

The IQOS Heating System

**Tobacco Products Scientific
Advisory Committee**

January 24, 2018

The IQOS Heating System

Tobacco Products Scientific Advisory Committee

January 24, 2018

CC-1

Introduction

Moira Gilchrist, PhD

Vice President Scientific and Public Communications
Philip Morris International

CC-2

CC-3

Institute of Medicine, Clearing the Smoke, Assessing the Science Base for Tobacco Harm Reduction, 2001.

CC-4

The IQOS Heating System

CC-5

The IQOS Opportunity

CC-6

911(g)(1) Modified Risk Products

...the applicant has demonstrated that such product, as it is actually used by consumers, will—

A

Significantly reduce harm and the risk of tobacco-related disease to individual tobacco users

B

Benefit the health of the population as a whole taking into account both users of tobacco products and persons who do not currently use tobacco products

cc-7

911(g)(1) Modified Risk Products

...the applicant has demonstrated that such product, as it is actually used by consumers, will—

A

Significantly reduce harm and the risk of tobacco-related disease to individual tobacco users

B

Benefit the health of the population as a whole taking into account both users of tobacco products and persons who do not currently use tobacco products

cc-8

911(g)(1) Modified Risk Products

...the applicant has demonstrated that such product, as it is actually used by consumers, will—

A Significantly reduce harm and the risk of tobacco-related disease to individual tobacco users

B Benefit the health of the population as a whole taking into account both users of tobacco products and persons who do not currently use tobacco products

CC-9

Product Messages

1

Switching completely from cigarettes to the IQOS system can reduce the risks of tobacco-related diseases.

CC-10

Product Messages

1 **Switching completely from cigarettes to the IQOS system can reduce the risks of tobacco-related diseases.**

2 **Switching completely to IQOS presents less risk of harm than continuing to smoke cigarettes.**

CC-11

Product Messages

1 **Switching completely from cigarettes to the IQOS system can reduce the risks of tobacco-related diseases.**

2 **Switching completely to IQOS presents less risk of harm than continuing to smoke cigarettes.**

3 **Switching completely from cigarettes to the IQOS system significantly reduces your body's exposure to harmful and potentially harmful chemicals.**

CC-12

Family Smoking Prevention and Tobacco Control Act

... to provide new and flexible enforcement authority to ensure that there is effective oversight of the tobacco industry's efforts to develop, introduce, and promote less harmful tobacco products

-Sec. 3 (4) Purpose

CC-13

Presentation Agenda

Moira Gilchrist, PhD

VP Scientific & Public Communications
Philip Morris International

IQOS System and Heating Technology

Manuel Peitsch, PhD

Chief Scientific Officer
Philip Morris International

Scientific Assessment of IQOS

Antonio Ramazzotti

VP Human Insights and Behavioral Research
Philip Morris International

Perception and Behavior

Sarah Knakmuhs

VP Heated Tobacco Products
Philip Morris USA

U.S. Commercialization and Controls

Moira Gilchrist, PhD

VP Scientific & Public Communications
Philip Morris International

Population Modeling and Conclusion

CC-14

IQOS System and Heating Technology

Moira Gilchrist, PhD

Vice President Scientific and Public Communications
Philip Morris International

CC-15

HeatStick Construction

CC-16

IQOS Holder and Heating Blade

CC-17

IQOS Temperature Profile

* Radial position of thermocouple relative to the surface of the heater

CC-18

IQOS Charger

CC-19

IQOS Operation

CC-20

Scientific Assessment of IQOS

Manuel Peitsch, PhD

Chief Scientific Officer
Philip Morris International

CC-21

911(g)(1) Modified Risk Products

...the applicant has demonstrated that such product, as it is actually used by consumers, will—

A Significantly reduce harm and the risk of tobacco-related disease to individual tobacco users

B Benefit the health of the population as a whole taking into account both users of tobacco products and persons who do not currently use tobacco products

CC-22

Scientific Assessment

Studies

17 Non-Clinical Studies

8 Clinical Studies

Publications

30+ on IQOS assessment

150+ on assessment methods and verification

Hoeng *et al.* A Network-Based Approach to Quantify the Impact of Biologically Active Substances. *Drug Discov. Today* 2012; 17:413-418.

