

Introduction to Immunotherapy

Virus associated cancer Mutation associated neoantigens

ScienceDirect

Immunoprofiling as a predictor of patient's response to cancer therapy—promises and challenges

Daniel Bethmann^{1,2}, Zipei Feng^{2,3} and Bernard A Fox^{2,4}

Table 1											
Association of immune cell infiltrates with prognosis in cancer											
Histology	Markers tested*	Type of assessment	Effect on prognosis* and significance ##, #	First author	Year						
Melanoma	CD3, CD4, CD8, FoxP3, PD-1	Pathologist	High intratumoral number of CD3, CD4 and CD8 is favorable. High peritumoral number of PD-1+ lymphocytes is unfavorable [52]. ##	Kakavand	2015						
	CD8, CD20, CD45	Pathologist, Aperio Software	High intratumoral density of CD8, CD45 and CD20 is favorable [53]. ##	Erdag	2012						
	CD4, CD8, CD68, HLA-DR	Pathologist	High intratumoral density of CD4 and CD8 as well as the presence of HLA-DR cells is favorable [54]. #	Piras	2005						
	CD3, CD4, CD8	Pathologist	High intratumoral number of CD4 and CD8 is favorable [55]. ##	Al-Batran	2005						

...87 references in 21 diseases correlating immune profiling with clinical outcome

T cell recognition of tumor cell

T cell function at tumor cell: to kill

T cell function at tumor cell: or not to kill

Types of immunotherapy

Importance of PD1 / PDL1 blockade

PD1/PDL1 inhibition

Rapid, deep <u>durable</u> responses Across a wide range of tumors Seen in a subset of patients

NSCLC: Avelumab

Gulley JL et al. Lancet Oncol 2017

NSCLC (squamous only): Nivolumab Rizvi NA et al. *Lancet Oncol* 2015

HNSCC: Pembrolizumab
Seiwert TY et al. Lancet Oncol 2016

MSI hi CRC: Nivolumab

Overman MJ et al. Lancet Oncol 2017

Urothelial Ca: Avelumab Apolo AB et al. *JCO* 2017

Urothelial Ca: PembrolizumabPlimack ER P et al. *Lancet Oncol* 2017

Urothelial: AtezolizumabPowles T et al. *Nature* 2014

Urothelial: DurvalumabMassard C et al. *JCO* 2016

Requirements for Effective Immunotherapy

Generation of Immune Response

Functional Effector Cells within the Tumor

Multi-layered immunosuppression

- Tumors insulate themselves with dense layers of immunosuppressive stroma
- Overcoming the many layers of interconnected and often functionally redundant immune suppressive mechanisms represents a daunting challenge for tumor-specific T cells
- Immunotherapy can "peel back" the layers of local immune suppression, thereby restoring the capacity of T cells to eradicate the tumor

Antigen spreading and the tumour immunity cycle

E. Fully activated T cell destroys tumour cells

Neoepitope #2 to 1,000 Neoepitope #1

MUC-1 PSA

A. Tumour expresses different immunogenic targets

Dying tumour cells

D. Newly activated tumourspecific T cells form in greater concentration and variation

B. Dendritic cell phagocytoses tumour cell along with a transfer of tumour-specific antigens

C. Mature dendritic cell presents tumour-specific antigens to T cells

Forest plots of relative risk of any all- and high-grade AEs associated with PD-1/PD-L1 inhibitors versus chemotherapy.

Any all-grade AEs

Model	Study name	Statistics for each study				Risk ratio and 95% CI						
		Risk ratio	Lower limit	Upper limit	p value							
	Robert 2014	0.982	0.878	1.099	.754	- 1	- 1	- 1	٠	- 1	1	1
	Weber 2015	0.850	0.748	0.968	.014	- 1		- 1 -	ы.	- 1	- 1	- 1
	Brahmer 2015	0.674	0.574	0.792	.000	- 1		 -	Т	- 1	- 1	- 1
	Ribas 2015	0.875	0.792	0.966	.008	- 1		- 1 -		- 1	- 1	- 1
	Borghaei 2015	0.787	0.721	0.860	.000	- 1		- -	Н	- 1	- 1	- 1
	Herbst 2016	0.796	0.737	0.860	.000	- 1			ıl	- 1	- 1	- 1
	Fehrenbacher 2016	0.759	0.666	0.865	.000	- 1		-	- [- 1	- 1	- 1
Random	l.	0.818	0.759	0.883	.000			- ∢)			
						0.1	0.2	0.5	1	2	5	10
			Favors PD-1/PD-L1 inhibitors			ors	Favors Chen	notherar	ov			

Any high-grade AEs

Tomohiro F. Nishijima et al. The Oncologist 2017;22:470-479

Kinetics of Immune Related Adverse Effects

Weber JS et al. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol 2012;30:2691-2697.

Common Medications

- Corticosteroids
 - Prednisone
 - Dexamethasone
 - Methylprednisolone
 - Hydrocortisone
 - Cortisone
- Mycophenolate mofetil (CellCept)
 - Standard BID
- TNF inhibitors
 - Infliximab
 - Adalimumab
 - Others

Conslusions

- Immunotherapy can lead to rapid, deep and <u>durable</u> responses
- Immunotherapy may be curative in some cases
- Future efforts in combination therapy are seeking to expand the proportion of patients with clear clinical benefit
- These should focus not only on generating anti-tumor immune response but making sure effector cells are functional within TME
- Immune related AEs are typically transient and manageable but should be identified and treated promptly
- Overall, immunotherapy is better tolerated than chemotherapy

