To prepare 250mL of dissolution solution: In a 250-mL mixing cylinder, combine 25 mL acetonitrile, 1 mL formic acid and fill to volume (224 mL) water. Invert to mix. Expiration date is 1 year from preparation date. Store this at room temperature.
 - 2.4.9.4 ~1 mg/mL TMPD solution
- 2.4.9.4.1 To prepare 10 mL of ~1 mg/mL TMPD: Weigh ~10mg TMPD. Add 10 mL of 20:80 acetonitrile: methanol (v/v). Vigorously shake or sonicate for 15 minutes to dissolve. Store at -20°C. Expiration is 1 month from preparation date. Protect from light. If solution turns a purple color, discard and prepare a new solution.
 - 2.4.9.5 1 M p-TSA
- 2.4.9.5.1 To prepare 100 mL of 1 M p-TSA: Dissolve 19 g of p-TSA in 100 mL water. Expiration date is 1 year from preparation date. Store this reagent at room temperature.
 - 2.4.10 Formic Acid, LC-MS grade
 - 2.4.11 Water, LC-MS grade
 - 2.4.12 Sodium Chloride
 - 2.4.13 0.1% formic acid in water (Mobile Phase A):
 - 2.4.13.1 To prepare 1 L of 0.1% formic acid in water: 1 mL formic acid into final volume of 1 L of water.

7DENVER LABO	RATORY WORK INSTRUCTION	DOCUMENT NUMBER	REVISION: 02
FOOI	D AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 9 OF 47
QUINOLONES, TR	TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		ORIGINAL EFFECTIVE DATE: 03/15/17
IESTOSTE			REVISED: 03 2018

2.5 Consumables (equivalent consumables may be substituted)

- 2.5.1 Centrifuge tubes, Falcon[®] Blue Max[™], 50 mL tubes cat # 352098, (VWR, International, Denver CO)
- 2.5.2 Ceramic homogenizers, Cat. #5982-9313, (Agilent Technologies, Santa Clara, CA.)
- Syringes, disposable plastic, latex free, 1 mL (Cat. #309602, Becton-Dickinson, Rutherford, NJ),
- 2.5.4 Syringe Filters, Acrodisc® 13 mm with PTFE Membrane, 0.2 um, male slip Luer outlet, (cat # 4542, Pall Life Sciences, Ann Arbor, MI).
- 2.5.5 Low-volume polypropylene vials (0.6 mL volume, #69400-124 National Scientific through VWR, Denver, CO) with pre-scored snap caps (#242775, Wheaton, Millville, NJ).
- 2.5.6 National Scientific HPLC snap caps, cat # 66030-608 (VWR, International, Denver CO)
- 2.5.7 LC-MS Column Waters XSelect HSS T3, 3 x 100 mm, 2.5 μm (Cat#: 186006155, Waters Corporation Milford, Mass)

2.6 Equipment (equivalent equipment may be substituted)

- 2.6.1 Vortex Mixers Vortex Genie 2 (P/N: G-560, Scientific Industries, Inc., Bohemia, NY) and Multi-Tube Vortexer (P/N: 02-215-450, Fisher Scientific, Houston, TX)
- 2.6.2 Centrifuge Sorvall[™] RC 6+ (Cat. No. 46910), with Fiberlite[™] F13-14 x 50cy Fixed Angle Rotor (Thermo Fisher Scientific, Waltham, MA), capable of operating at 4000 rpm (2730 rcf) for 5 min with refrigeration to 5 °C.
- 2.6.3 Pipettors; adjustable volume: 10-100 μL, 20-200 μL, 0.5-5 mL, and 1-10 mL (Sartorius Corp., Bohemia, New York)
- 2.6.4 Nitrogen evaporator: N-Evap, set at 50°C with Nitrogen flow of 10-15 psi (Organomation Associates, Inc, Berlin, MA)
- 2.6.5 Sonicator 8892 Ultrasonic Cleaner (Cole-Parmer, Vernon Hills, IL)
- 2.6.6 Balance PA3102, capable of weighing 0.1 g Pioneer[™] (Ohaus Corp., PineBrook, NJ)
- 2.6.7 Microbalance XP26, capable of weighing 0.001 mg, (Mettler Toledo, Columbus, OH)
- 2.6.8 Hot plate with magnetic stirrer (Cat. #97042-714, VWR INT., Inc.)
- 2.6.9 LC-MS/MS systems:
 - 2.6.9.1 Agilent 6490/6495 triple quadrupole (with i-Funnel technology) mass spectrometer coupled to an Agilent 1200 series liquid chromatograph

7DENVER LABOR	ATORY WORK INSTRUCTION	INSTRUCTION DOCUMENT NUMBER	REVISION: 02
FOOD /	AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 10 OF 47
QUINOLONES, TRIF	TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL		
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		REVISED: 03 2018	

and auto sampler was used for analysis. The ion source was electrospray ionization with Agilent Jet Stream Technology (AJS-ESI) utilized in the positive ion mode for all analytes. The data system used was Mass Hunter software version B06/B08.

2.6.9.2 AB Sciex QTRAP 5500: LEAP HTC PAL Injection System with a 3-drawer cooling stack and a valve self-washing system (LEAP Technologies, Carrboro, NC); 20 μL loop and 100 μL syringe installed. Liquid Chromatograph Tandem Mass Spectrometer - Agilent 1200 Series LC (Avondale, PA) interfaced to an AB SCIEX QTRAP® 5500 MS/MS System (Framingham, MA) with Turbo V Ion Source ElectroSpray Ionization, Positive and Negative Mode. Analyst 1.6.2 software operated both instruments.

2.7 Extraction

- 2.7.1 Weigh 4.00 g (± 0.03 g) frozen, ground tissue into a 50 mL centrifuge tube. Include one empty tube to serve as reagent blank.
- 2.7.2 Add 0.040 mL Internal Spiking solution to all samples, matrix standards, and controls.
- 2.7.3 Add 0.040 mL spiking standard to 1.0x matrix standard (CCV), spike, and duplicate spike.
- 2.7.4 Add 0.040 mL ICV spiking standard to 1.0x ICV tube.
- 2.7.5 Add 2.0 mL EDTA-McIlvaine buffer to all tubes and mix using a vortex mixer for 10 sec.
- 2.7.6 Add 10 mL acetonitrile, 0.100 mL *p*-TSA (swirl tube to mix), 0.100 mL TMPD (swirl tube to mix), 2 g NaCl and a ceramic homogenizer pellet to each sample.
- 2.7.7 Apply screw cap and mechanically shake tube vigorously for 5 min.
- 2.7.8 Centrifuge tube at 6000 rpm (7600 rcf) at 5 °C for 5 min.
- 2.7.9 Using a Pasteur or transfer pipette, transfer upper organic layer into a clean 50 mL centrifuge tube.
- 2.7.10 Add an additional 10 mL acetonitrile to the original tissue and buffer mix.
- 2.7.11 Mechanically shake tube for 5 min and centrifuge, as above.
- 2.7.12 Combine acetonitrile layers and evaporate the acetonitrile phase to dryness using a water bath heated to 50-55°C with nitrogen purge.
- 2.7.13 Reconstitute the residue with 2.0 mL of the dissolution solution.
- 2.7.14 Vigorously mix using a vortex mixer for 30 sec and place in sonicator for 5 min.
- 2.7.15 Centrifuge tube at 10,000 rpm (12,600 rcf) at 5°C for 5 min.

7DENVER LABORATORY WORK INSTRUCTION	STRUCTION DOCUMENT NUMBER	REVISION: 02
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 11 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIN QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC	ORIGINAL EFFECTIVE DATE: 03/15/17	
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID C SPECTROMETRY	REVISED: 03 2018	

- 2.7.16 Filter at least a 0.5 mL portion through a PTFE syringe filter into an LC vial for MS analysis. NOTE: discard the first 0.2 mL (2-3 drops) of extract that come through the filter. Aberrant recoveries have been observed, especially for the dye analytes if the very first portion of filtrate is collected in the vial and analyzed.
- 2.7.17 Analyze via LC-MS/MS.
 - 2.7.17.1 Establish LC-MS/MS system suitability by injecting a solvent standard sufficient number of times until instrument is equilibrated, demonstrated by observation of all analytes present in correct retention time windows and stable analyte response.

2.8 LC-MS/MS parameters – see appendices B and C

2.8.1 Modified LIB 4562 can be analyzed on the Agilent 6490 & 6495. The ABI5500 has not validated the additional analytes for modified LIB 4562; it is currently in progress.

3. Quality Control

- 3.1 Use current QC limits (% Recovery for spikes, CCV, ICV, and spike RPD) from QC database, found at C:\QCDB\QC System.mdb. This is located as a shortcut on the user's windows desktop.
 - 3.1.1 Current QC limits (analysis→multiresidue fish; method→LIB 4562 1x; matrix→tilapia). When chart appears; use arrows to find data for LIB 4562 1x analytes.
 - 3.1.2 The limits in the QC database for the spike, ICV and CCV recoveries are based on average recoveries ±2 SD warning limits. In some cases; 2 SD made ranges narrower than 90-110% for CCVs (some sulfonamide analytes), so those ranges were widened to 90-110% based on ORA-LAB-5.4.5. The RPD acceptance range is 2.51 x the average relative percent different of the spike and duplicate spike.

3.2 Positive confirmation of identity (for presumptive positive samples, and QC samples (spikes/ICV)).

- 3.2.1 Signal to noise must be >3:1
- 3.2.2 Retention time (RT) must match the comparison standard(s) within 5%.
- 3.2.3 Ion ratios must match the comparison standard(s) by an absolute value of 20% for all analytes.

4. Presumptive Positive samples

4.1 Any regulatory sample that screen presumptively positive at levels indicated in the table below is subsequently analyzed by an additional quantitative method.

7DENVER LABORATORY WORK INSTRUCTION		REVISION: 02
FOOD AND DRUG ADMINISTRATION		PAGE 12 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC	ORIGINAL EFFECTIVE DATE: 03/15/17	
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID C SPECTROMETRY	REVISED: 03 2018	

4.1.1 Presumptive Positive level (additional quantitative analysis required)

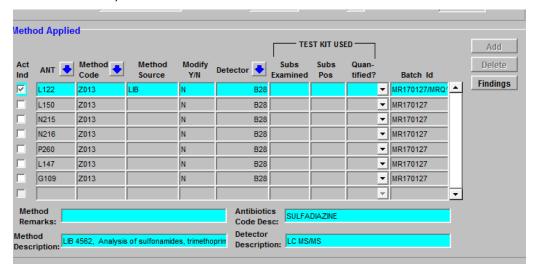
Matrix Class of Analyte	Tilapia	Salmon	Catfish	Crab	Sw ai	Shrimp	Pompano	Lobster	Frog	Scallops	Trout	Eel
Class of Affailyte	7.0 (007		0.01000	0.01007		E 4 IODM						C 7 (CD7
0 11	7.2 [SDZ		8.0 [SPD	8.0 [SDZ		5.4 [SDM						6.7 [SDZ
Sulfas	72.2%]		80.4%]	82.0%]		53.7%]						67.4%]
	8.0 [TMP		8.0 [TMP	7.4 [TMP		7.8 [TMP						8.0 [TMP
Trimethoprim	92.3%]		95.0%]	73.6%]		77.9%]						87.2%]
	4.0 [CIP		4.0 [CIP	4.0 [NOR		2.7 [DAN						2.6 [DAN
Fluoroquinolones	85.8%]		84.8%]	91.6%]		54.0%]						51.3%]
	0XO] 0.8		7.6 [OXO	8.0 [OXO		0XO] 0.8						8.0 [FLU
Quinolones	110.9%]		76.3%]	97.6%]		87.1%]						86.9%]
Triphenylmethane	0.8 [92.0		0.8 [LMG	0.8 [LCV		0.8 [CV						0.8 [MG
Dyes	LCV]		92.6%]	96.5%]		101.2%]						91.8%]
	0.64 [MT		0.43 [MT	0.44 [MT		0.64 [MT						0.28 [MT
Methyl Testosterone	100.9%]		53.9%]	55.0%]		220.0%]						35.9%]
	0.24 [CAP		0.24 [CAP	0.24 [CAP		0.24 [CAP						0.24 [CAP
Chloramphenicol	109.4%]		108.7%]	89.6%]		103.6%]						93.1%]
·	0.8 [FF		0.8 [FF	0.8 [FF		0.8 [FF						0.8 [FF
Florfenicol	118.3%]		117.2%]	121.2%]		95.4%]						101.5%]
	40.0 [FFA		40.0 [FFA	40.0 [FFA		40.0 [FFA						40.0 [FFA
Florfenicol Amine	95.9%1		85.6%]	121.1%]		95.8%]						94.6%]
	4.0 [TAP		4.0 [TAP	4.0 [TAP		4.0 [TAP						3.5 [TAP
Thiamphenicol	107.3%]		114.8%]	100.3%]		105.9%]						70.9%]
	40.0 [OTC		40.0 [OTC	35.0 [TC		28.2 [TC						40.0 [CTC
Tetracyclines	106.5%]		90.6%]	69.9%]		56.3%]						94.9%]
				4.0 [MBZ-								
	4.0 [MBZ-		3.3 [MBZ	OH		4.0 [MBZ-						3.1 [MBZ
Benzimidazoles	NH2 96.7%]		66.1%]	112.6%]		NH2 95.0%]						61.3%]
	15-32a1		15-32c3	15-32d3		15-32f3						15-32L3
	ppb [%											
	recovery]											

Presumptive positive levels were calculated by using validation data from QMiS 15-32; taking each class of compounds and analyzing their spike recovery data. This data will be updated when further validation packets are approved. The poorest performer in each class was used to calculate this level. Samples below the TTL but above the confidence level will be assumed as a presumptive positive and ran under full quantitation. This table is a comparison for all validated matrices under QMiS 15-32. Additional matrices, not validated at this time, are assumed as presumptive positive of the area response is $\geq 70\%$ for all analytes except for triphenylmethane dyes which are $\geq 40\%$ when compared to the reference 1x level tilapia standard (LIB 4562; pg. 8). See LIB 4562 and LIB 4614 for further guidance on acceptance criteria.