CC-23

Assessment Framework: Informed by Epidemiology

The health risks of **smoking** are well established and supported by epidemiological evidence
(IARC 2004, 2007)

CC-24

IQOS Does Not Emit Carbon-Based Solid Particles

Cigarette smoke
Carbon-based nanoparticles
Median diameter = 75 nm
Amount: 6×10^{11} particles ≈ 0.7 mg*

Blank (Air)

IQOS aerosol
No solid particles

Scanning Electron Microscopy images of the collected smoke/aerosol after passing through a thermodenuder set at 300° C to remove the volatile portion / collected material characterized by Electron Diffusive X-ray.

* Under the Health Canada's Intense Smoking Regime.
Pratte et al. Investigation of solid particles in the mainstream aerosol of the Tobacco Heating System THS2.2 and mainstream smoke of a 3R4F reference cigarette. *Hum. Exp. Toxicol.*, 2017; 36:1115-1120
Cohen et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. *Lancet* 2017; 1907-1918. CC-29

CC-33

CC-34

Changes in Exposure to HPHCs with IQOS Use

Reduced Exposure in Healthy Human Subjects

HPHCs are Drastically Reduced in IQOS Aerosol

Leads to

Exposure is Significantly Reduced After Switching to IQOS

* On equivalent nicotine basis

CC-37

Changes in Exposure to HPHCs with IQOS Use

Reduced Exposure in Healthy Human Subjects

HPHCs are Drastically Reduced in IQOS Aerosol

Leads to

Exposure is Significantly Reduced After Switching to IQOS

* On equivalent nicotine basis

CC-38

Reduced Effects on Disease Mechanisms

Lung Inflammation

CC-51

Reduced Effects on Disease Mechanisms

Lung Inflammation

CC-52

Reduced Effects on Disease Mechanisms

Lung Inflammation

CC-53

Specific Markers of Lung Inflammation

These changes in inflammation markers are all confirmed by the results from the A/J mouse dose response study at month 5.
Kuschner *et al.* Dose-dependent cigarette smoking-related inflammatory responses in healthy adults. *Eur. Respir. J.* 1996; 9:1989–1994.

CC-54

Clinical Changes After 90 Days Reduced Exposure in Healthy Human Subjects			
Disease Pathway	Endpoint	Abstinence Effect at 3m [95% CI]	Switching to IQOS Effect at 3m [95% CI]
USA	Lipid Metabolism	HDL-C	0.0 mg/dL [-5.77; 5.84]
	Inflammation	WBC	-0.94 10 ⁹ /L [-2.00; 0.13]
	Airway Impairment	FEV1	2.0% pred [-3.37; 7.36]
	Endothelial Dysfunction	sICAM-1	-9.9 % [-19.7; 1.1]
	Oxidative Stress	8-epi-PGF _{2α}	-8.5 % [-25.13; 11.8]
	Clotting	11-DTX-B ₂	-7.2 % [-37.7; 38.3]
EU	Lipid Metabolism	HDL-C	6.4 mg/dL [2.5; 10.3]
	Inflammation	WBC	-0.41 10 ⁹ /L [-0.95; 0.14]
	Airway Impairment	FEV ₁	1.94 % pred [-0.44; 4.31]
	Endothelial Dysfunction	sICAM-1	-10.9 % [-17.8; -3.4]
	Oxidative Stress	8-epi-PGF _{2α}	-5.9 % [-17.1; 6.8]
	Clotting	11-DTX-B ₂	-19.4 % [-30.1; -7.0]

CC-57

CC-58

Reduces the Effects on Cells

Inflammatory Lung Cells in Bronchoalveolar Lavage Fluid

Phillips et al. *Toxicological Sciences*, 2016;149:411-432.

CC-59

Reduces the Effects on Tissues

Lung Tissue Destructive Index

Phillips et al. *Toxicological Sciences*, 2016;149:411-432.

CC-60

Demonstrated Reduced Cell & Tissue Changes

CC-61

Reduces the Risk of Disease *in vivo*

Disease Endpoint for COPD

Lung Emphysema

Data from Histology after 8 months

Phillips et al. *Toxicological Sciences*, 2016;149:411-432.

CC-62

Reduces the Risk of Disease *in vivo*

Disease Endpoint for CVD

Atherosclerotic Plaque in the Aortic Arch

Data from μ CT at month 7

Phillips *et al.* *Toxicological Sciences*, 2016;149:411-432.

