Introduction to Immunotherapy

James L. Gulley M.D., Ph.D., F.A.C.P.
Head, Immunotherapy Section
Chief, Genitourinary Malignancies Branch &
Director, Medical Oncology Service
Center for Cancer Research
National Cancer Institute, NIH
Virus associated cancer
Mutation associated neoantigens

Adapted from Padmanee Sharma, and James P. Allison Science 2015;348:56-61
Immunoprofiling as a predictor of patient’s response to cancer therapy—promises and challenges
Daniel Bethmann¹,², Zipei Feng²,³ and Bernard A Fox²,⁴

Table 1
Association of immune cell infiltrates with prognosis in cancer

<table>
<thead>
<tr>
<th>Histology</th>
<th>Markers tested*</th>
<th>Type of assessment</th>
<th>Effect on prognosis* and significance ###, #</th>
<th>First author</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma</td>
<td>CD3, CD4, CD8, FoxP3, PD-1</td>
<td>Pathologist</td>
<td>High intratumoral number of CD3, CD4 and CD8 is favorable. High peritumoral number of PD-1+ lymphocytes is unfavorable [52]. ##</td>
<td>Kakavand</td>
<td>2015</td>
</tr>
<tr>
<td></td>
<td>CD8, CD20, CD45</td>
<td>Pathologist, Aperio Software</td>
<td>High intratumoral density of CD8, CD45 and CD20 is favorable [53]. ##</td>
<td>Erdag</td>
<td>2012</td>
</tr>
<tr>
<td></td>
<td>CD4, CD8, CD68, HLA-DR</td>
<td>Pathologist</td>
<td>High intratumoral density of CD4 and CD8 as well as the presence of HLA-DR cells is favorable [54]. #</td>
<td>Piras</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>CD3, CD4, CD8</td>
<td>Pathologist</td>
<td>High intratumoral number of CD4 and CD8 is favorable [55]. ##</td>
<td>Al-Batran</td>
<td>2005</td>
</tr>
</tbody>
</table>

…87 references in 21 diseases correlating immune profiling with clinical outcome
T cell recognition of tumor cell
T cell function at tumor cell: to kill

Cell death via caspase cascade

Tumor cells

— Granzymes —

T-cell
T cell function at tumor cell: or not to kill

Cell death via caspase cascade

Antigen

FAS-L

FAS

MHC

TCR

ICAM

LFA-1

PDL1

PD1

IDO

TGF-β

IL-10

T-cell

Tumor cells

Treg

CTLA-4
Types of immunotherapy

- **T cell checkpoint modulation**
 - Activating receptors: CD28, OX40, GITR
 - Inhibitory receptors: CTLA-4, PD-1, 4-1BB, BTLA, TIM-3, VISTA, HVEM, LAG-3
 - Agonistic antibodies
 - T cell stimulation
 - Blocking antibodies

- **T cell adoptive transfer**
 - Targeting element: Single-chain variable fragments (scFvs)
 - Spacer
 - Transmembrane domain
 - Costimulatory domain (e.g. CD28 or 4-1BB)
 - CD3ζ: Essential signaling domain

- **Therapeutic cancer vaccines**
 - Viral and bacterial-based vaccines
 - VACCINE

- **Effector antibodies and antibody-drug conjugates**
 - Antibody: Specific to tumor-associated antigen
 - Cytotoxic agent: Designed to kill target cells when internalized and released/activated
 - Linker: Attaches cytotoxic agent to the antibody
Importance of PD1 / PDL1 blockade
PD1/PDL1 inhibition

Rapid, deep durable responses
Across a wide range of tumors
Seen in a subset of patients

NSCLC: Avelumab
Gulley JL et al. *Lancet Oncol* 2017

MSI hi CRC: Nivolumab
Overman MJ et al. *Lancet Oncol* 2017

Urothelial: Atezolizumab

NSCLC (squamous only): Nivolumab
Rizvi NA et al. *Lancet Oncol* 2015

Urothelial Ca: Avelumab
Apolo AB et al. *JCO* 2017

Urothelial: Durvalumab
Massard C et al. *JCO* 2016

HNSCC: Pembrolizumab

Urothelial Ca: Pembrolizumab
Requirements for Effective Immunotherapy
Multi-layered immunosuppression