5. Quantitative Analysis

5.1 A previously analyzed presumptive positive may be analyzed using this extraction with a matrix matched multi-point extracted standard curve.

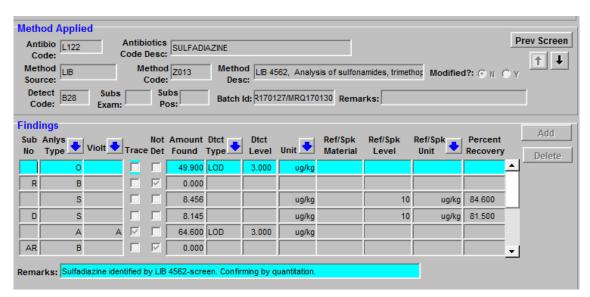
7DENVER LABORATORY WORK INSTRUCTION	DOCUMENT NUMBER	REVISION: 02
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 13 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRII QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEU-	ORIGINAL EFFECTIVE DATE: 03/15/17	
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		REVISED: 03 2018


- 5.1.1 Range of standard curve will be dependent on estimated amount found in screening analysis.
- 5.1.2 A starting point for an extracted curve would be 0.25x, 0.5x, 1x, 2x, 4x. More or less than five extracted standards may be used if necessary; as long as linearity is not compromised.
- 5.1.3 If a residue is detected at a very high level, it may be appropriate to weigh a smaller amount of tissue to reduce the concentration factor, thus reducing the in-vial concentration of analyte to prevent saturation of the instrument detector.
- 5.1.4 Weighing out less tissue would be appropriate for the Sulfonamides/Norfloxacin/Triphenylmethane Dyes analytes which use the internal standard for quantification, which cannot be diluted in-vial due to internal standard interference corrections.
- 5.1.5 At higher concentrations (above 10x), it may be necessary to quantitate without the use of an internal standard. This practice typically results in variability in final concentrations due to the elimination of the inherent correction factor of the internal standard.

6. FACTS Data reporting

- Be sure to set the sample to 'In Progress' in FACTS. Complete the Sample Transfer screen after obtaining sample from sample custodian.
- 6.2 The regulatory enforcement action would be considered at and above 5 ppb level for the <u>sum</u> of enrofloxacin and ciprofloxacin.
- 6.3 The regulatory enforcement action would be considered at and above 1 ppb level for the sum of malachite green and leucomalachite green.
- 6.4 The regulatory enforcement action would be considered at and above 1 ppb level for the <u>sum</u> of crystal violet and leucocrystal violet.
- 6.5 It is the responsibility of the owner of the sample to input the data into FACTS.
- 6.6 FACTS ANT codes
 - 6.6.1.1 L150: Sulfonamides Group (LIB 4562)
 - 6.6.1.2 N215: Quinolones Group (LIB 4562)
 - 6.6.1.3 N216: Fluoroquinolones Group
 - 6.6.1.4 P260: Triphenylmethane Dyes Group (LIB 4562)
 - 6.6.1.5 L147: Trimethoprim
 - 6.6.1.6 G109: Methyl testosterone
 - 6.6.1.7 M140: Tetracycline Group
 - 6.6.1.8 D150: Amphenicol Group

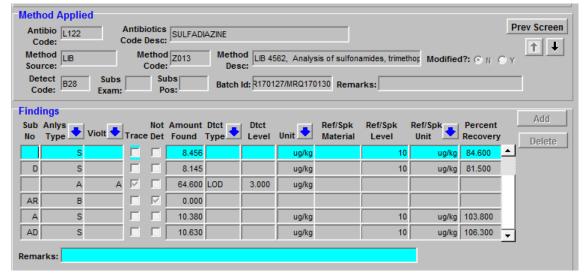
7DENVER LABORATORY WORK INSTRUCTION	ORK INSTRUCTION DOCUMENT NUMBER	REVISION: 02
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 14 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIN QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC	ORIGINAL EFFECTIVE DATE: 03/15/17	
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		REVISED: 03 2018


- 6.6.1.9 B020: Benzimidazole Group
- 6.7 Method code=Z013 "LIB 4562, Analysis of sulfonamides, trimethoprim, fluoroquinolones, quinolones, triphenylmethane dyes (and their leuco metabolites) and methyl testosterone in fish and shrimp using liquid chromatography mass spectrometry."
- 6.8 Detector Code: B28 (LC MS/MS)
- 6.9 Batch ID: type in the batch name in the format "MRYYMMDD" (MR is the prefix for a multi-residue screening batch. MRQ is the prefix for a quantitative multi-residue additional analysis batch.
- 6.10 If one analyte within a group code is violative (Class 2 or 3), add a line with the individual code for that analyte (in the example below, L122 (sulfadiazine) was added).

- 6.11 For all samples; comments must be added on the "Findings" screen, you will have to enter the additional analytes introduced in the modification of LIB 4562.
 - 6.11.1 L150 group: "Sulfamonomethoxine also not detected by modified LIB 4562".
 - 6.11.2 N216 group: "Difloxacin, sarafloxacin, and danofloxacin also not detected by modified LIB 4562".
 - 6.11.3 M140 group: "Tetracycline, oxytetracycline, and chlortetracycline not detected by modified LIB 4562".
 - 6.11.4 D150 group: "Chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine not detected by modified LIB 4562".
 - 6.11.5 B020 group: "Mebendazole, mebendazole amine, and hydroxymebendazole not detected by modified LIB 4562".
- 6.12 For nonviolative analytes (Class 1), on the "findings" screen, enter "O" for original analysis and check the box "Not Det" for each class of analytes.

TOENVER LABORATORY WORK INSTRUCTION FOOD AND DRUG ADMINISTRATION TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY DOCUMENT NUMBER REVISION: 02 PAGE 15 OF 47 ORIGINAL EFFECTIVE DATE: 03/15/17 REVISED: 03 2018

- 6.13 For the violative analytes (Class 2 and 3), on the "Findings" screen, you will have to enter the semi-quantitative screening value (is a limitation of FACTS) for the Original analysis. Enter the QC data for the reagent blank, and the spike and duplicate. Enter the quantitative value from the matrix matched additional analysis, along with the QC data for the reagent blank, spike and duplicate for the additional analysis batch. Add a statement in the remarks section such as "sulfadiazine was detected by LIB 4562 screen and was confirmed and quantified using a matrix matched calibration curve".
- 6.14 For violative analysis, you must also enter data for the confirmation batch. On the "findings" screen enter data similar to §6.13 but add the following:
 - 6.14.1 Analysis type is "A". Under comments field (for example): "Sulfadiazine (L122) confirmed by full quantitation using modified LIB 4562. All QC passed."
 - 6.14.2 Under Violation line: Enter "A" for Class 3 and "X" for Class 2.
 - 6.14.3 Reagent Blank is "AR" and "B" respectively. Enter corresponding data.
 - 6.14.4 Spike is "A" and "S" respectively. Enter corresponding data.
 - 6.14.5 Spike Duplicate is "AD" and "S" respectively. Enter corresponding data.


DOCUMENT NUMBER DEN-LB-WI-C.009

REVISION: 02 PAGE 16 OF 47

TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS

ORIGINAL EFFECTIVE DATE: 03/15/17

REVISED: 03 2018

SPECTROMETRY

- Any analytes not in the FACTS system will be entered as a "Z999" and the 6.15 corresponding analytes will be defined in the "Antibiotics Code Desc" box.
- 6.16 Accomplishment hours: enter your accomplishment hours for sample preparation and worksheet assembly. Enter the extracting/instrument analyst's hours. If the sample is violative, enter the check/additional analyst's hours. Set all analysts' status to 'Complete'.

7. Worksheet preparation and assembly

- 7.1 Always use the current DEN-LB-CANT-431x AQUACULTURE pdf template(s) from QMiS.
- 7.2 Enter data on front page of worksheet, then save it in a folder identified as the sample number in the 'Sample In Progress' directory (typically the supervisor creates the folder, along with a blank 431 template saved as the sample number matrix 431, such as "123456 tilapia 431"): H:\ALL LAB\3 Documentation\ScannedWorksheets\Chem\Samples In Prog ress\
- 7.3 The supervisor will also save a copy of the collection report in the same
- 7.4 Enter sample preparation information on page 3 of the 431x document.
- 7.5 Save any photographs or photocopies of labeling in the folder as well.
- 7.6 After samples have been analyzed, the analyst who extracted/processed data prints off instrument summary report and acquisition method. Combine with raw data batch record (sample weights, etc) standards and reagent sheets. Give batch record to supervisor for review. Notify original analysts of results along with batch ID.

7DENVER LABORATORY WORK INSTRUCTION	DOCUMENT NUMBER DEN-LB-WI-C.009	REVISION: 02
FOOD AND DRUG ADMINISTRATION		PAGE 17 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIN	ORIGINAL EFFECTIVE	
QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC	DATE: 03/15/17	
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS		REVISED: 03 2018
SPECTROMETRY	KEVISED. 03 2010	

- 7.7 Scan or save pdf batch record and save as Batch "MR(Q)xxxxxx" to the following directory: H:\ALL_LAB\3_Documentation\Scanned Worksheets\Chem\Batch Records
- 7.8 Class 1 worksheet assembly:
 - 7.8.1 Close out 431 by entering all required data: Box 11 for the reserve, batch number (on page 3), and on results section click on "All Negative" icon.
 - 7.8.2 Electronically sign 431 on page 2 and 3 using your PIV and PIN. Enter date completed in box 12a.
 - 7.8.3 Save the file.
 - 7.8.4 Once everything is filled out, go to page 1 and click the "Analyst finished" box. This will bring up a print window, selected "Adobe PDF" as the printer and save a new copy as "123456 Tilapia 431 final". Note: Do not try to save this file as a regular PDF as it will not delete the instructions (page 1), you only want to save page 2 and 3.
 - 7.8.5 Label and identify all pictures; these must be saved as "PDF's".
 - 7.8.6 Close all windows and files.
 - 7.8.7 Reopen your sample folder, right click, and combine all files using the "combine supported files in Acrobat" function. Include the 431 final, all photos, and the collection report.
 - 7.8.8 Save this new file as "123456 Tilapia 431 final combined".
 - 7.8.9 Notify supervisor or their actor that sample is ready for classification and close out.
- 7.9 Class 2 worksheet assembly:
 - 7.9.1.1 Follow steps for class 1 worksheet assembly with the following additions.
 - 7.9.1.2 Click the "check analysis" box on page one to create a second 431a results page.
 - 7.9.1.3 Do not modify screening results. A Class 2 sample is classified between the MDL and the TTL.
 - 7.9.1.4 On the second result page, enter the batch ID (MRQYYMMDD) and the quantitative amount found for the corresponding analyte. Use the correct number of significant figures. Update the action level column from 'no' to 'yes' for the detected analyte.
 - 7.9.1.5 The class 2 worksheet is organized as follows:
- 7.9.1.5.1 431 front page
- 7.9.1.5.2 431a sample prep/result page for screening batch