Poussin *et al.* Systems toxicology-based assessment of the candidate modified-risk tobacco product THS2.2 for the adhesion of monocytic cells to human coronary arterial endothelial cells. *Toxicology*, 2016; 339:73-86.

CC-63

How Cigarette Smoke Causes Cancer

* Balkwill F and Mantovani A. Inflammation and cancer: back to Virchow? *Lancet*, 2001, 357:539-45.

** You *et al.* Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema. *eLife* 2015; 4:e09623

*** Rothwell *et al.* Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. *Lancet* 2011; 377:31-41.

CC-64

Inflammatory Markers in Smokers' Lungs

Table 2. – Mean bronchoalveolar lavage (BAL) cell concentrations in smokers and nonsmokers

Cell type	BAL concentration ×10 ³ cells·mL ⁻¹	F statistic	p-value
Smokers (n=14)			
Macrophage	524±219	220±98	25.1
Neutrophil	12.9±13.3	2.1±1.6	10.6
Lymphocyte	7.3±7.5	14.8±17.7	2.2
Eosinophil	0.9±1.7	1.1±1.3	0.1
Epithelial	1.5±1.4	2.1±2.1	1.0
Nonsmokers (n=16)			
			0.0001
			0.003
			1.15
			0.75
			0.33

Values are presented as mean±SD. Statistics quoted are by discriminant analysis. Overall model Hotelling's statistic = 1.7; p=0.0001. Critical Bonferroni alpha (n tests=5) = 0.01.

Table 3. – Bronchoalveolar lavage (BAL) supernatant cytokine and total protein (TP) concentration differences between smokers and nonsmokers

BAL constituent	Smokers (n=14)	Nonsmokers (n=16)	F statistic	p-value
IL-1 β pg·mL ⁻¹	1.2±0.7	0.5±0.4	14.3	0.0007
IL-6 pg·mL ⁻¹	5.3±3.2	1.9±1.0	17.3	0.0003
IL-8 pg·mL ⁻¹	32.8±15.9	18.2±11.5	8.4	0.007
TNF- α pg·mL ⁻¹	2.5±7.9	0.2±0.2	1.4	0.25
MCP-1 pg·mL ⁻¹	36.7±28.3	13.0±7.7	10.4	0.003
TP μ g·mL ⁻¹	75.8±27.7	87.2±56.5	0.4	0.50

Values are presented as mean±SD. IL-1 β : Interleukin-1 β (non-detectable in one nonsmoker); IL-6: interleukin-6 (detected in all subjects); IL-8: interleukin-8 (detected in all subjects); TNF- α : tumour necrosis factor- α (detectable in seven nonsmokers and two smokers); MCP-1: macrophage chemoattractant protein-1 (nondetectable in one nonsmoker and three smokers). Statistics quoted are by discriminant analysis. Overall model Hotelling's statistic=1.34; p<0.002. Critical Bonferroni alpha value (n tests=6) = 0.008.

Kuschner et al. Dose-dependent cigarette smoking-related inflammatory responses in healthy adults. *Eur. Respir. J.* 1996; 9:1989–1994.

CC-67

Inflammation and Cancer The Role of Interleukin-1 β in Cancer

Animal Studies*

Lung Metastases (%)

Human Study (CANTOS)**

Lung Cancer Cumulative Incidence (%)

* Voronov et al. IL-1 is required for tumor invasiveness and angiogenesis. *PNAS* 2002; 100:2645-2650.

** Ridker et al. Effect of interleukin-1 β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis. *Lancet* 2017; 390:1833-1842.

Krelin et al. Interleukin-1 β -Driven Inflammation Promotes the Development and Invasiveness of Chemical Carcinogen-Induced Tumors. *Cancer Res.* 2007; 67:1062-1071.

CC-68

Inflammation is Reduced by IQOS

Summary of Totality of Evidence

CC-71

Demonstrate a Benefit to the Health of the Population as a Whole ...

CC-72

Consumer Perception and Behavior

Antonio Ramazzotti

Vice President Human Insights and Behavioral Research
Philip Morris International

CC-73

911(g)(1) Modified Risk Products

...the applicant has demonstrated that such product, as it is actually used by consumers, will—

A

Significantly reduce harm and the risk of tobacco-related disease to individual tobacco users

B

Benefit the health of the population as a whole taking into account both users of tobacco products and persons who do not currently use tobacco products

CC-74

Who Will Use IQOS and to What Degree?

