A Model- and Systems-Based Approach to Efficacy and Safety Questions Related to Generic Substitution

Stephan Schmidt, Ph.D., F.C.P.
Associate Professor, Associate Director, and Associate Chair (PC-LN)

Center for Pharmacometrics and Systems Pharmacology
Department of Pharmaceutics
University of Florida
Acknowledgements

Co-investigators Lawrence J Lesko, Mirjam Trame, Sihem Bihorel and Joshua Brown for their leadership in executing the research

The many post-doctoral research associates working under the mentorship of the faculty co-investigators

Dr. Lanyan Fang and her FDA team of collaborators for their suggestions and enabling this research

The FDA for funding the research under a collaborative contract U01FD005210-03
Research at the University of Florida Center for Pharmacometrics and Systems Pharmacology

- To develop a quantitative and integrative approach that will separate post-marketing “signals from noise”

- If the “signal” is credible, develop a strategy using quantitative methods and modeling to provide insight into causal mechanisms

Lesko et al. accepted for publication in J Clin Pharmacol., 2017
The UF Research Strategy is Based on Three Pillars to Make Regulatory Decisions

Bioinformatics: develop associations between drugs, targets, pathways and “signals”

PBPK Models: develop oral absorption models to conduct PSA of API and formulations and feed into PK simulations

Pop-PK/PD Models: link to PD to predict impact of product differences in PK on drug response

Lesko et al. accepted for publication in J Clin Pharmacol., 2017
The Workflow for the Case Examples

ADE: FAERS, consumer complaints, www.peoplespharmacy.com, clinical studies, ISMP and other public databases

1. Confirmation – FAERS analysis
2. Replication – Truven® database
3. Enhanced FAERS analysis – Evidex™ by Advera Health

Causality of generic drug-AE pair

Prediction Modeling

PBPK Absorption Models: Sensitivity Analysis
PK/PD Models: Benefit and Risk

Model Interpretation and Report
Drugs and Formulations Selected To Demonstrate a Wide Range of Applications

Case I: anti-epileptic drugs considers BCS classification that can have a significant effect on absorption. BCS class II (carbamazepine, lamotrigine and phenytoin) and BCS class III (gabapentin and levetiracetam)

Case II: metoprolol XL examines a complex CR formulation to predict PK and PD profiles from a PSA and differences in *in vitro* dissolution

Case III: anticoagulants that belong to the same therapeutic class (DOACs) that are not yet available as generics to gain a mechanistic understanding of potential bioINequivalence
Medicines and Healthcare Products Regulatory Agency (MHRA) Considers BCS Classes for Risk Categorization

- **Category 1 – definite concerns**
 - Phenytoin (BCS class II) \(^1\)
 - Carbamazepine (BCS class II) \(^1\)

- **Category 2 - possible concerns**
 - Lamotrigine (BCS class II) \(^1\)
 - Topiramate (BCS class III) \(^1\)
 - Valproate (BCS class I) \(^2\)

- **Category 3 - unlikely to be concerns**
 - Levetiracetam (BCS class I/III) \(^1,3\)
 - Lacosamid (BCS class I) \(^4\)
 - Pregabalin (BCS class I) \(^5\)
 - Gabapentin (BCS class III) \(^1\)
Impact of Drug- and Formulation Parameters on AUC and C_{max}

Carbamazepine

Lamotrigine

Levetiracetam

Samant et al. Poster presented at the 2015 Annual Meeting of the American College of Clinical Pharmacology
Case I: Levetiracetam (BCS I/III, 2008)

ADE: FAERS, consumer complaints, www.peoplespharmacy.com, clinical studies, ISMP and other public databases

- Indication: antiepileptic drug (RCT: 1433 patients)
- Generics: 25 from variety of manufacturers

Report from physician to FAERS on 08-24-2012

- Patient: male
- Complaints: frequent nosebleeds, easy bruising
- Reaction: decreased WBC, anemia, thrombocytopenia
- AE resulted in: hospitalization
- Suspect Drug: levetiracetam after switch to generic
- Other Conmeds: Valproic acid
The Biopharmaceutics Classification System
(as defined by FDA after Amidon et al.)

BE study perspective: subjects serve as their own controls → permeability is unlikely to change within subjects during the study → it’s a solubility problem

A systems perspective applied to BE studies: What is the rate limiting step for absorption? Solubility? Permeability? Other?
The Korsmeyer-Peppas Model (The Power Law) is frequently used to describe drug release from ER dosage forms

\[\frac{M_t}{M_\infty} = K t^N \]

\(\frac{M_t}{M_\infty} \) is the fraction of drug release at time \(t \)

\(K \) is the release constant and

\(N \) is the release exponent

<table>
<thead>
<tr>
<th>Release exponent ((N))</th>
<th>Drug transport mechanism</th>
<th>Rate as a function of time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>Fickian diffusion</td>
<td>(t^{-0.5})</td>
</tr>
<tr>
<td>0.5<(N)<1</td>
<td>Non-Fickian diffusion</td>
<td>(t^{n-1})</td>
</tr>
<tr>
<td>1</td>
<td>Case II transport</td>
<td>Zero order release</td>
</tr>
<tr>
<td>>1</td>
<td>Super Case II transport</td>
<td>(t^{n-1})</td>
</tr>
</tbody>
</table>
Plain English, Please!

