Session III:
Novel In Vitro Release Testing for Complex Formulations

Darby Kozak
Division of Therapeutic Performance
Office of Research and Standards
Office of Generic Drugs
Outline

• Current thinking of IVRT for complex products
 o The role that IVRT plays in supporting BE determination
 o Expectations in the development of an IVRT method
 o Current challenges in IVRT development
 o New technologies and IVRT methods
 o The role of GDUFA funded IVRT research
Role of IVRT

• In general, IVRT for bioequivalence (BE) determination is one component of a totality of evidence approach.
 o IVRT can be recommended as part of in vitro testing to demonstrate sameness between two products with highly similar formulations.
 o IVRT can be recommended in conjunction with in vivo tests to demonstrate sameness between formulations with known differences.

• Once validated, IVRT can also be used as a specification to control product quality and/or acceptability of post-approval manufacturing changes.
IVRT for assessing complex formulations

• Confirmation that a proposed generic product has a comparable release rate to that of the RLD can help ensure that the proposed generic product will deliver drug in a manner comparable to that of the RLD.
 - IVRT is not intended to mimic the in vivo administration environment or predict the therapeutic effect of the drug.
 - An in vivo in vitro correlation (IVIVC) does not need to be established to justify an IVRT method or assessment
IVRT for assessing complex formulations

• Assessing an IVRT profile is intended to enable a sensitive determination of any potential formulation and/or manufacture differences.

 o An IVRT method can be adjusted to provide a sensitive evaluation of two highly similar formulations compared to in vivo and/or IVIVC testing.

 o GDUFA research has focused on methods to optimize IVRT sensitivity for formulation assessment:
 o Prof. Sailor: “In vitro drug release testing of ophthalmic suspensions” Grant: 1U01FD005173-01
 o Dr. Bellantone: “Pulsatile microdialysis of suspension and emulsion products” Contract: HHSF223201610105C
IVRT: Product properties

• An in vitro release rate reflects the combined effect of several physical and chemical properties in both the drug substance and the drug product.
 - Polymorphic form, aggregate/co-aggregate structure, local environment
 - Excipient grade and/or source

• Manufacturing methods and processes may change formulation attributes, thereby affecting the rate of drug release and the drug’s bioavailability.
 - Location and/or structural arrangement of formulation components
 - Particle size, viscosity, non-equilibrated higher energy states
IVRT expectations

• An IVRT method should be capable of discriminating the effect of process variability in the production of the test formulation.

• IVRT should be conducted with drug products manufactured under target conditions and compared to drug products that are intentionally manufactured with meaningful variations in formulation and manufacturing parameters:
 o particle size, drug loading, types and/or amounts of excipients.
Assessing manufacture differences

- A design of experiments approach can be taken to assess critical process variables and their corresponding affect on the critical quality attributes (physicochemical properties) of the drug product.
 - Demonstrating which product properties are impacted by the manufacture process helps direct IVRT method development.
 - GDUFA research has focused on better understanding of variability of complex drugs due to differences in manufacturing:
 - Dr. Nivorozhkin “Liposomal Formulations of Amphotericin B”
 Contract: HHSF223201610093C
IVRT expectations

• Ideally, the dissolution/in vitro release method should be able to discriminate batches that are not bioequivalent.

• Drug release profiles should be complete; reach a plateau* and achieve at least 85 percent release. If not complete, additional information to explain the reasons for incomplete release should be provided.

* no significant increase over three consecutive time points
IVRT challenges for complex dosage forms

• Complex dosage forms present a number of IVRT development challenge as:
 o Compedial dissolution/IVRT methods (e.g. USP I and II) may not easily distinguish between released drug and drug still in the formulation.
 o Low solubility of the drug in the release media compared to formulation gives rise to exceptionally slow / incomplete drug release
 o IVRT components can be rate limiting step, reducing sensitivity

• These challenges do not preclude the development or review of a proposed IVRT method
Role of GDUFA research

• GDUFA funded research ensures the Agency is abreast of:
 o the latest IVRT technologies and methods
 o Potential challenges associated with developing a particular IVRT method and/or with a particular type of formulation.
 o GDUFA research also aid industry’s IVRT development programs, but it does not constrain them to the GDUFA researched IVRT methods.
 o Ultimately, it is the responsibility of the drug sponsor to develop, justify and validate their IVRT method.
Advancing IVRT

• Since 2012, 24 GDUFA funded research projects have focused on developing and evaluating new IVRT methods for complex products.
 – Seven on ophthalmic dosage forms: topical suspensions, emulsion and ointments as well as inserts.
 – Five on parenteral microsphere products
 – Three on liposomal products
 – Three on periodontal inserts
 – Three on topical dosage forms: ointments, creams, and gels
 – Two on orally inhaled drug products
 – One on long-acting intrauterine device

• This research has helped FDA identify promising technologies, current challenges and limitations in IVRT development, and better understand the critical quality attributes of complex products and regulatory review.

• These findings are publically disseminated through workshops, presentations, and academic publications.
Developing IVRT methods

Example of the Range of dialysis based IVRT methodologies

Large volume ‘float-alyzer’ dialysis

Membranes for modified USP

Low volume microdialysis and pulsatile micodialysis

Custom built IVRT devices

Novel indirect measurements

Dialysis (USP IV adapter) US 8318506 B2

Dr. Sailor Grant# 1U01FD005173
Session III Speakers

1:30 – 2:00 pm “In vitro drug release testing of ophthalmic suspensions”
 Michael J. Sailor, PhD
 University of California, San Diego

2:00 – 2:30 pm “Pulsatile microdialysis of suspension and emulsion products”
 Robert Bellantone, PhD
 Physical Pharmaceutica, LLC.

2:30 – 3:00 pm “Liposomal Formulations of Amphotericin B”
 Alex Nivorozhkin, PhD
 Neo-Advent Technologies, LLC.