7DENVER LABORATORY WORK INSTRUCTION	DOCUMENT NUMBER DEN-LB-WI-C.009	REVISION: 02
FOOD AND DRUG ADMINISTRATION		PAGE 18 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIN	ORIGINAL EFFECTIVE DATE:	
QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC	03/15/17	
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		REVISED: 03 2018

- 7.9.1.5.3 431a result page for quantitative batch
- 7.9.1.5.4 431a pages for screening batch record
- 7.9.1.5.5 431a pages for quantitative batch record
- 7.9.1.5.6 Attachment: Standards preparation for screening batch
- 7.9.1.5.7 Attachment: Worklist/Sequence, Acquisition method, Instrument Configuration report (Agilent only)
- 7.9.1.5.8 Attachment: 'Quantitative' Analysis Summary Report for screening batch.
- 7.9.1.5.9 Attachment: Standards preparation for quantitative batch
- 7.9.1.5.10 Attachment: Worklist/Sequence, Acquisition method, Instrument Configuration report (configuration report is for Agilent systems only)
- 7.9.1.5.11 Attachment: 'Quantitative' Analysis Summary Report for quantitative batch (on AB SCIEX 5500, use 'Short' report for summary. For Class 2 samples, chromatographs and ion ratios are not included.
- 7.9.1.5.12 Labeling photos/photocopies, if applicable.
- 7.9.1.5.13 Collection report
 - 7.10 Class 3 worksheet assembly:
 - 7.10.1.1 Follow steps for class 1 worksheet assembly with the following additions.
 - 7.10.1.2 Click the "check analysis" box on page one to create a second 431a results page.
 - 7.10.1.3 Modify screening results by utilizing a ">" symbol for the corresponding analyte; i.e. for sulfadiazine ">10.0" in the results column and change the action level column from 'no' to 'yes'. Do not enter the semi-quantitative value on the result sheet. Do this for any additional analytes detected at or above the presumptive positive level in the screening batch.
 - 7.10.1.4 On the second result page, enter the batch ID (MRQYYMMDD) and the quantitative amount found for the corresponding analyte. Use the correct number of significant figures. Also update the action level column from 'no' to 'yes' for the detected analyte.
 - 7.10.1.5 The class 3 worksheet is organized as follows:
- 7.10.1.5.1 431 front page
- 7.10.1.5.2 431a sample prep/result page for screening batch

7DENVER LABORATORY WORK INSTRUCTION		REVISION: 02
FOOD AND DRUG ADMINISTRATION		PAGE 19 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC	ORIGINAL EFFECTIVE DATE: 03/15/17	
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID C SPECTROMETRY	REVISED: 03 2018	

- 7.10.1.5.3 431a result page for quantitative batch
- 7.10.1.5.4 431a pages for screening batch record
- 7.10.1.5.5 431a pages for quantitative batch record
- 7.10.1.5.6 Attachment: Standards preparation for screening batch
- 7.10.1.5.7 Attachment: Reagent preparation for screening batch
- 7.10.1.5.8 Attachment: Worklist/Sequence, Acquisition method, Instrument Configuration report (Agilent only)
- 7.10.1.5.9 Attachment: 'Quantitative' Analysis Full Summary Report for screening batch, including all relevant chromatographs, ion ratios, and calibration curves.
- 7.10.1.5.10 Attachment: Standards preparation for quantitative batch
- 7.10.1.5.11 Attachment: Reagent preparation for quantitative batch
- 7.10.1.5.12 Attachment: Worklist/Sequence, Acquisition method, Instrument Configuration report (configuration report is for Agilent systems only)
- 7.10.1.5.13 Attachment: 'Quantitative' Analysis Summary Report for quantitative batch (on AB SCIEX 5500, use 'Short' report for summary, and 'long' report for ion ratios and chromatograms.
- 7.10.1.5.14 Labeling photos/photocopies if applicable
- 7.10.1.5.15 Collection report
 - 7.10.2 A Class 2/Class 3 worksheet package must be printed or saved electronically and properly identified (all attachments labeled and numbered) before submitting to the supervisor. Do not use a highlighter on printed hard-copy it makes the text below illegible when scanned).

8. Glossary/Definitions

- A. RB: Reagent Blank. Used to verify reagents are uncontaminated by interfering components, the reagent blank is an extract that contains no sample matrix. Carried thorough the extraction as if it were a sample, one must be extracted with each batch and display no interference peaks at the reference times of interest at or above a ½ x level.
- B. NC: Negative Control. Used to verify the lack of matrix effects, the control is an aliquot of matrix material known to contain no analytes of interest. One must be

7DENVER LABORATORY WORK INSTRUCTION	DOCUMENT NUMBER	REVISION: 02
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 20 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIN QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC	ORIGINAL EFFECTIVE DATE: 03/15/17	
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		REVISED: 03 2018

extracted with each batch, and must display no interference peaks at reference times of interest at or above ½ x level.

- C. SPK/DUP: Matrix spike/matrix spike duplicate. Used to demonstrate effective and reproducible extraction, the matrix spike and duplicate are two aliquots of negative control matrix material, each fortified at the 1x target level. A pair of matrix spikes must be extracted and analyzed with each batch.
- D. ICV: Independent Calibration Verification. Used to assure the accuracy of the calibration curve, the ICV is an extracted 1x standard prepared from a secondary standard source.
- E. CCV: Continuing Calibration Verification. Used to check the calibration during a run, the CCV is a re-injection of the 1x calibration standard. A CCV is analyzed after every ten extracts and at the end of the analytical sequence.

9. Records

- 9.1 DEN-LB-CANT-431x.001 1.0 AQUACULTURE (check QMiS for current version)
- 9.2 DEN-LB-CANT-431a.001 2.0– AQUACULTURE SCREEN BATCH (check QMiS for current version)

7D	ENVER LABORATORY WORK INSTRUCTION	INSTRUCTION DOCUMENT NUMBER	REVISION: 02
	FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 21 OF 47
QU	TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIN JINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC	ORIGINAL EFFECTIVE DATE: 03/15/17	
	TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		REVISED: 03 2018

10. References & Supporting Documents

- 10.1 LIB 4562: Analysis of sulfonamides, trimethoprim, fluoroquinolones, quinolones, triphenylmethane dyes (and their leuco metabolites) and methyltestosterone in fish and shrimp using liquid chromatography mass spectrometry
 - 10.1.1 http://inside.fda.gov:9003/downloads/PolicyProcedures/Laboratories/Labo
- 10.2 LIB 4614: Method Transfer and Optimization of LIB 4562 (Multi-Residue LC-MS/MS Screening Method for Veterinary Drugs in Aquaculture Tissues) from the Agilent 6490 LC-MS/MS to a SCIEX 5500 QTRAP LC-MS/MS
 - 10.2.1 http://inside.fda.gov:9003/downloads/PolicyProcedures/Laboratories/Labo
- 10.3 Storey, J.; Clark, S.; Johnson, A.; Andersen, W.; Turnipseed, S.; Lohne, J.; Burger, R.; Ayres, P.; Carr, J.; Madson, M. Analysis of sulfonamides, trimethoprim, fluoroquinolones, quinolones, triphenylmethane dyes and methyl testosterone in fish and shrimp using liquid chromatography-mass spectrometry. *J. Chromatogr. B*, 2014, 972, 328-47.
- 10.4 Compliance Program 7304.018, Chemotherapeutics in Seafood Compliance Program (FY 09/10/11)
 - 10.4.1 http://www.fda.gov/downloads/Food/ComplianceEnforcement/ucm07319 2.pdf
- 10.5 DEN-LAB QMS #: 13-37, approved 6/10/14
- 10.6 DEN-LAB QMS #: 15-12, approved 7/5/16
- 10.7 DEN-LAB QMS #: 15-13, approved 7/5/16
- 10.8 DEN-LAB QMS #: 15-15, approved 8/12/16
- 10.9 DEN-LAB QMS #: 15-22, approved 7/31/15
- 10.10 DEN-LAB QMS#: 15-32a (tilapia), approved 8/1/17
- 10.11 DEN-LAB QMS#: 15-32c (catfish), approved 10/1/17
- 10.12 DEN-LAB QMS#: 15-32d (crab), approved 01/01/18
- 10.13 DEN-LAB QMS#: 15-32f (shrimp), approved 01/01/18
- 10.14 DEN-LAB QMS#: 15-32L (eel), approved 12/1/17
- 10.15 DEN-LAB QMS #: 16-16, approved 11/1/16
- 10.16 CVM # 118. Guidance for Industry Mass Spectrometry for Confirmation of the Identity of Animal Drug Residues
 - 10.16.1 http://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM052658.pdf

7DENVER LABORATORY WORK INSTRUCTION	ISTRUCTION DOCUMENT NUMBER	REVISION: 02
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 22 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC TESTOSTERONE IN FISH AND SHRIMP USING LIQUID C	ORIGINAL EFFECTIVE DATE: 03/15/17	
SPECTROMETRY	REVISED: 03 2018	

11. Document History

Version #	Status* (D,I, R, C)	Date	Author Name and Title	Approving Official Name and Title
1.0	I	3/9/17	T. Nickel, Chemist	Patrick Ayres, Supervisory Chemist
2.0	R	3/2/18	R. Burger, Chemist	Patrick R. Ayres, Supervisory Chemist
* - D: Draft, I:	Initial, R: Revis	on, C: Cancel		

12.Change History

Version	Change
1.0	Original. Documentation of parameters combined from LIBs 4562, 4614 and additional in house
	validations for additional matrices.
02	Major update of documentation to include the introduction of 20 new analytes for regulatory concern. These analytes were also posted with their corresponding QMiS documents and revised methodology to include presumptive positive check levels. A DNA sequencing prepping procedure with added for the assistance of microbiology in positively identifying new matrices in aquaculture. A set of revised FACTS instructions was included to address the procedure for Class 2 & 3 samples.

7DENVER LABORATORY WORK INSTRUCTION	DOCUMENT NUMBER	REVISION: 02
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 23 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIN		ORIGINAL EFFECTIVE DATE:
QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC	,	03/15/17

Appendix A: Aquaculture multi-residue screen analytes, class, and method target level

SPECTROMETRY

REVISED: 03 2018

Analyte	Class	"1x" method target level (ng/g)
Ciprofloxacin (CIP)	Fluoroquinolone	5
Enrofloxacin (ENR)	Fluoroquinolone	5
Norfloxacin (NOR)	Fluoroquinolone	5
Difloxacin (DIF)	Fluoroquinolone	5
Sarafloxacin (SAR)	Fluoroquinolone	5
Danofloxacin (DAN)	Fluoroquinolone	5
Flumequine (FLU)	Quinolone	10
Nalidixic Acid (NAL)	Quinolone	10
Oxolinic Acid (OXO)	Quinolone	10
Malachite Green (MG)	Triphenylmethane dye	1
Leucomalachite Green (LMG)	Triphenylmethane dye	1
Crystal Violet (CV)	Triphenylmethane dye	1
Leucocrystal Violet (LCV)	Triphenylmethane dye	1
Brilliant Green (BG)	Triphenylmethane dye	1
Sulfacetamide (SAA)	Sulfonamide	10
Sulfachloropyridazine (SCP)	Sulfonamide	10
Sulfadiazine (SDZ)	Sulfonamide	10
Sulfadimethoxine (SDM)	Sulfonamide	10
Sulfadoxine (SDZ)	Sulfonamide	10
Sulfaethoxypyridazine (SEP)	Sulfonamide	10
Sulfamerazine (SMR)	Sulfonamide	10
Sulfamethazine (SMZ)	Sulfonamide	10
Sulfamethoxazole (SMX)	Sulfonamide	10
Sulfamethoxypyridazine (SMP)	Sulfonamide	10
Sulfapyridine (SPD)	Sulfonamide	10
Sulfaquinoxaline (SQX)	Sulfonamide	10
Sulfathiazole (STZ)	Sulfonamide	10
Sulfamonomethoxine (SMN)	Sulfonamide	10
Trimethoprim (TMP)	Potentiator	10
Methyltestosterone (MT)	Hormone	0.8
Florfenicol Amine (FFA)	Amphenicol	1000
Florfenicol (FF)	Amphenicol	1
Chloramphenicol (CAP)	Amphenicol	0.3
Thiamphenicol (TAP)	Amphenicol	5
Mebendazole (MBZ)	Benzimidazole	5
Mebendazole Amine (MBZ-nh2)	Benzimidazole	5
Hydroxymebendazole (MBZ-oh)	Benzimidazole	5
Oxytetracycline (OTC)	Tetracycline	2000
Tetracycline (TC)	Tetracycline	2000
Chlortetracycline (CTC)	Tetracycline	2000