- N is indicative of the release mechanism
- N depends on the type, grade, and MW of the release controlling polymer → fairly reproducible
- K is indicative of the release rate from a swellable polymer matrix, such as HPMC
- K depends on the porosity and tortuosity of the polymer matrix → can be (highly) variable depending on processing conditions
- K may be subject to lab-to-lab or batch-to-batch variability → CMC

Basu et al. accepted for publication in J Clin Pharmacol., 2017
PBPK Model Flowchart to Evaluate the Impact of Formulation Factors on PK Profiles of Metoprolol ER

Formulation

In vitro and in silico dissolution testing

In vivo dissolution and *in silico* absorption modeling

In silico bioequivalence testing

DDDPlus™

Advanced Compartment and Transit (ACAT) module in GastroPlus™

Basu et al. accepted for publication in *J Clin Pharmacol.*, 2017
Impact of Changes in K on AUC and C_{max} of Metoprolol ER

→ FDA takes stringent measures to prevent post-approval changes [6,7]

Basu et al. accepted for publication in J Clin Pharmacol., 2017
Dissolution Testing

Basu et al. accepted for publication in *J Clin Pharmacol.*, 2017
In Silico PK/PD Results

<table>
<thead>
<tr>
<th>Case-1: BiolNequivalence in AUC and C_{max}</th>
<th>Case-2: BiolNequivalence in C_{max}</th>
<th>Case-3: BiolNequivalence in AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady State at Daily Oral Dose = 100 mg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PK simulation

MTPL Concentration (nmol/L)

- **Time (h)**: 0, 50, 100, 150

PK/PD simulation

Heart rate reduction (%)

- **Time (h)**: 0, 50, 100, 150

<table>
<thead>
<tr>
<th>Test product A (F=1.25) Reference drug</th>
<th>Test product A (K_a=500%) Reference drug</th>
<th>Test product A (F=1.25 & K_a=58%) Reference drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test product B (F=0.8) Reference drug</td>
<td>Test product B (K_a=20%) Reference drug</td>
<td>Test product B (F=0.8 & K_a=131%) Reference drug</td>
</tr>
</tbody>
</table>

Sharma *et al.* manuscript in preparation
Case II: **Metoprolol XL (BCS I, 2006)**

- Indication: antihypertensive
- Generics: at least 3 from various manufacturers

- Report from physician to FDA on 06-23-2014

 - Patient: male
 - Complaints: chest pains
 - Reaction: increase HR, increase BP, dizziness, migraine
 - AE resulted in: switch back to brand name product
 - Suspect Drug: metoprolol after substitution

https://www.nytimes.com/2014/06/24/health/warning-unheeded-heart-drugs-are-recalled.html
Can Our Approach Predict the Relative Risk of Bioinequivalence Before Generics Hit the Market?

Case III: DOACs – Work in Progress

Apixaban
Dabigatran
Edoxaban
Rivaroxaban
Case III: PK/PD Simulations to Evaluate the Impact of Bioinequivalence on Response to DOACs

PURPOSE

- The objective of this collaborative research was to determine the impact of hypothetical bio-IN-equivalence (BIN) in AUC and/or C_{max} on the efficacy (ischemic stroke) and safety (major bleeding) profiles of the direct oral anticoagulants (DOACs): dabigatran, edoxaban, rivaroxaban, and apixaban.

METHODS

- We simulated out 3 sets of BIN scenarios by altering the rate (k_{a}) and/or extent (F).
- Changes in PK were then implemented into pop-PK/PD and time to event (TTE) models available from the respective NDAs and literatures.
- Comparison with real-world data: additional statistical analyses were performed to compare the results to the real-world data from FDA Adverse Event Reporting System and Truven MarketScan Health Analytics.
- Overall workflow:

Kim et al. accepted for poster presentation at AAPS annual meeting, 2017
Case III: PK/PD Simulations to Evaluate the Impact of Bioinequivalence on Response to DOACs

Dabigatran Example

Case 1: Bio–IN–equivalence in AUC & Cmax
- Solid curves: median
- Shaded bands: 90% confidence interval

Case 2: Bio–IN–equivalence in Cmax
- Solid curve: median
- Shaded band: 90% confidence interval

Note that the ER curves from the FDA reports were established using **different PK inputs**. Thus, **computed probabilities provide trends** but cannot be compared directly one another.

→ **Future work** has to be conducted in order to harmonize employed PK/PD indices across DOACs.

Real-world data (see below)

Survival curves for overall major bleeding in different treatment group

Kim *et al.* accepted for poster presentation at AAPS annual meeting, 2017
Summary: Regulatory Use of Our Research

A. Mechanistic model-based “tool” to investigate purported post-marketing claims of bioINequivalence between generic and brand name products

B. “Tool” can be used to assess differences in BA between clinical trial formulations and to-be-marketed dosage forms of new brand name drugs

C. Scientific basis to define if new BE criteria are warranted to better assure interchangeability of generic and brand name product

D. Justification for future targeted post-marketing surveillance of high risk generic drugs
References

1. Intra-Agency Agreement Between the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the U.S. Food and Drug Administration (FDA) Oral Formulations Platform—Report 1

2. PROPOSAL TO WAIVE IN VIVO BIOEQUIVALENCE REQUIREMENTS FOR THE WHO MODEL LIST OF ESSENTIAL MEDICINES IMMEDIATE RELEASE, SOLID ORAL DOSAGE FORMS –WHO

4. Lacosamid oral solution NDA (NDA 22-255)