Adult Smokers

Understanding of Messages

Intent to Use

Exclusive Use

Increased or Decreased Likelihood of Cessation

Non-smokers

Understanding of Messages

Increased or Decreased Likelihood of Initiation

CC-75

PBA Studies to Develop and Assess IQOS Messages

6

qualitative and quantitative studies to develop and assess IQOS communications

Phase 1

Developing the most appropriate product messages

Comprehension

Intent to Use

Risk Perception

Phase 2

Assessing Labeling and Advertising

Comprehension

Intent to Use

Risk Perception

3 Studies

3 Studies

CC-76

Product Messages (On a Tested Pack)

- 1 Switching completely from cigarettes to the IQOS system can reduce the risks of tobacco-related diseases.
- 2 Switching completely to IQOS presents less risk of harm than continuing to smoke cigarettes.
- 3 Switching completely from cigarettes to the IQOS system significantly reduces your body's exposure to harmful and potentially harmful chemicals.

CC-77

Study Design

IQOS Communication Studies

Five arms, experimental studies, describing responses to materials on comprehension, intent to use, change in intention to quit and risk perception

≈ 2.200 enrolled participants in each study

- Five subject groups: adult smokers with and without intention to quit, adult former smokers, adult never smokers and LA-25 Adult Never Smokers
- Sample was balanced, by subject group, sex, age group and city

Conducted in 4 US cities

CC-78

Tested Product Message

Reduced Risk of Harm

HeatSticks Pack with SG's Warnings

AVAILABLE EVIDENCE TO DATE:

Switching completely to IQOS presents less risk of harm than continuing to smoke cigarettes.

SURGEON GENERAL'S WARNING:
Smoking Causes Lung Cancer, Heart Disease, Emphysema, And May Complicate Pregnancy.

HeatSticks Pack with PMI Warning

AVAILABLE EVIDENCE TO DATE:

Switching completely to IQOS presents less risk of harm than continuing to smoke cigarettes.

IMPORTANT WARNING:

- Less risk of harm does not mean no risk of harm. The best way to reduce your risk of tobacco-related diseases is to completely quit tobacco use.
- HeatSticks™ contain nicotine, which is addictive.

CC-79

The Majority Understood that IQOS Presents Less Risk of Harm, but is Not Risk Free

IQOS Communication Study - Reduced Risk of Harm

■ HeatSticks Pack PMI Warning n=380

■ HeatSticks Pack SG's Warnings n=376

THS-PBA-05-RRC2-US

CC-80

Only 1% and 2% Misunderstood that IQOS Presents “No Risk of Harm”

IQOS Communication Study - Reduced Risk of Harm

■ HeatSticks Pack PMI Warning n=380 ■ HeatSticks Pack SG's Warnings n=376

THS-PBA-05-RRC2-US

CC-81

Substantial Intention to Use IQOS Among Adult Smokers with No Intention to Quit

IQOS Communication Study - Reduced Risk of Harm

* Error bars show 95% confidence intervals for the 'very likely' and 'definitely' categories combined.
THS-PBA-05-RRC2-US

CC-82

Study Design

Actual Use Study

Single group, observational study,
ad libitum use of IQOS and cigarettes,
reported on a stick-by-stick basis

1,336 enrolled participants

Quota sampling approximating the distribution of US adult smokers population by sex, age, race and income (CDC, 2012)

Conducted in 8 US geographic areas

IQOS brochure shown to participants contained a reduced risk product message

THS-PBA-07-US

1-week baseline, 6-week observational and 1-week close out period

CC-83

15% of U.S. Adult Daily Smokers Switched from Cigarettes to IQOS

IQOS and Cigarettes Use: Observational Period Actual Use Study

THS-PBA-07-US

CC-84

No Increase in IQOS and Cigarettes Consumption Between Baseline and Observational Period

Actual Use Study: IQOS + Cigarette Consumption

Exclusive or Predominant IQOS Use

n=141

Combined IQOS Use

n=217

THS-PBA-07-US

CC-85

Between 12% and 30% of Participants Switched to IQOS

IQOS Usage Patterns

WOT

CC-86

Post-market Data Show Exclusive Use is the Most Common Behavior Among IQOS Purchasers

Consumer Panels, August 2017

CC-87

Increased Awareness and Repeated Communication Lead to Higher Switching Rates

Source: Consumer Panel Japan, March 2016

CC-88

Who Will Use IQOS and to What Degree?