DOCUMENT NUMBER DEN-LB-WI-C.009

REVISION: 02

PAGE 24 OF 47

ORIGINAL EFFECTIVE DATE: 03/15/17

REVISED: 03 2018

TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY

Appendix B: Agilent 6490/6495 Instrument method

J. 100		Maria Beligan SA										
Acquisitio	on Me	thod Info										
Method Nam	e	γ	Vaters T3 450	uL 49 cpds	10132017	7.m						
Method Path		D	:\MassHunte	r\Methods\	multi res	id ve fish\Waters	T3 450 uL 49	cpd s10132	017.m			
Method Desc	ription	N	Andified LIB 4	562								
Device List												
Multisamp	ler											
Binary Pun												
Column Co	mp.											
ααα												
MS QQQ Ma	ss Spe	ctro meter										
Ion Source		Į.	US ESI			Tune File			atu nes.tu i	ne.xml		
Stop Mode			By StopTime			Stop Tim			14.5			
Time Filter LC->Waste Pr	. D.w.		On N/A				er Width (mir te Post Row	1)	0.07			
Ime Segment		ŗ	WA:			LC-PWdS	re hoer wow		11.5			
Index		Start Time 5c	an Type	Ion Mo	de	Div Valve	Delta EMV	5tore		le Time (ms)	Triggered?	MRM Repea
1			rnamicMRM	ESI+Agiler Strean		To MS	300	Yes		500	No	
Ime Segment	1											
ican Segment	s											
Cpd Name	ISTD?	Prec lon	MS1 Res	Prod lon	MS2 Res	Frag (V)	CE(V)		Ret Time	Ret	Polarity	
brilliant	Νo	385.01	Unit/Enh	340.9	Unit/Enh	380	50	(V) 4	(min) 9.15	Window 1.1	Positive	
green (BG) brilliant	No	385.01	(6490) Unit/Enh	296.9		380	62	4	9.15	1.1	Positive	
green (BG) brilliant	Νo	385.01	(6490) Unit/Enh	240.8	(6490) UniVEnh	380	70	4	9.15	1.1	Positive	
green (BG) cap d5 (IS)	Yes	325.9	(6490) Unit/Enh	157.1	(6490) Unit/Enh	380	14	4	6.8	1	Negative	
chloramph	No	320.9	(6490) Unit/Enh	257.2	(6490) Unit/Enh	380	12	4	6.8	1	Negative	
enicol (CAP)			(6490)		(6490)							
chloramph enicol	No	320.9	Unit/Enh (6490)	193.8	Unit/Enh (6490)	380	10	4	6.8	1	Negative	
(CAP)	60.0	220.0		450.4		200	44		6.0	19	- Horotage	
chloramph enicol	No	320.9	Unit/Enh (6490)	152.1	Unit/Enh (6490)	380	14	4	6.8	-1	Negative	
(CAP) Chlorotetra	No	479.9	Unit/Enh	463	Unit/Enh	380	14	4	5.75	1.1	Positive	
cycline			(6490)		(6490)							
(CTC) Chlorotetra	No	479.9	Unit/Enh	444.9	Unit/Enh	380	22	4	5.75	1.1	Positive	
cycline (CTC)			(6490)		(6490)							
Chlorotetra cycline	No.	479.9	Unit/Enh (6490)	155	Unit/Enh (6490)	380	38	4	5.75	1.1	Positive	
(CTC)									4.0			
ciprofloxaci n HCT	Νo	332.15	Unit/Enh (6490)	313.8	Unit/Enh (6490)	380	18	4	4.9	1	Positive	
(CIP) ciprofloxaci	No	222 15	U nit/Enh	2/11 0	Unit/Enh	380	26	4	4.9	1	Positive	
п НСТ	14.0	332.13	(6490)	294.0	(6490)	300	20	0.576	4.0	- 13	1 0311106	
(CIP) ciprofloxaci	No	332.15	Unit/Enh	230.8	Unit/Enh	380	42	4	4.9	1	Positive	
n HCI (CIP)			(6490)		(6490)							
cv-D6 [IS]	Yes	378	Unit/Enh	362.1	Unit/Enh	380	46	4	9	2	Positive	
danofloxaci	No	358.39	(6490) Unit/Enh	340.2	(6490) Unit/Enh	380	30	4	5	1	Positive	
n (DAN) danofloxaci	No	358.39	(6490) Unit/Enh	255	(6490) Unit/Enh	380	46	4	5	1	Positive	
n (DAN)			(6490)		(6490)							
danofloxaci n (DAN)	No		Unit/Enh (6490)		Unit/Enh (6490)		46	4	5	i1	Positive	
difloxacin (DIF)	Νo	400	Unit/Enh (6490)	382.1	Unit/Enh (6490)	380	22	4	5.5	1	Positive	
difloxacin (DIF)	Νo	400	Unit/Enh	356.1	Unit/Enh	380	22	4	5.5	1	Positive	
			(6490)	299.1	(6490)							

DOCUMENT NUMBER DEN-LB-WI-C.009

REVISION: 02

PAGE 25 OF 47

ORIGINAL EFFECTIVE DATE: 03/15/17

REVISED: 03 2018

Acquisition Method Report

TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES,

QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL

TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS

SPECTROMETRY

Anilent Technologies

				Ac	quisi	ion Me	ethod	керо	rt	7	Agilent Technologi	ies
Cpd Name	ISTD?	Prec lon	MS1 Res	Prod lon	MS2 Res	Frag (V)	CE(V)	Cell Acc	Ret Time	Ret	Polarity	
enrofloxaci	No	360.4	Unit/Enh	341.8	Unit/Enh	380	22	(V) 4	(min.) 5.1	Window 1	Positive	
n (ENR) enrofloxaci	No	360.4	(6490) Unit/Enh	315.9	(6490) Unit/Enh	380	18	4	5.1	1	Positive	
n (ENR) enrofloxaci	No	360.4	(6490) Unit/Enh	244.9	(6490) Unit/Enh	380	30	4	5.1	1	Positive	
n (ENR) florfenicol	No	355.9	(6490) Unit/Enh	335.9	(6490) Unit/Enh	380	10	4	6.6	1.1	Negative	
(FF) florfenicol	No	355.9	(6490) Unit/Enh	185	(6490) Unit/Enh	380	14	4	6.6	1.1	Negative	
(FF) florfenicol	No	355.9	(6490) Unit/Enh	119.1	(6490) Unit/Enh	380	38	4	6.6	1.1	N egative	
(FF) florfenicol	No		(6490) Unit/Enh		(6490) Unit/Enh	380	10	4	2.9	3.5	Positive	
amine (FFA)	1660	2 10.0	(6490)		(6490)	NOTE:	.0	100000	200	45.50	1321252	
florfenicol amine	No	248.3	Unit/Enh (6490)	129.9	Unit/Enh (6490)	380	34	4	2.9	3.5	Positive	
(FFA) florfenicol amine	Νo	248.3	Unit/Enh (6490)	90.9	Unit/Enh (6490)	380	58	4	2.9	3.5	Positive	
(FFA) flumequine	No	262.26	Unit/Enh	243.8	Unit/Enh	380	22	4	8.1	1	Positive	
(FLU) flumequine	No	262.26	(6490) Unit/Enh	201.7	(6490) Unit/Enh	380	34	4	8.1	1	Positive	
(FLU) flumequine	No	262.26	(6490) Unit/Enh	125.8	(6490) Unit/Enh	380	54	4	8.1	1	Positive	
(FLU) gentian	No	372.01	(6490) Unit/Enh	355.8	(6490) Unit/Enh	380	50	4	8.95	1.1	Positive	
violet (GV/CV)	3003		(6490)		(6490)					(334	E GOSTAGO	
gentian violet (GV/CV)	No	372.01	Unit/Enh (6490)	339.9	Unit/Enh (6490)	380	62	- 4	8.95	.1.1	Positive	
gentian violet (GV/CV)	Νo	372.01	Unit/Enh (6490)	250.9	Unit/Enh (6490)	380	44	4	8.95	1.1	Positive	
Hydroxyme bendazole	Νo	298.3	Unit/Enh (6490)	266	Unit/Enh (6490)	380	30	4	5.6	1.1	Positive	
(MEB-oh) Hydroxyme bendazole (MEB-oh)	No	298.3	Unit/Enh (6490)	220	Unit/Enh (6490)	380	54	4	5.6	1.1	Positive	
Hydroxyme bendazole	Νo	298.3	Unit/Enh (6490)	79.1	Unit/Enh (6490)	380	50	4	5.6	1.1	Positive	
(MEB-oh) leuco cv-	Yes	380	Unit/Enh	364.2	Unit/Enh	380	28	4	5.95	1	Positive	
D6 [IS] leuco gv/cv	No	374.51	(6490) Unit/Enh	358.4	(6490) Unit/Enh	380	26	4	6.3	1.1	Positive	
(LGV/LCV) leuco gv/cv	No	374.51	(6490) Unit/Enh	253	(6490) Unit/Enh	380	42	4	6.3	1.1	Positive	
(LGV/LCV) leuco gv/cv	No	374.51	(6490) Unit/Enh	239	(6490) Unit/Enh	380	30	4	6.3	1.1	Positive	
(LGV/LCV) leuco mg	No	331.51	(6490) Unit/Enh	315.8	(6490) Unit/Enh	380	26	4	9.4	1.1	Positive	
(LMG) leuco mg	No		(6490) Unit/Enh		(6490) Unit/Enh	380	36	4	9.4	1.1	Positive	
(LMG) leuco mg	No		(6490) Unit/Enh		(6490) Unit/Enh	380	62	4	9.4	1.1	Positive	
(LMG)			(6490)		(6490)							
lmg-D5 [IS]	Yes		Unit/Enh (6490)		Unit/Enh (6490)	380	44	4	9.15	1	Positive	
malachite green (MG)	No	329.01	U nit/Enh (6490)	312.9	Unit/Enh (6490)	380	42	4	8.2	1.1	Positive	
malachite green	No	329.01	Unit/Enh (6490)	240.9	Unit/Enh (6490)	380	66	4	8.2	1.1	Positive	
(MG) malachite green	No	329.01	Unit/Enh (6490)	207.8	Unit/Enh (6490)	380	54	4	8.2	1.1	Positive	
(MG) Mebendaz	No	296.3	Unit/Enh	263.9	Unit/Enh	380	26	4	7.35	1.1	Positive	
ole (MEB) Mebendaz	No	296.3	(6490) Unit/Enh	105	(6490) Unit/Enh	380	38	4	7.35	1.1	Positive	
ole (MEB) Mebendaz	No	296.3	(6490) Unit/Enh	77.1	(6490) Unit/Enh	380	50	4	7.35	1.1	Positive	
ole (MEB) Mebendaz	No		(6490) Unit/Enh		(6490) Unit/Enh	380	50	4	5.6	1.1	Positive	
ole Amine (MEB-nh2)		200,21	(6490)	,55	(6490)	2000		:: -1 .	5.5	saud		
Mebendaz ole Amine	No	238.27	U nit/Enh (6490)	105	Unit/Enh (6490)	380	30	4	5.6	1.1	Positive	
(MEB-nh2) Mebendaz ole Amine (MEB-nh2)	No	238.27	Unit/Enh (6490)	77.1	Unit/Enh (6490)	380	46	4	5.6	1.1	Positive	

