Immune Checkpoint Inhibitor Associated Myocarditis: Pathophysiology

Javid J. Moslehi, M.D.
Andy Lichtman, M.D.
World of Cardio-Oncology

Cardio-Oncology: Novel Platform for Investigation

- BASIC and TRANSLATIONAL SCIENCE
- Insights in Human Cardiovascular Biology
- New Clinical Entities
- Cardiovascular and Cardio-metabolic Sequelae of Novel Targeted Cancer Therapies

Cardio-Oncology
Immune-Checkpoint Inhibitor Myocarditis: Defining a New Syndrome

Clinical Questions
Incidence?
Clinical presentation?
Treatment?

Who is at risk?
Precision or Personalized Medicine
- CV risk factors
- Autoimmune risk factors
- Tumor risk factors
- ?Genetic risk factors

Immune Checkpoint Inhibitor-Associated Myocarditis
Can better understanding of the molecular pathophysiology help us identify patients at risk?

• What caused T cell infiltration into heart and muscle?
 – Why these organs only?

• Other triggers of myocarditis–
 – Viral?
 – Other insult?

• Genetic Differences?
 – MHC Haplotype?
 – Tumor genetics (whole exome sequencing)?
 – Germline?
Insights into Mechanisms of Toxicity
Insights into Mechanisms of Toxicity

A. Inflammatory gene transcripts

B. Muscle-specific gene transcripts

Graphs showing the distribution of T-cell clones in different tissues before and after treatment.
Immune-Checkpoint Inhibitor Myocarditis: Defining a New Syndrome

Clinical Questions
Incidences?
Clinical presentation?
Treatment?

Immune Checkpoint Inhibitor-Associated Myocarditis

Who is at risk?
Precision or Personalized Medicine
- CV risk factors
- Autoimmune risk factors
- Tumor risk factors
- ?Genetic risk factors

Basic biology of PD-1/PD-L1 in the heart
How does the heart interact with the immune system??
Induced Pluripotent Stem Cells (iPSC), Rodent Models
Cardiomyopathy in PD-1 KO Mice

Autoimmune Dilated Cardiomyopathy in PD-1 Receptor–Deficient Mice

Hiroyuki Nishimura, Taku Okazaki, Yoshimasa Tanaka

Dilated cardiac etiology receptor PD-1 cardiomyopathy gestive heart globulin G (IgG) mice exhibit dalyton proteins results indicat prevention of

PD-1 deficiency results in the development of fatal myocarditis in MRL mice

Jian Wang¹, Il-mi Okazaki¹,², Taku Yoshida¹,⁴, Shunsuke Chikuma¹, Yu Kato¹,⁴, Fumio Nakaki¹, Hiroshi Hiai³, Tasuku Honjo¹ and Taku Okazaki¹,²

Programmed Death Ligand 1 Regulates a Critical Checkpoint for Autoimmune Myocarditis and Pneumonitis in MRL Mice¹

Julie A. Lucas,* Julia Menke,* Whitney A. Rabacal,* Frederick J. Schoen,† Arlene H. Sharpe,† and Vicki R. Kelley²*

MRL/MpJ-Fas⁻⁻ (MRL-Fas⁻⁻) mice develop a spontaneous T cell and macrophage-dependent autoimmune disease that shares features with human lupus. Interactions via the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) pathway downregulate immune responses and provide a negative regulatory checkpoint in mediating tolerance and autoimmune disease. Therefore, we tested the hypothesis that the PD-1/PD-L1 pathway suppresses lupus nephritis and the systemic illness in MRL-Fas⁻⁻ mice. For this purpose, we compared kidney and systemic illness (lymph nodes, spleen, skin, lung, glands) in PD-L1 null (⁻⁻⁻⁻) and PD-L1 intact (wild type, WT) MRL-Fas⁻⁻ mice. Unexpectedly, PD-L1⁻⁻⁻⁻;MRL-Fas⁻⁻ mice died as a result of autoimmune myocarditis and pneumonitis before developing renal disease or the systemic illness. Dense infiltrates, consisting of macrophage and T cells (CD8⁺ > CD4⁺), were prominent throughout the heart (atria and ventricles) and localized specifically around vessels in the lung. In addition, once disease was evident, we detected heart specific autoantibodies in PD-L1⁻⁻⁻⁻;MRL-Fas⁻⁻ mice. This
PD-L1 Expression in the Injured Myocardium

A. PD-L1 expression, myocardium (200x)
B. PD-L1 expression, myocardium (400x)

In collaboration with Janis Taube, Bob Anders, Luis Diaz, Johns Hopkins
PD-L1 Upregulation in Myocarditis as a Complication of Anti-PD-1/Anti-CTLA-4 Therapy for Melanoma

Andy Lichtman, Brigham and Women’s Hospital
Myocarditis as a complication of anti-PD1/anti LAG3 Rx of Carcinoma

- Lymphocytic myocarditis
- CD3
- PD-L1
- HL-DR (marker of IFN)
Expression of PD-L1 in mouse heart and mouse heart endothelial cells

PD-L1 mRNA in heart

IFNγ induction of PD-L1

Mouse Heart EC

Pre-Clinical Platform for Assessing and Understanding Cardiotoxicity of Novel Compounds

• Cell based models –
 – Isolated mouse or rat myocytes or endothelial cells/smooth muscles cells
 – Induced pluripotent stem cells (iPS)
• Genetic manipulation – CRISPR/Cas9
• “Personalized” medicine

• Zebrafish
• Rodent models –
 – Mechanistic understanding of cardiotoxicities
 • Sunitinib, Sorafenib
 – Transgenic mice can allow for defining “on-target” vs. “off-target” effects

Vanderbilt Cardio-Oncology Program
Conclusions

• Myocarditis is a new clinical phenomenon that is a rare (but clinically significant) complication of cancer immunotherapy
 – Initial mechanistic studies show that robust T cell and macrophage infiltrates

• Biological plausibility for this new clinical phenomenon
 – Central role for PD-1/PD-L1 in the heart

• Need for multi-institutional to understand the pathophysiology of myocarditis and multi-pronged approach to understand who is at risk of developing myocarditis
Acknowledgements

Vanderbilt
Moslehi Laboratory
Donald Okoye
Xiaoyu Wang
Ali Manouchehri
Mary Barber
Clinical Cardio-Oncology
Javid Moslehi
David Slosky
Joe-Elie Salem (Fellow)
Wendy Bottinor (Fellow)
Kris Swiger (Fellow)

Vanderbilt
Doug Johnson
Justin Balko
Jeff Sosman (Northwestern)
Dan Roden
Elizabeth Phillips
Mark Pilkinton
JoAnn Lindenfeld
Thomas Wang

Brigham and Women’s Hospital
Benjamin Olenchock (Regeneron)
Marc Bonaca
Andrew Lichtman
Christine Seidman
Jon Seidman

Johns Hopkins
Luis Diaz, Jr. (MSKCC)
Bob Anders
Janis Taube

Yale
Joe Craft
Kevan Herold
Tariq Ahmed

Bristol-Myers Squibb
Nina Kola
Gregory Plautz
Dan Reshef
Jonathan Deutch