Adult Smokers

Understanding of Messages

Intent to Use

Exclusive Use

Increased or Decreased Likelihood of Cessation

Non-smokers

Understanding of Messages

Increased or Decreased Likelihood of Initiation

CC-89

Minimal Interference on Intention to Quit All Tobacco among Adult Smokers with the Intention to Quit

THS-PBA-05-RRC2-US

CC-90

Low Levels of Intent to Use Among Adult Never Smokers and LA-25 Never Smokers

IQOS Communication Study - Reduced Risk of Harm

Positive Intention to Try IQOS is the sum of % *Very Likely* and % *Definitely* responses
 Error bars show 95% confidence intervals for the 'very likely' and 'definitely' categories combined
 THS-PBA-05-RRC2-US

CC-91

Low Levels of Intent to Use Among Adult Former Smokers

IQOS Communication Study - Reduced Risk of Harm

Positive Intention to Try IQOS is the sum of % *Very Likely* and % *Definitely* responses
 Error bars show 95% confidence intervals for the 'very likely' and 'definitely' categories combined
 THS-PBA-05-RRC2-US

CC-92

911(g)(1) Modified Risk Products

...the applicant has demonstrated that such product, as it is actually used by consumers, will—

A

Significantly reduce harm and the risk of tobacco-related disease to individual tobacco users

B

Benefit the health of the population as a whole taking into account both users of tobacco products and persons who do not currently use tobacco products

CC-93

U.S. Commercialization and Controls

Sarah Knakmuhs

Vice President, Heated Tobacco Products
Philip Morris USA

CC-94

Tobacco Harm Reduction in the U.S.

***"For the first time...the federal government
...is able to bring science-based regulation
to the manufacturing, marketing, and
distribution of tobacco products."***

- Former FDA Commissioner Margaret A. Hamburg, M.D., September 19, 2013

CC-95

IQOS in the U.S.

CC-96

Behavior Change – IQOS Use

Device Usability

Charging & Cleaning

Taste & Experience

CC-97

PM USA Marketing Approach for IQOS

	Awareness	Trial	Conversion
Objective	Introduce IQOS	Explain Product & Encourage Trial	Support Exclusive Switching
Intended Audience = U.S. Adult Smokers			

CC-98

Build Awareness for IQOS

Print Advertising

Direct Mail

Email

CC-99

Electronic Age Verification

Data Entry

Consumer inputs data for age and identity

Validation

Match inputs with identity on electronic databases

Authentication

Consumer answers questions to confirm identity

CC-100

Opportunities for Trial of IQOS

Individual Engagements

Consumer Events

Retail

CC-101

Trial of IQOS

Verification

Confirm age and identity via government issued ID

Confirmation

Confirm smoking status

Guided Trial

Provide overview and perform guided trial

CC-102

Population Modeling and Conclusion

Moira Gilchrist, PhD

Vice President Scientific and Public Communications
Philip Morris International

CC-107

The PMI Population Health Impact Model

Prevalence
Component

Epidemiological
Risk Component

The Prevalence Component

Prevalence Component

Hypothetical population based on publicly available databases and scientific literature

Transition probabilities

Validated

using published smoking statistics

CC-109

The Epidemiological Risk Component

Epidemiological Risk Component

Hypothetical population risk estimates

Ischemic heart disease, lung cancer, stroke, and COPD

Validated

using estimates from the Surgeon General's Report

CC-110

The PMI Population Health Impact Model

Weitkunat R et al, A novel approach to assess the population health impact of introducing a Modified Risk Tobacco Product. *Regulatory Toxicology and Pharmacology* (2016).
 Lee, P. et al, Estimating the effect of differing assumptions on the population health impact of introducing a Reduced Risk Tobacco Product in the USA. *Regulatory Toxicology and Pharmacology* (2017). **CC-111**