DOCUMENT NUMBER DEN-LB-WI-C.009

REVISION: 02

PAGE 26 OF 47

ORIGINAL EFFECTIVE DATE: 03/15/17

REVISED: 03 2018

Acquisition Method Report

TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES,

QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL

TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS

SPECTROMETRY

Agilent Technologies

				Ac	quisit	ion Me	thod	Repo	rt	• •	Agilent Te	chnologies
Cpd Name	ISTD?	Prec lon	MS1 Res	Prod lon	MS2 Res	Frag (V)	CE(V)	Cell Acc	Ret Time	Ret	Polarity	
methyl testosteron	No	303.46	Unit/Enh (6490)	109	Unit/Enh (6490)	380	42	(V) 4	(min) 9.3	Window 1	Positive	
e (MT) methyl testosteron	No	303.46	Unit/Enh (6490)	97	Unit/Enh (6490)	380	26	4	9.3	1	Positive	
e (MT) methyl testosteron	No	303.46	Unit/Enh (6490)	78.9	Unit/Enh (6490)	380	58	4	9.3	.1	Positive	
e (MT) mg-d5 [IS]	Yes	334.2	Unit/Enh (6490)	318.1	Unit/Enh (6490)	380	44	4	8.1	1	Positive	
nalidixic acid (NAL)	No	233.25	Unit/Enh (6490)	214.8	Unit/Enh (6490)	380	14	4	7.9	1	Positive	
nalidixic acid (NAL)	No	233.25	Unit/Enh (6490)	186.7	Unit/Enh (6490)	380	30	4	7.9	1	Positive	
nalidixic	No	233.25	Unit/Enh	103.8	Unit/Enh	380	54	4	7.9	1	Positive	
acid (NAL) nor-D5 [IS]	Yes	325.3	(6490) Unit/Enh	281.2	(6490) Unit/Enh	380	20	4	4.75	1	Positive	
norfloxacin	No	320.34	(6490) Unit/Enh	276.1	(6490) Unit/Enh	380	19	4	4.8	1	Positive	
(NOR) norfloxacin	No	320 34	(6490) Unit/Enh		(6490) Unit/Enh	380	30	4	4.8	19	Positive	
(NOR)			(6490)		(6490)							
norfloxacin (NOR)	No	320.34	Unit/Enh (6490)	230.7	Unit/Enh (6490)	380	42	4	4.8	1	Positive	
oxolinic acid (OXO)	N.o.	262.24	Unit/Enh (6490)	243.7	Unit/Enh (6490)	380	18	4	6.9	1	Positive	
ocolinic	Νo	262.24	Unit/Enh	215.6	Unit/Enh	380	34	4	6.9	1	Positive	
acid (OXO) oxolinic	No	262.24	(6490) Unit/Enh	159.8	(6490) Unit/Enh	380	46	4	6.9	1	Positive	
acid (OXO) Oxytetracy	No	461.4	(6490) Unit/Enh	443.2	(6490) Unit/Enh	380	10	4	4.9	1.1	Positive	
cline (OTC)			(6490)		(6490)							
Oxytetracy cline (OTC)	No	461.4	Unit/Enh (6490)	426	Unit/Enh (6490)	380	18	4	4.9	1.1	Positive	
Oxytetracy cline (OTC)	Νo	461.4	Unit/Enh (6490)	337	Unit/Enh (6490)	380	34	4	4.9	1.1	Positive	
sarafloxaci n HCI (SAR)	No	386.13	Unit/Enh (6490)	368.1	Unit/Enh (6490)	380	26	4	5.45	1	Positive	
sarafloxaci π HC I (SAR)	No	386.13	Unit/Enh (6490)	342.2	Unit/Enh (6490)	380	18	4	5.45	1	Positive	
sarafloxaci n HCI (SAR)	No	386.13	Unit/Enh (6490)	299.2	Unit/Enh (6490)	380	30	4	5.45	1	Positive	
smz 6c13	Yes	285.11	Unit/Enh	186.1	Unit/Enh	380	17	4	5.5	1	Positive	
(IS) sulfacetami	No	215.25	(6490) Unit/Enh	155.9	(6490) Unit/Enh	380	10	4	4.4	1	Positive	
de (SAA) sulfacetami	No	215.25	(6490) Unit/Enh	108	(6490) Unit/Enh	380	18	4	4.4	1	Positive	
de (SAA) sulfacetami	No	215.25	(6490) Unit/Enh	97	(6490) Unit/Enh	380	26	4	4.4	1	Positive	
de (SAA)			(6490)		(6490)							
sulfachloro pyridazine (SCP)	No		Unit/Enh (6490)	130.1	Unit/Enh (6490)	380	18	4	6,3	1	Positive	
sulfachloro pyridazine (SCP)	No	285.02	Unit/Enh (6490)	108.1	Unit/Enh (6490)	380	30	4	6.3	1	Positive	
sulfachloro pyridazine (SCP)	Νo	285.02	Unit/Enh (6490)	92.1	Unit/Enh (6490)	380	34	4	6.3	1	Positive	
s ulfadiazin	Νo	251.3	Unit/Enh	155.9	Unit/Enh	380	14	4	4.6	0.9	Positive	
e (SDZ) s ulfadiazin	No	251.3	(6490) Unit/Enh	108	(6490) Unit/Enh	380	30	4	4.6	0.9	Positive	
e (SDZ) s ulfadiazin	No	251.3	(6490) Unit/Enh	92	(6490) Unit/Enh	380	34	4	4.6	0.9	Positive	
e (SDZ) sulfadimet	No	311 35	(6490) Unit/Enh	156.9	(6490) Unit/Enh	380	22	4	7.2	1	Positive	
hoxine (SDM)			(6490)		(6490)							
sulfadimet hoxine (SDM)	No	311.35	Unit/Enh (6490)	107.9	Unit/Enh (6490)	380	30	4	7.2	1	Positive	
sulfadimet hoxine (SDM)	No	311.35	Unit/Enh (6490)	92.1	Unit/Enh (6490)	380	42	4	7.2	1	Positive	
sulfadoxine	No	311.34	Unit/Enh	155.9	Unit/Enh	380	14	4	6.45	1	Positive	
(SDX) sulfadoxine (SDX)	No	311.34	(6490) Unit/Enh (6490)	107.9	(6490) Unit/Enh (6490)	380	22	4	6.45	1	Positive	
			110.10.00 6									Dago 3 of C

DOCUMENT NUMBER DEN-LB-WI-C.009

REVISION: 02

PAGE 27 OF 47

ORIGINAL EFFECTIVE DATE: 03/15/17

REVISED: 03 2018

TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY

Acquisition Method Report

Agilent Technologies

				AU	quisi	ion we	tiiou	Keho	I.L		agnent i	ecimologies
Cpd Name	ISTD?	Prec lon	MS1 Res	Prod lon	MS2 Res	Frag (V)	CE(V)	Cell Acc	Ret Time	Ret	Polarity	
sulfadoxine	No	311.34	Unit/Enh	91.9	Unit/Enh	380	42	(V) 4	(min) 6.45	Window 1	Positive	
(SDX) sulfaethoxy pyridazine	No	295.34	(6490) Unit/Enh (6490)	156	(6490) Unit/Enh (6490)	380	30	4	6.5	1	Positive	
(SEP) sulfaethoxy pyridazine	No	295.34	Unit/Enh (6490)	107.9	Unit/Enh (6490)	380	34	4	6.5	1	Positive	
(SEP) sulfaethoxy pyridazine (SEP)	No	295.34	Unit/Enh (6490)	.91.9	Unit/Enh (6490)	380	38	4	6.5	1	Positive	
sulfameraz ine(SMR)	No	265.31	Unit/Enh (6490)	156	Unit/Enh (6490)	380	18	4	5.15	1	Positive	
sulfameraz ine(SMR)	No	265.31	Unit/Enh (6490)	108	Unit/Enh (6490)	380	30	4	5.15	1	Positive	
sulfameraz ine(SMR)	No	265.31	Unit/Enh (6490)	91.9	Unit/Enh (6490)	380	34	4	5.15	1	Positive	
sulfametha	No	279.34	Unit/Enh	185.9	Unit/Enh	380	22	4	5.5	1	Positive	
zine (SMZ) sulfametha	No	279.34	(6490) Unit/Enh	123.9	(6490) Unit/Enh	380	30	4	5.5	1	Positive	
zine (SMZ) sulfametha	No	279.34	(6490) Unit/Enh	92	(6490) Unit/Enh	380	30	4	5.5	1	Positive	
zine (SMZ) sulfametho	No	254.29	(6490) Unit/Enh	155.9	(6490) Unit/Enh	380	14	4	6.6	1	Positive	
xazole (SMX)			(6490)		(6490)							
sulfametho xazole (SMX)	No	254.29	U nit/Enh (6490)	107.9	Unit/Enh (6490)	380	22	4	6.6	7	Positive	
sulfametho xazole (SMX)	No	254.29	Unit/Enh (6490)	92	Unit/Enh (6490)	380	26	4	6.6	1	Positive	
s ulfametho xypyridazin e (SMP)	No	281.31	Unit/Enh (6490)	156.1	Unit/Enh (6490)	380	18	4	5.6	0.8	Positive	
sulfametho xypyridazin e (SMP)	No	281.31	Unit/Enh (6490)	107.9	Unit/Enh (6490)	380	20	4	5.6	8.0	Positive	
s ulfametho xypyridazin	No	281.31	Unit/Enh (6490)	91.9	Unit/Enh (6490)	380	36	4	5.6	0.8	Positive	
e (SMP) sulfamono methoxine	No	281.07	U nit/Enh (6490)	156.1	Unit/Enh (6490)	380	18	4	6	0.8	Positive	
(SMN) sulfamono methoxine	No	281.07	U nit/Enh (6490)	107.9	Unit/Enh (6490)	380	30	4	6	8.0	Positive	
(SMN) sulfamono methoxine (SMN)	No	281.07	U nit/Enh (6490)	92	Unit/Enh (6490)	380	34	4	6	8.0	Positive	
sulfapyridin	No	250.3	Unit/Enh	155.9	Unit/Enh	380	14	4	4.9	8.0	Positive	
e (SPD) sulfapyridin	No	250.3	(6490) Unit/Enh	108	(6490) Unit/Enh	380	30	4	4.9	0.8	Positive	
e (SPD) sulfapyridin	No	250.3	(6490) Unit/Enh	92	(6490) Unit/Enh	380	26	4	4.9	0.8	Positive	
e (SPD) suffaquinox aline	No	301.09	(6490) Unit/Enh (6490)	156.9	(6490) Unit/Enh (6490)	380	14	4	7.2	1	Positive	
(SQX) sulfaquinox aline	No	301.09	U nit/Enh (6490)	107.9	Unit/Enh (6490)	380	26	4	7.2	1	Positive	
(SQX) sulfaquinox aline	No	301.09	Unit/Enh (6490)	91.9	Unit/Enh (6490)	380	30	4	7.2	1	Positive	
(SQX) sulfathiazol	No	256.03	Unit/Enh	155.9	Unit/Enh	380	14	4	4.8	1	Positive	
e (STZ) sulfathiazol	No	256.03	(6490) Unit/Enh	107.9	(6490) Unit/Enh	380	30	4	4.8	1	Positive	
e (STZ) sulfathiazol	No	256.03	(6490) Unit/Enh	91.9	(6490) Unit/Enh	380	34	4	4.8	1	Positive	
e (STZ) Tetracyclin	No		(6490) Unit/Enh		(6490) Unit/Enh	380	10	4	5	1.1	Positive	
e (TC) Tetracyclin	No		(6490) Unit/Enh		(6490) Unit/Enh	380	18	4	5	1.1	Positive	
e (TC) Tetracyclin	No		(6490) Unit/Enh		(6490) Unit/Enh	380	34	4	5	1.1	Positive	
e (TC) thiampheni	No		(6490) Unit/Enh		(6490) Unit/Enh	380	16	4	5.35	1.1	Negative	
col(TAP)			(6490)		(6490)							
thiampheni col(TAP)	No.		Unit/Enh (6490)		Unit/Enh (6490)	380	22	4	5.35	1.1	Negative	
thiampheni col (TAP)	No		Unit/Enh (6490)		Unit/Enh (6490)	380	32	4	5.35	1.1	Negative	
trimethopri m (TMP)	No		Unit/Enh (6490)		Unit/Enh (6490)	380	26	4	4.75	31	Positive	
Report genera	tion date: (17-Mar-2018	R 10:16:58 A	M								Page 4 of 6

DOCUMENT NUMBER DEN-LB-WI-C.009

REVISION: 02

PAGE 28 OF 47

ORIGINAL EFFECTIVE DATE: 03/15/17

REVISED: 03 2018

QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY

TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES,

Acquisition Method Report

Agilent Technologies

				Acquisii	TOLL IME	etnou	Kepc)I L		Agrient le	cimologie
Cpd Name	ISTD?	Prec lon	MS1 Res	Prod Ion MS2 Res	Frag (V)	CE(V)	Cell Acc	Ret Time	Ret	Polarity	
trimethopri	No	291.33	Unit/Enh	229.8 Unit/Enh	380	26	(V) 4	(min) 4.75	Window 1	Positive	
m (TMP) trimethopri m (TMP)	No	291.33	(6490) Unit/Enh (6490)	(6490) 122.8 Unit/Enh (6490)	380	34	4	4.75	1	Positive	
can Parameter	rs			35.357							
Data St Centroi		Threshold 0									
ource Paramet											
Parameter		V	alue (+)	Value (-)							
Gas Temp (*C)	Ě	90	220	220							
Gas Flow (I/m			19	19							
Nebulizer (psi			20	20							
SheathGasHea	ater		300	300							
SheathGasFlo	W		12	12							
Capillary (V)			3000	3000							
VCharging			500	1500							
on Funnel Para	meters										
Pos High Press Pos Low Pressi			150 30			Pressure Ri Pressure RF		100 60			
Chromatogram:	s										
Chrom Type		Label		Offset	Y-Rang-	e					
TIC		TIC		0	1000000						
nstrument Cur	ves										
Gas Flow High Vac Name:	Mult	isampler			Mode	l: Gi	7167B				
Sampling Spee											
Draw Speed					20	0.0 μL/min					
Eject Speed						0.0 μL/min					
Walt Time A	fter Dra	wing			2.0						
Injection											
Needle Wash	n Mode				Sta	andard Was	h				
injection Vol	lume				10	.00 μL					
Standard N	leedle V	Vash									
Needle W		ode				ish Port					
Duration					30	2					
High Throughp											
		ypass for Dela	y Volume Re	eduction	No						
5ample Flush Overlapped					5.0)					
	(8)	n Enabled			No	r.					
Needle Height											
Draw Positio	on Offse	¥t .) mm					
Use Vial/We		m Sensing			No	00					
Thermostat Se	CONTRACTOR OF THE PARTY OF THE										
Thermostat					Ye						
Temperature	Ē.				5.	C					
Stop Time					1000						
Stoptime Mo	ode				No	Limit					
Post Time	Si										
Posttime Mo	ode				Off	r i					