- Tumors insulate themselves with dense layers of immunosuppressive stroma
- Overcoming the many layers of interconnected and often functionally redundant immune suppressive mechanisms represents a daunting challenge for tumor-specific T cells
- Immunotherapy can “peel back” the layers of local immune suppression, thereby restoring the capacity of T cells to eradicate the tumor
Antigen spreading and the tumour immunity cycle

A. Tumour expresses different immunogenic targets
 - Neoepitope #1
 - MUC-1
 - PSA
 - Dying tumour cells

B. Dendritic cell phagocytoses tumour cell along with a transfer of tumour-specific antigens

C. Mature dendritic cell presents tumour-specific antigens to T cells

D. Newly activated tumour-specific T cells form in greater concentration and variation

E. Fully activated T cell destroys tumour cells
Antigen spreading and the tumour immunity cycle
Forest plots of relative risk of any all- and high-grade AEs associated with PD-1/PD-L1 inhibitors versus chemotherapy.

Any all-grade AEs

<table>
<thead>
<tr>
<th>Model</th>
<th>Study name</th>
<th>Risk ratio</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Robert 2014</td>
<td>0.982</td>
<td>0.878</td>
<td>1.099</td>
<td>.754</td>
</tr>
<tr>
<td></td>
<td>Weber 2015</td>
<td>0.850</td>
<td>0.748</td>
<td>0.958</td>
<td>.014</td>
</tr>
<tr>
<td></td>
<td>Brahmer 2015</td>
<td>0.674</td>
<td>0.574</td>
<td>0.792</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Ribas 2015</td>
<td>0.875</td>
<td>0.792</td>
<td>0.986</td>
<td>.008</td>
</tr>
<tr>
<td></td>
<td>Borghaei 2015</td>
<td>0.787</td>
<td>0.721</td>
<td>0.860</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Herbst 2016</td>
<td>0.796</td>
<td>0.737</td>
<td>0.880</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Fehrenbacher 2016</td>
<td>0.759</td>
<td>0.666</td>
<td>0.865</td>
<td>.000</td>
</tr>
<tr>
<td>Random</td>
<td></td>
<td>0.818</td>
<td>0.759</td>
<td>0.883</td>
<td>.000</td>
</tr>
</tbody>
</table>

Any high-grade AEs

<table>
<thead>
<tr>
<th>Model</th>
<th>Study name</th>
<th>Risk ratio</th>
<th>Lower limit</th>
<th>Upper limit</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Robert 2014</td>
<td>0.663</td>
<td>0.411</td>
<td>1.071</td>
<td>.093</td>
</tr>
<tr>
<td></td>
<td>Weber 2015</td>
<td>0.285</td>
<td>0.177</td>
<td>0.460</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Brahmer 2015</td>
<td>0.125</td>
<td>0.065</td>
<td>0.239</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Ribas 2015</td>
<td>0.468</td>
<td>0.322</td>
<td>0.680</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Borghaei 2015</td>
<td>0.195</td>
<td>0.136</td>
<td>0.278</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Herbst 2016</td>
<td>0.401</td>
<td>0.313</td>
<td>0.513</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Fehrenbacher 2016</td>
<td>0.293</td>
<td>0.176</td>
<td>0.486</td>
<td>.000</td>
</tr>
<tr>
<td>Random</td>
<td></td>
<td>0.315</td>
<td>0.221</td>
<td>0.450</td>
<td>.000</td>
</tr>
</tbody>
</table>

Tomohiro F. Nishijima et al. The Oncologist 2017;22:470-479
Kinetics of Immune Related Adverse Effects

Common Medications

• Corticosteroids
 – Prednisone
 – Dexamethasone
 – Methylprednisolone
 – Hydrocortisone
 – Cortisone

• Mycophenolate mofetil (CellCept)
 – Standard BID

• TNF inhibitors
 – Infliximab
 – Adalimumab
 – Others
Conclusions

• Immunotherapy can lead to rapid, deep and durable responses
• Immunotherapy may be curative in some cases
• Future efforts in combination therapy are seeking to expand the proportion of patients with clear clinical benefit
• These should focus not only on generating anti-tumor immune response but making sure effector cells are functional within TME
• Immune related AEs are typically transient and manageable but should be identified and treated promptly
• Overall, immunotherapy is better tolerated than chemotherapy