Benefit to the U.S. Population as a Whole

CC-112

911(g)(1) Modified Risk Products

...the applicant has demonstrated that such product, as it is actually used by consumers, will—

A Significantly reduce harm and the risk of tobacco-related disease to individual tobacco users

B Benefit the health of the population as a whole taking into account both users of tobacco products and persons who do not currently use tobacco products

CC-113

The IQOS Opportunity

CC-114

The IQOS Opportunity

- Millions fewer smokers
- Reduced harm and tobacco-related disease
- An important step forward

CC-115

The IQOS Heating System

Tobacco Products Scientific Advisory Committee

January 24, 2018

CC-116

Tobacco Products Scientific Advisory Committee

Sponsor slides shown

January 24, 2018

Non-targeted Differential Screening

Comparison of IQOS Aerosol and 3R4F Smoke

This slide presents the results for the regular variant of the IQOS HeatStick characterization

AC-28

Results

Ames: IQOS Regular

- TPM from IQOS Regular is not mutagenic
- TPM from 3R4F is mutagenic in the presence of S9 in TA98, TA100, and TA1537

Study report BSR_SR_RLS-ZRH-2015-253, pages 22, 26 and 38, Tables 12, 16 and 28

SD-37

Results

Mouse Lymphoma Assay (MLA) - IQOS Regular

Relative Mutagenicity expressed as lowest observable genotoxic effect levels (LOGELs)

Reference: Study report RLS-ZRH-2015-252_Study_Report_MLA_2of2, pages 153, 154 and 155, Tables 123, 124, 125, 126, 127 and 128, MRTPA section 6.1.2.2.3.2, Tables 3 and 4

SD-21

Summary of Demographics and Subject Characteristics – Main Sample: Race, Ethnicity and Education Level IQOS Communication Study (Reduced Risks of Harm Claim)

Assessment	Arm				
	1 N=378	2 N=375	3 N=376	4 N=380	5 N=374
Race					
White, n (%)	292 (77.7)	288 (77.0)	281 (75.3)	287 (75.5)	286 (76.7)
Black, n (%)	60 (16.0)	57 (15.2)	64 (17.2)	63 (16.6)	65 (17.4)
Asian, n (%)	5 (1.3)	6 (1.6)	4 (1.1)	5 (1.3)	2 (0.5)
Other, n (%)	19 (5.0)	23 (6.1)	24 (6.4)	25 (6.6)	20 (5.3)
Missing, n	2	1	3	0	1
Ethnicity					
Hispanic or Latino, n (%)	52 (13.8)	55 (14.7)	51 (13.7)	64 (16.8)	46 (12.3)
Not Hispanic or Latino, n (%)	324 (86.2)	319 (85.3)	322 (86.3)	316 (83.2)	327 (87.7)
Missing, n	2	1	3	0	1
Education level					
Some high school or less, n (%)	18 (4.8)	25 (6.7)	13 (3.5)	21 (5.5)	9 (2.4)
High school graduate, n (%)	55 (14.6)	39 (10.4)	54 (14.5)	57 (15.0)	58 (15.5)
Some college, n (%)	134 (35.6)	156 (41.7)	147 (39.4)	148 (38.9)	147 (39.4)
College graduate, n (%)	132 (35.1)	119 (31.8)	125 (33.5)	129 (33.9)	124 (33.2)
Advanced degree, n (%)	37 (9.8)	35 (9.4)	34 (9.1)	25 (6.6)	35 (9.4)
Missing, n (%)	2	1	3	0	1

LA = state legal smoking age
THS-PBA-05-RRC2-US

PB-438

How HeatSticks are Consumed According to “Usage Categories”: By Product Types Used (Menthol, Regular) Actual Use Study

THS-PBA-07-US

PB-603

UC-100

Exposures Are Below the Levels of Concern from *in vivo* Studies

Compound	Quantities in IQOS Aerosol [µg/Stick]	IARC Class	Exposure level without tumors <i>in vivo</i>	Delivered dose <i>in vivo</i> [mg/kg/day]	Human Equivalent Concentration (HEC) ⁴ [µg/kg/day]	Ratio IQOS/HEC exposure to 40 Sticks
Glycidol ¹	5.71	2A	3 ppm	0.896	144.6	1/39
2-Furanemethanol ²	39.18	2B	2 ppm	0.499	80.5	1/3
3-Monochloro-1,2-propanediol	9.94	2B	NA	NA	NA	NA
Furfural ³	31.08	3	400 ppm	89.539	12099.9	1/584