DOCUMENT NUMBER DEN-LB-WI-C.009

REVISION: 02

PAGE 29 OF 47

ORIGINAL EFFECTIVE
DATE:
03/15/17

REVISED: 03 2018

TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY

Acquisition Method Report

Agilent Technologies

Vame	: Bin	ary Pump 1			Mode	l: G712	0A	
Flow	į.				O.	450 mL/min		
Use!	Solvent Types	5			Ye	is		
Strol	ke Mode				Sy	nchronized		
Low	Pressure Limi	it			0.	00 bar		
High	Pressure Lim	ilt			60	0.00 bar		
Max	. Flow Ramp	Up			10	00.000 mL/min ²		
Max	. Flow Ramp	Down			10	0.000 mL/min ²		
Expe	ected Mixer				Ni	o check		
5troke	A							
Auto	matic Stroke	Calculation A			Ye	es:		
Stop Ti	lme							
Stop	time Mode				Ti	me set		
Stop	time				18	1.50 min		
Post Ti	lme							
Post	time Mode				01	Ť		
Solve	ent Composit	ion						
	Channel	Ch. 1 Solv.	Name 1	Ch2 Solv.	Name 2	Selected	Used	Percent
	Δ	100.0% H20	0.1% formic	100.0 % H20		Ch. 1	Yes	95.00 %

	Channel	Ch. 1 Solv.	Name 1	Ch2 Solv.	Name 2	5elected	Used	Percent
1	A	100.0% H20 (migrated)	0.1% formic	100.0 % H20 (migrated)		Ch. 1	Yes	95.00 %
2	В	100.0% ACN	100	100.0 % H20 (migrated)	1186	Ch. 1	Yes	5.00 %

Timetable

	Time	A	В	Flow	Pressure
1	0.00 min	95.00%	5.00%	0.450 mL/min	600.00 bar
2	1.11 min	95.00%	5.00%	0.450 mL/min	600.00 bar
3	6.67 min	50.00%	50.00 %	0.450 mL/min	600.00 bar
4	7.23 min	50.00%	50.00 %	0.450 mL/min	600.00 bar
5	8.89 min	0.00 %	100.00%	0.450 mL/min	600.00 bar
6	10.56 min	0.00 %	100.00 %	0.450 mL/min	600.00 bar
7	10.84 min	95.00%	5.00%	0.450 mL/min	600.00 bar
8	12.22 min	95.00%	5.00%	0.450 mL/min	600.00 bar

Name: Column Comp.	Model: G7116B	
Valve Position	Port 1 -> 10	
Ready when front door open	Yes	
Position Switch After Run	Do not switch	
Left Temperature Control		
Temperature Control Mode	Temperature Set	
Temperature	30.00 °C	
Enable Analysis Left Temperature		
Enable Analysis Left Temperature On	No	
Right Temperature Control		
Right temperature Control Mode	Temperature Set	
Right temperature	30.00°C	
Enable Analysis Right Temperature		
Enable Analysis Right Temperature On	No	
Enforce column for run		
Enforce column for run column type		
Enforce column for run enabled	No	
Stop Time		
Stoptime Mode	As pump/injector	
Post Time		
Posttime Mode	Off	

DOCUMENT NUMBER DEN-LB-WI-C.009

REVISION: 02

PAGE 30 OF 47

ORIGINAL EFFECTIVE
DATE:
03/15/17

REVISED: 03 2018

Appendix C: AB SCIEX QTRAP 5500 LC-MS/MS instrument method

TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES,

QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL

TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS

SPECTROMETRY

A: 0.1% formic in water; B: ACN; column: WatersXSelect HSS T3

Comment: s/n:01143507015506 : lot #:0114350701 Inst ID: 1701725

Synchronization

Mode: LC Sync Auto-Equilibration: Off

Acquisition

Duration: 13min12sec

Number Of Scans: 3630 Periods In File: 1

Acquisition Module: Acquisition Method Software version Analyst 1.6.2

MS Method Properties: Period 1:

Scans in Period: 3630

Relative Start Time: 1000.00 msec

1

Experiments in Period:

Period 1

Experiment 1:

Scan Type: MRM (MRM)

Scheduled MRM: Yes
Polarity: Positive
Scan Mode: N/A

Ion Source: Turbo Spray

MRM detection

window: 60 sec
Target Scan Time: 0.2000 sec

Resolution Q1: Unit
Resolution Q3: Unit
Intensity Thres.: 0.00 cps
Settling Time: 0.0000 msec
MR Pause: 5.0070 msec

MCA: No Step Size: 0.00 Da

7DENVER LABORATORY WORK INSTRUCTION		
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 31 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC	ORIGINAL EFFECTIVE DATE: 03/15/17	
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		REVISED: 03 2018

	<u> </u>	ECTROMETRY			
@Q1 Mass (Da) 215	Q3 Mass (Da) 156	Time (min) 5	Param DP CE CXP	Start 81 13 18	ID Sulfacetamide (SAA) 1
@Q1 Mass (Da) 215	Q3 Mass (Da) 92.1	Time (min) 5	Param DP CE CXP	Start 81 33 10	ID Sulfacetamide (SAA) 2
@Q1 Mass (Da) 215	Q3 Mass (Da) 108	Time (min) 5	Param DP CE CXP	Start 81 27 10	ID Sulfacetamide (SAA) 3
@Q1 Mass (Da) 251	Q3 Mass (Da) 156	Time (min) 5.7	Param DP CE CXP	Start 41 21 18	ID Sulfadiazine (SDZ) 1
@Q1 Mass (Da) 251	Q3 Mass (Da) 92.1	Time (min) 5.7	Param DP CE CXP	Start 41 31 14	ID Sulfadiazine (SDZ) 2
@Q1 Mass (Da) 251	Q3 Mass (Da) 108.1	Time (min) 5.7	Param DP CE CXP	Start 41 35 14	ID Sulfadiazine (SDZ) 3
@Q1 Mass (Da) 256	Q3 Mass (Da) 156	Time (min) 6.1	Param DP CE CXP	Start 56 19 12	ID Sulfathiazole (STZ) 1
@Q1 Mass (Da) 256	Q3 Mass (Da) 92	Time (min) 6.1	Param DP CE CXP	Start 56 33 20	ID Sulfathiazole (STZ) 2
@Q1 Mass (Da)	Q3 Mass (Da)	Time (min)	Param	Start	ID

7DENVER LABORATORY WORK INSTRUCTION	DOCUMENT NUMBER	REVISION: 02
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 32 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRING QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC	ORIGINAL EFFECTIVE DATE: 03/15/17	
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		REVISED: 03 2018

	<u> </u>	ECTROMETRY			
256	108.1	6.1	DP CE CXP	56 31 20	Sulfathiazole (STZ) 3
@Q1 Mass (Da) 250	Q3 Mass (Da) 92	Time (min) 6.1	Param DP CE CXP	Start 61 35 10	ID Sulfapyridine (SPD) 1
@Q1 Mass (Da) 250	Q3 Mass (Da) 156	Time (min) 6.1	Param DP CE CXP	Start 61 27 12	ID Sulfapyridine (SPD) 2
@Q1 Mass (Da) 250	Q3 Mass (Da) 108.1	Time (min) 6.1	Param DP CE CXP	Start 61 30 12	ID Sulfapyridine (SPD) 3
@Q1 Mass (Da) 291	Q3 Mass (Da) 230.2	Time (min) 6.3	Param DP CE CXP	Start 66 31 16	ID Trimethoprim (TRI)1
@Q1 Mass (Da) 291	Q3 Mass (Da) 261	Time (min) 6.3	Param DP CE CXP	Start 66 33 10	ID Trimethoprim (TRI) 2
@Q1 Mass (Da) 291	Q3 Mass (Da) 123.1	Time (min) 6.3	Param DP CE CXP	Start 66 31 10	ID Trimethoprim (TRI) 3
@Q1 Mass (Da) 265	Q3 Mass (Da) 156	Time (min) 6.4	Param DP CE CXP	Start 36 23 14	ID Sulfamerazine (SMR) 1
@Q1 Mass (Da) 265	Q3 Mass (Da) 108	Time (min) 6.4	Param DP CE	Start 36 31	ID Sulfamerazine (SMR) 2

7DENVER LABORATORY WORK INSTRUCTION	DOCUMENT NUMBER	REVISION: 02
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 33 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC	ORIGINAL EFFECTIVE DATE: 03/15/17	
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		REVISED: 03 2018

	<u> </u>	ECTROMETRY			
			CXP	20	
@Q1 Mass (Da) 265	Q3 Mass (Da) 92	Time (min) 6.4	Param DP CE CXP	Start 36 19 12	ID Sulfamerazine (SMR) 3
@Q1 Mass (Da) 320.1	Q3 Mass (Da) 276.1	Time (min) 6.45	Param DP CE	Start 81 23	ID Norfloxacin (NOR) 1
@Q1 Mass (Da) 320.1	Q3 Mass (Da) 302.1	Time (min) 6.45	Param DP CE CXP	Start 81 29 10	ID Norfloxacin (NOR) 2
@Q1 Mass (Da) 320.1	Q3 Mass (Da) 233	Time (min) 6.45	Param DP CE CXP	Start 81 53 16	ID Norfloxacin (NOR) 3
@Q1 Mass (Da) 332.1	Q3 Mass (Da) 245.1	Time (min) 6.6	Param DP CE CXP	Start 106 33 20	ID Ciprofloxacin (CIP) 1
@Q1 Mass (Da) 332.1	Q3 Mass (Da) 314.2	Time (min) 6.6	Param DP CE CXP	Start 106 20 20	ID Ciprofloxacin (CIP) 2
@Q1 Mass (Da) 332.1	Q3 Mass (Da) 231.1	Time (min) 6.6	Param DP CE CXP	Start 106 47 20	ID Ciprofloxacin (CIP) 3
@Q1 Mass (Da) 360.1	Q3 Mass (Da) 316.1	Time (min) 6.8	Param DP CE CXP	Start 36 29 12	ID Enrofloxacin (ENR) 1

7DENVER LABORATORY WORK INSTRUCTION	ORK INSTRUCTION DOCUMENT NUMBER	
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 34 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIN QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC TESTOSTERONE IN FISH AND SHRIMP USING LIQUID C	ORIGINAL EFFECTIVE DATE: 03/15/17 REVISED: 03 2018	
SPECTROMETRY	REVISED. 03 20 10	

@Q1 Mass (Da) 360.2	Q3 Mass (Da) 342.1	Time (min) 6.8	Param DP CE CXP	Start 36 31 12	ID Enrofloxacin (ENR) 2
@Q1 Mass (Da) 360.2	Q3 Mass (Da) 245.1	Time (min) 6.8	Param DP CE CXP	Start 36 41 20	ID Enrofloxacin (ENR) 3
@Q1 Mass (Da) 279	Q3 Mass (Da) 186	Time (min) 7	Param DP CE CXP	Start 61 25 14	ID Sulfamethazine (SMZ) 1
@Q1 Mass (Da) 279	Q3 Mass (Da) 124	Time (min) 7	Param DP CE CXP	Start 61 33 12	ID Sulfamethazine (SMZ) 2
@Q1 Mass (Da) 279	Q3 Mass (Da) 92.1	Time (min) 7	Param DP CE CXP	Start 61 35 20	ID Sulfamethazine (SMZ) 3
@Q1 Mass (Da) 280.9	Q3 Mass (Da) 156.1	Time (min) 7.1	Param DP CE CXP	Start 66 23 10	ID Sulfamethoxypyridazine (SMP) 1
@Q1 Mass (Da) 280.9	Q3 Mass (Da) 92	Time (min) 7.1	Param DP CE CXP	Start 66 37 12	ID Sulfamethoxypyridazine (SMP) 2
@Q1 Mass (Da) 280.9	Q3 Mass (Da) 108.1	Time (min) 7.1	Param DP CE CXP	Start 66 33 10	ID Sulfamethoxypyridazine (SMP) 3
@Q1 Mass (Da) 374.2	Q3 Mass (Da) 358.3	Time (min) 7.55	Param DP	Start 65	ID Leucogentian violet (LGV)1

7DENVER LABORATORY WORK INSTRUCTION	ORK INSTRUCTION DOCUMENT NUMBER	
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 35 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC	ORIGINAL EFFECTIVE DATE: 03/15/17	
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		REVISED: 03 2018

		ECTROMETRY			
			CE CXP	39 18	
@Q1 Mass (Da) 374.2	Q3 Mass (Da) 239.1	Time (min) 7.55	Param DP CE CXP	Start 65 51 12	ID Leucogentian violet (LGV) 2
@Q1 Mass (Da) 374.2	Q3 Mass (Da) 253	Time (min) 7.55	Param DP CE CXP	Start 65 43 34	ID Leucogentian violet (LGV)3
@Q1 Mass (Da) 284.9	Q3 Mass (Da) 156	Time (min) 7.95	Param DP CE CXP	Start 56 25 12	ID Sulfachloropyridazine (SCP) 1
@Q1 Mass (Da) 284.9	Q3 Mass (Da) 92.1	Time (min) 7.95	Param DP CE CXP	Start 56 35 10	ID Sulfachloropyridazine (SCP) 2
@Q1 Mass (Da) 284.9	Q3 Mass (Da) 108.1	Time (min) 7.95	Param DP CE CXP	Start 56 33 12	ID Sulfachloropyridazine (SCP) 3
@Q1 Mass (Da) 310.9	Q3 Mass (Da) 156	Time (min) 8.1	Param DP CE CXP	Start 26 25 12	ID Sulfadoxine (SDX) 1
@Q1 Mass (Da) 310.9	Q3 Mass (Da) 108.1	Time (min) 8.1	Param DP CE CXP	Start 26 33 10	ID Sulfadoxine (SDX) 2
@Q1 Mass (Da) 310.9	Q3 Mass (Da) 92	Time (min) 8.1	Param DP CE CXP	Start 26 39 10	ID Sulfadoxine (SDX) 3

7DENVER LABORATORY WORK INSTRUCTION	2000	
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 36 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC	ORIGINAL EFFECTIVE DATE: 03/15/17	
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		REVISED: 03 2018

@Q1 Mass (Da) 295	Q3 Mass (Da) 156	Time (min) 8.2	Param DP CE CXP	Start 51 23 12	ID Sulfaethoxypyridazine (SEP) 1
@Q1 Mass (Da) 295	Q3 Mass (Da) 92	Time (min) 8.2	Param DP CE CXP	Start 51 41 10	ID Sulfaethoxypyridazine (SEP) 2
@Q1 Mass (Da) 295	Q3 Mass (Da) 108	Time (min) 8.2	Param DP CE CXP	Start 51 39 14	ID Sulfaethoxypyridazine (SEP) 3
@Q1 Mass (Da) 254	Q3 Mass (Da) 156	Time (min) 8.3	Param DP CE CXP	Start 66 21 16	ID Sulfamethoxazole (SMX) 1
@Q1 Mass (Da) 254	Q3 Mass (Da) 108	Time (min) 8.3	Param DP CE CXP	Start 66 35 20	ID Sulfamethoxazole (SMX) 2
@Q1 Mass (Da) 254	Q3 Mass (Da) 92	Time (min) 8.3	Param DP CE CXP	Start 66 21 10	ID Sulfamethoxazole (SMX) 3
@Q1 Mass (Da) 262.1	Q3 Mass (Da) 244	Time (min) 8.6	Param DP CE CXP	Start 16 23 14	ID Oxolinic Acid (OXO) 1
@Q1 Mass (Da) 262.1	Q3 Mass (Da) 216	Time (min) 8.6	Param DP CE CXP	Start 16 41 20	ID Oxolinic Acid (OXO) 2
@Q1 Mass (Da)	Q3 Mass (Da)	Time (min)	Param	Start	ID

7DENVER LABORATORY WORK INSTRUCTION	DOCUMENT NUMBER	REVISION: 02
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 37 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC	ORIGINAL EFFECTIVE DATE: 03/15/17	
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		REVISED: 03 2018

262.1	160	8.6	DP	16	Oxolinic Acid (OXO) 3
			CE	49	, ,
			CXP	10	
@Q1 Mass (Da)	Q3 Mass (Da)	Time (min)	Param	Start	ID
300.9	156	8.9	DP	51	Sulfaquinoxaline (SQX) 1
			CE	23	
			CXP	14	
@Q1 Mass (Da)	Q3 Mass (Da)	Time (min)	Param	Start	ID
300.9	92.1	8.9	DP	51	Sulfaquinoxaline (SQX) 2
			CE	41	, ,
			CXP	10	
@Q1 Mass (Da)	Q3 Mass (Da)	Time (min)	Param	Start	ID
300.9	108	8.9	DP	51	Sulfaquinoxaline (SQX) 3
			CE	23	
			CXP	20	
@Q1 Mass (Da)	Q3 Mass (Da)	Time (min)	Param	Start	ID
310.8	156.1	8.95	DP	71	Sulfadimethoxine (SDM) 1
0.0.0		0.00	CE	27	Canadamieanosamo (CDIII)
			CXP	22	
@Q1 Mass (Da)	Q3 Mass (Da)	Time (min)	Param	Start	ID
310.8	92	8.95	DP	71	Sulfadimethoxine (SDM) 2
			CE	41	
			CXP	10	
@O1 Mass (Da)	O2 Mass (Da)	Time (min)	Dorom	Ctont	ın
@Q1 Mass (Da) 310.8	Q3 Mass (Da) 108.1	Time (min) 8.95	Param DP	Start 71	ID Sulfadimethovine (SDM) 3
310.0	100.1	0.90	CE	7 i 37	Sulfadimethoxine (SDM) 3
			CXP	37 14	
			UAF	14	
@Q1 Mass (Da)	Q3 Mass (Da)	Time (min)	Param	Start	ID
233.1	215	9.6	DP	26	Nalidixic Acid (NAL) 1
			CE	25	
			CXP	20	
	0014 (5.)	-	5	O1 1	ID.
@Q1 Mass (Da)	Q3 Mass (Da)	Time (min)	Param	Start	ID
233.1	187.1	9.6	DP	26	Nalidixic Acid (NAL) 2
			CE	33	

7DENVER LABORATORY WORK INSTRUCTION	DOCUMENT NUMBER	REVISION: 02
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 38 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC	ORIGINAL EFFECTIVE DATE: 03/15/17	
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID C SPECTROMETRY	HROMATOGRAPHY MASS	REVISED: 03 2018

	<u> </u>	CIRUMETRY			
			CXP	26	
@Q1 Mass (Da) 233.1	Q3 Mass (Da) 104.1	Time (min) 9.6	Param DP CE CXP	Start 26 55 10	ID Nalidixic Acid (NAL) 3
@Q1 Mass (Da) 262.1	Q3 Mass (Da) 244.1	Time (min) 9.8	Param DP CE CXP	Start 46 27 12	ID Flumequine (FLU) 1
@Q1 Mass (Da) 262.1	Q3 Mass (Da) 202	Time (min) 9.8	Param DP CE CXP	Start 46 40 12	ID Flumequine (FLU) 2
@Q1 Mass (Da) 262.1	Q3 Mass (Da) 126	Time (min) 9.8	Param DP CE CXP	Start 46 63 14	ID Flumequine (FLU) 3
@Q1 Mass (Da) 329	Q3 Mass (Da) 313.1	Time (min) 10	Param DP CE CXP	Start 65 53 20	ID Malachite Green (MG) 1
@Q1 Mass (Da) 329	Q3 Mass (Da) 208.1	Time (min) 10	Param DP CE CXP	Start 65 55 10	ID Malachite Green (MG) 2
@Q1 Mass (Da) 329	Q3 Mass (Da) 241.1	Time (min) 10	Param DP CE CXP	Start 65 73 14	ID Malachite Green (MG) 3
@Q1 Mass (Da) 372.2	Q3 Mass (Da) 356.2	Time (min) 10.3	Param DP CE CXP	Start 65 55 18	ID Gentian violet (GV)1

7DENVER LABORATORY WORK INSTRUCTION	DOCUMENT NUMBER	REVISION: 02
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 39 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC	ORIGINAL EFFECTIVE DATE: 03/15/17	
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		03/15/17 REVISED: 03 2018

		ECTRONETRY			
@Q1 Mass (Da) 372.2	Q3 Mass (Da) 340.3	Time (min) 10.3	Param DP CE CXP	Start 65 73 18	ID Gentian violet (GV) 2
@Q1 Mass (Da) 372.2	Q3 Mass (Da) 251.1	Time (min) 10.3	Param DP CE CXP	Start 65 40 6	ID Gentian violet (GV) 3
@Q1 Mass (Da) 331.1	Q3 Mass (Da) 239.1	Time (min) 10.55	Param DP CE CXP	Start 65 45 16	ID Leucomalachite Green (LMG) 1
@Q1 Mass (Da) 331.1	Q3 Mass (Da) 316.1	Time (min) 10.55	Param DP CE CXP	Start 65 30 4	ID Leucomalachite Green (LMG) 2
@Q1 Mass (Da) 331.1	Q3 Mass (Da) 223.1	Time (min) 10.55	Param DP CE CXP	Start 65 69 20	ID Leucomalachite Green (LMG) 3
@Q1 Mass (Da) 385.4	Q3 Mass (Da) 341.2	Time (min) 10.45	Param DP CE CXP	Start 65 51 12	ID Brilliant Green (BG) 1
@Q1 Mass (Da) 385.4	Q3 Mass (Da) 297.1	Time (min) 10.45	Param DP CE CXP	Start 65 71 16	ID Brilliant Green (BG) 2
@Q1 Mass (Da) 385.4	Q3 Mass (Da) 241	Time (min) 10.45	Param DP CE CXP	Start 65 79 20	ID Brilliant Green (BG) 3
@Q1 Mass (Da) 303.2	Q3 Mass (Da) 97.1	Time (min) 10.65	Param DP	Start 16	ID Methyltestosterone (MT) 1

7DENVER LABORATORY WORK INSTRUCTION	DOCUMENT NUMBER	REVISION: 02
FOOD AND DRUG ADMINISTRATION	DEN-LB-WI-C.009	PAGE 40 OF 47
TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIN QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUC	ORIGINAL EFFECTIVE DATE: 03/15/17	
TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY		REVISED: 03 2018

			CE CXP	31 12	
@Q1 Mass (Da) 303.2	Q3 Mass (Da) 109.1	Time (min) 10.65	Param DP CE CXP	Start 16 37 10	ID Methyltestosterone (MT) 2
@Q1 Mass (Da) 303.2	Q3 Mass (Da) 79	Time (min) 10.65	Param DP CE CXP	Start 16 63 4	ID Methyltestosterone (MT) 3
@Q1 Mass (Da) 285.1	Q3 Mass (Da) 186.1	Time (min) 7	Param DP CE CXP	Start 106 23 17	ID 13 C6 SMZ

7DENVER LABORATORY WORK INSTRUCTION FOOD AND DRUG ADMINISTRATION TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS REVISION: 02 PAGE 41 OF 47 ORIGINAL EFFECTIVE DATE: 03/15/17

SPECTROMETRY

REVISED: 03 2018

Parameter Table(Period 1 Experiment 1): CUR: 30 CAD: Medium TEM: 600 GS1: 50 GS2: 60 5000 IS: ΕP 10 Valco Valve Diverter **Total Time** (min) Position 0 to Waste 2 4.4 to MS 3 11.2 to Waste Agilent LC Pump Method Properties Pump Model: Agilent 1260 Binary Pump Minimum Pressure 0 (psi): Maximum Pressure 8702 (psi): Dead Volume (µI): 40 Maximum Flow 100 Ramp (ml/min²): Maximum Pressure 290 Ramp (psi/sec): Max Flow Ramp Up 100 (ml/min²): Max Flow Ramp Dn 100 (ml/min²):

TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY DOCUMENT NUMBER DEVISION: 02 PAGE 42 OF 47 ORIGINAL EFFECTIVE DATE: 03/15/17 REVISED: 03 2018