NA: No inhalation toxicity data available, but positive in Ames test

1. Japan Bioassay Research Center, 2003. Summary of Inhalation Carcinogenicity Study of Glycidol in F344 Rats. http://anzeninfo.mhlw.go.jp/user/anzen/keg/pdf/gan/Glycidol_Rats.pdf

2. NTP, 1999b. Toxicology and carcinogenicity studies of furfuryl alcohol (CAS no. 98-00-0) in F344/r rats and B6C3F₁ mice (inhalation studies). *Natl. Toxicol. Program Tech. Rep. Ser.* 482, 1-248.

3. R. Cary, S. Dobson, N. Gregg. 2-Furaldehyde. World Health Organization International Program on Chemical Safety. World Health Organization (WHO), 2000.

4. FDA. 2005. Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Food and Drug Administration, Washington, DC. <http://www.fda.gov/cder/guidance>.

ER-51

IQOS Transition Matrix Post-Market Consumer Panel Survey in Japan				
Use in Week 1-3 (% Row)	Use in Week 10-12			
	Exclusive [95-100% IQOS]	Predominant [70-95% IQOS]	Situational [5-70% IQOS]	Abandoner [0-5% IQOS]
Exclusive [95-100% IQOS]	80%	13%	6%	1%
Predominant [70-95% IQOS]	63%	24%	12%	1%
Situational [5-70% IQOS]	28%	13%	52%	8%
Abandoner [0-5% IQOS]	11%	9%	14%	66%

Consumer Panel Survey in Japan JM-10

PM USA Marketing Approach for IQOS			
	Awareness	Trial	Conversion
Objective	Introduce IQOS	Explain Product & Encourage Trial	Support Exclusive Switching
Examples	Direct Mail Print Media	Consumer Events Retail Engagement	Customer Care Personal Support
Intended Audience = U.S. Adult Smokers			

UC-69

No Increase in IQOS and Cigarettes Consumption Between Baseline and Observational Period

Actual Use Study: IQOS + Cigarette Consumption

THS-PBA-07-US

XX-1

Selection of Study Population

Actual Use Study

- Inclusion Criteria: Each subject had to meet the following criteria to be eligible for the study:**
 - a) 18 years of age or above according to the minimum LA, whichever was higher
 - b) Current daily smokers of regular and/or menthol CC with no intention of quitting within the next 30 days
 - c) A current daily smoker was defined as an individual who had smoked at least 100 cigarettes in his/her lifetime and was currently smoking at least 1 regular or menthol CC (no brand restrictions) per day (disregarding religious fasting). Participants who intended to quit smoking within the next 30 days were excluded from the study, because they did not intend to remain smokers for the entire duration of the study
 - d) Individuals who signed an ICF and were able to understand the information provided in the ICF
 - e) Individuals available and interested in participating in an 8 week study about tobacco
 - f) Individuals with positive intention to use the iQOS system
 - g) Individuals currently living in the United States (US)
- Exclusion Criteria: Subjects who met any of the following criteria were excluded from the study:**
 - a) Pregnant or breastfeeding women (based on self-reported status)
 - b) Women of childbearing potential who were not using adequate means of contraception (self-reported)
 - c) Individuals with no proof of age (photo identity document (ID), such as passport, driver's license)
 - d) Individuals who had started smoking within the last 30 days
 - e) Individuals who were not able to read and speak English
 - f) Individuals employed in the fields of market research, marketing, advertising, media or journalism, law, manufacturers or distributors of tobacco products, or who were health care providers
 - g) Individuals who had taken part in a consumer or clinical study within the past 3 months

THS-PBA-07-US

PB-97

Extent of Exposure to Investigational Product (PP)

SD-1135

Product Use Per Day – IQOS and CC

REXC-03, REXC-04: Studies with 5 Days of Exposure in Confinement
 REXA07, REXA08: 3 Month Reduced Exposure Studies in an Ambulatory Setting

TC-52

BoExp Ratios – Day 90

3 Months Reduced Exposure Study in an Ambulatory Setting (US)

Ratios BoExp ZRHM-REXA-08-US (PP)
Day 90

TC-58