	SPECTROMETRY				REVISED: 03 2018	
Step Table:						
@Step	Total Time(min)	Flow Rate(µl/min)	A (%)	B (%)		
0	0	450	95	5		
1	1.11	450	95	5		
2	6.67	450	50	50		
3	7.23	450	50	50		
4	8.89	450	0	100		
5	10.8	450	0	100		
6	11	450	95	5		
7	13.2	450	95	5		
Left Compressibility:	50					
Right Compressibility:	115					
Left Dead Volume (µI):	40					
Right Dead Volume (µI):	40					
Left Stroke Volume (µI):	-1					
Right Stroke Volume (µI):	-1					
Left Solvent:	A2					
Right Solvent:	B2					
	Agilent LC Pump M	•				
Pump Model:	Agilent 1260 Binary	y Pump (Upper Pu	ımp)			
Minimum Pressure (psi):	0					
Maximum Pressure (psi):	8702					
Dead Volume (µI):	40					
Maximum Flow Ramp (ml/min²):	100					
Maximum Pressure Ramp (psi/sec):	290					
Max Flow Ramp Up (ml/min²):	100					
Max Flow Ramp Dn (ml/min²):	100					
Step Table: (Lower Pu	ump)					

7DENVER LABORATORY WORK INSTRUCTION FOOD AND DRUG ADMINISTRATION TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS REVISION: 02 PAGE 43 OF 47 ORIGINAL EFFECTIVE DATE: 03/15/17

SPECTROMETRY

REVISED: 03 2018

	3i LCTR				1	
		Flow	Α			
@Step	Total Time(min)	Rate(µl/min)	(%)	B (%)		
0	0	0	50	50		
1	13.2	0	50	50		
Left Compressibility:	50					
Right						
Compressibility:	115					
Left Dead Volume						
(μl):	40					
Right Dead Volume						
(µI):	40					
Left Stroke Volume	4					
(µI):	-1					
Right Stroke Volume	-1					
(μΙ): Left Solvent:						
	A1					
Right Solvent:	B2					
		_				
	Agilent Column Ove	en Properties				
Left Temperature		00				
(°C):		30				
Right Temperature		30				
(°C):		30				
Temperature Tolerance +/- (°C):	1					
Start Acquisition	ı					
Tolerance +/- (°C):	1					
Time Table	(Not Used)					
Column Switching	(1101 0300)					
Valve	Installed 10Port2P	os				
Position for first						
sample in the batch:	Left					
Use same position						
for all samples in the						
batch						

7DENVER LABORATORY WORK INSTRUCTION FOOD AND DRUG ADMINISTRATION DEN-LB-WI-C.009 PAGE 44 OF 47 TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY REVISED: 03 2018

	CTC PAL Autosampler Method Properties
Loop Volume1 (µI):	20
Loop Volume2 (µI):	20
Injection Volume (µI):	10
Barcode Reading:	Disabled
Method Description:	
Syringe: 100ulDLW	
Cycle date: 9/9/2010 2:26:06 PM	
Cycle name: Analyst LC-Inj DLW Fast_Rev05	
	Airgap Volume (µI) 3
	Front Volume (µI) 5
	Rear Volume (µI) 5
	Filling Speed (µl/s) 5
	Pullup Delay (ms) 3
	Inject to LC VIv1
	Injection Speed (µl/s) 5
	Pre Inject Delay (ms) 500
	Post Inject Delay (ms) 500
	Needle Gap Valve Clean (mm) 3
	Valve Clean Time Solvent 2 (s) 3
	Valve Clean Time Solvent 1 (s) 4

3

Post Clean Time Solvent 1 (s)

DOCUMENT NUMBER DEN-LB-WI-C.009

REVISION: 02

PAGE 45 OF 47

ORIGINAL EFFECTIVE DATE: 03/15/17

REVISED: 03 2018

TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS **SPECTROMETRY**

Appendix D: SPEXertificate for SPEX CertiPrep mixed dyes standard (for ordering reference)

SPEXertificate® Certificate of Reference Material

Catalog Number: GO-FDACO-21

Lot No.

BW171206013

Description:

Custom Organic Standard

Matrix:

LCMS Acetonitrile

Ship Date: 12-8-2017 Expiration Date: 12-8-2018

This SPEXOrganics® Certified Reference Material, CRM, is intended primarily for use as a calibration standard or quality control standard for organic chromatography instrumentation such as GC, GC-MS, LC, and LC-MS. It can be employed in USEPA, ASTI and Other methods relevant to the certified properties listed below.

Certified Compounds:

Compound	CAS#	<u>Labeled</u> Purity	Certified†	Uncertainty
Malachite Green (from Malachite	569-64-2	10 μg/mL 71%	9.94 µg/mL	± 0.085 µg/mL
Green oxalate salt)		Shipping and straightful		_ c.ccc pg////2
C.I. Basic Violet 3	548-62-9	10 μg/mL 86%	9.89 µg/mL	± 0.085 µg/mL
Brilliant Green	633-03-4	10 μg/mL 86%	10.1 µg/mL	± 0.087 µg/mL
Leucomalachite green	129-73-7	10 µg/mL 95%	10.1 µg/mL	± 0.087 µg/mL
Leucocrystal violet	603-48-5	10 μg/mL 95%	9.88 µg/mL	± 0.085 µg/mL
				6.00

Final Solution Verification:

Gravimetrically certified.

† Certified concentration based on gravimetric weights and corrected for the purity of the compound(s) used to prepare the standard. Analytical balance calibration is verified daily with C1 weight set #23-190006 which is registered with Atlantic Scale, traceable to NIST and NJ Division of Weights and Measures.

This CRM is guaranteed stable and accurate to within the uncertainty listed for the certified value. This includes uncertainty components due to preparation, homogeneity, short term and long term stability. During the stated period of validity, the purchaser will be notified if this product is recalled due to any significant changes in the stability of the solution. For further information, contact the Sales Support Department at crmsales@spexcsp.com.

Date of Certification: 12-8-2017

Certifying Officer: Shamor

Page 1 of 2

DOCUMENT NUMBER DEN-LB-WI-C.009

REVISION: 02

PAGE 46 OF 47

ORIGINAL EFFECTIVE
DATE:
03/15/17

REVISED: 03 2018

TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS SPECTROMETRY

Appendix E: SPEXertificate for SPEX CertiPrep mixed Sulfonamides/trimethoprim/methyl testosterone standard (for ordering reference)

SPEXertificate ® Certificate of Reference Material

Catalog Number: GO-FDACO-16 Lot No. BW171204010

Description: Custom Organic Standard

Matrix: LC/MS Methanol Ship Date: 12-7-2017 Expiration Date: 12-7-2018

This SPEXOrganics® Certified Reference Material, CRM, is intended primarily for use as a calibration standard or quality controns standard for organic chromatography instrumentation such as GC, GC-MS, LC, and LC-MS. It can be employed in USEPA, ASTN and other methods relevant to the certified properties listed below.

Certified Compounds:

Compound	CAS#	Labeled	Purity	Certified†	Uncertainty
17a-Methyltestosterone	58-18-4	8 µg/mL	100%	8.16 µg/mL	± 0.070 µg/mL
Sulfacetamide	144-80-9	100 µg/mL	99%	99.0 µg/mL	± 0.85 µg/mL
Sulfachloropyridazine	80-32-0	100 µg/mL	99%	100 µg/mL	± 0.86 µg/mL
Sulfadiazine	68-35-9	100 µg/mL	99%	100 µg/mL	± 0.86 µg/mL
Sulfadimethoxine	122-11-2	100 µg/mL	99%	100 µg/mL	± 0.86 µg/mL
Sulfadimidine - Sulfamethazine	57-68-1	100 µg/mL	99%	101 µg/mL	± 0.87 µg/mL
Sulfadoxin	2447-57-6	100 µg/mL	98%	101 µg/mL	± 0.87 µg/mL
Sulfaethoxypyridazine	963-14-4	100 µg/mL	99.4%	99.4 µg/mL	± 0.85 µg/mL
Sulfamerazine	127-79-7	100 µg/mL	99%	99.0 µg/mL	± 0.85 µg/mL
Sulfamethoxazole	723-46-6	100 µg/mL	99%	99.0 µg/mL	± 0.85 µg/mL
Sulfamethoxypyridazine	80-35-3	100 µg/mL	99%	102 µg/mL	± 0.88 µg/mL
Sulfapyridine	144-83-2	100 µg/mL	99%	100 µg/mL	± 0.86 µg/mL
Sulfaquinoxaline	59-40-5	100 µg/mL	98.8%	98.8 µg/mL	± 0.85 µg/mL
Sulfathiazole	72-14-0	100 µg/mL	99%	99.0 µg/mL	± 0.85 µg/mL
Trimethoprim	738-70-5	100 µg/mL	98%	101 µg/mL	± 0.87 µg/mL
Sulfamonomethoxine	1220-83-3	100 µg/mL	98%	101 µg/mL	± 0.87 µg/mL

Final Solution Verification:

Gravimetrically certified.

† Certified concentration based on gravimetric weights and corrected for the purity of the compound(s) used to prepare the standard. Analytical balance calibration is verified daily with C1 weight set #23-190006 which is registered with Atlantic Scale, traceable to NIST and NJ Division of Weights and Measures.

This CRM is guaranteed stable and accurate to within the uncertainty listed for the certified value. This includes uncertainty components due to preparation, homogeneity, short term and long term stability. During the stated period of validity, the purchaser will be notified if this product is recalled due to any significant changes in the stability of the solution. For further information, contact the Sales Support Department at crmsales@spexcsp.com.

Date of Certification: 12-7-2017 Certifying Officer: Sharmon Mose

DOCUMENT NUMBER DEN-LB-WI-C.009

REVISION: 02

PAGE 47 OF 47

ORIGINAL EFFECTIVE DATE: 03/15/17

REVISED: 03 2018

TITLE: ANALYSIS OF SULFONAMIDES, TRIMETHOPRIM, FLUOROQUINOLONES, QUINOLONES, TRIPHENYLMETHANE DYES (AND THEIR LEUCO METABOLITES) AND METHYL TESTOSTERONE IN FISH AND SHRIMP USING LIQUID CHROMATOGRAPHY MASS **SPECTROMETRY**

Appendix F: Appendix D: SPEXertificate for SPEX CertiPrep mixed fluoroguinolones/quinolones standard (for ordering referen

SPEXertificate® Certificate of Reference Material

Catalog Number: LC-FDACO-15

Lot No.

TS170323027

Description:

Custom Organic Standard

Ship Date: 3-30-2017

Matrix:

LC/MS Methanol

Expiration Date: 3-30-2018

This SPEXOrganics® Certified Reference Material, CRM, is intended primarily for use as a calibration standard or quality control standard for organic chromatography instrumentation such as GC, GC-MS, LC, and LC-MS. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Compounds:

Compound	CAS#	Labeled	Purity	Certified†	Uncertainty
Norfloxacin	70458-96-7	50 µg/mL	98%	49.7 µg/mL	± 0.48 µg/mL
Ciprofloxacin	85721-33-1	50 µg/mL	98%	49.6 µg/mL	± 0.48 µg/mL
Enrofloxacin	93106-60-6	50 µg/mL	98%	49.8 µg/mL	± 0.48 µg/mL
Danofloxacin	112398-08-0	50 μg/mL	99.8%	50.3 μg/mL	± 0.48 µg/mL
Sarafloxacin	98105-99-8	50 µg/mL	94.4%	50.2 μg/mL	± 0.48 µg/mL
Difloxacin (from Difloxacin	91296-86-5	50 μg/mL	98%	50.0 µg/mL	± 0.48 µg/mL
Hydrochloride)					
Oxolinic acid	14698-29-4	100 µg/mL	99%	101 µg/mL	± 0.97 µg/mL
Nalidixic acid	389-08-2	100 µg/mL	98%	100 µg/mL	± 0.96 µg/mL
Flumequine	42835-25-6	100 µg/mL	99%	99.1 µg/mL	± 0.95 µg/mL

Final Solution Verification:

Final solution integrity of this CRM has been verified and confirmed by LC/MS. Sarafloxacin has a purity of 94.4%, balance

† Certified concentration based on gravimetric weights and corrected for the purity of the compound(s) used to prepare the standard. Analytical balance calibration is verified daily with C1 weight set #23-190006 which is registered with Atlantic Scale, and traceable to NIST and NJ Division of Weights and Measures.

This CRM is guaranteed stable and accurate to within the uncertainty listed for the certified value. This includes uncertainty components due to preparation, homogeneity, short term and long term stability. During the stated period of validity, the purchaser will be notified if this product is recalled due to any significant changes in the stability of the solution. For further information, contact the Sales Support Department at crmsales@spexcsp.com.

Date of Certification: 3-30-2017

Certifying Officer: Julian Buston

Page 1 of 2