

A Model- and Systems-Based Approach to Efficacy and Safety Questions Related to Generic Substitution

Stephan Schmidt, Ph.D., F.C.P.

Associate Professor, Associate Director, and Associate Chair (PC-LN)

Center for Pharmacometrics and Systems Pharmacology

Department of Pharmaceutics

University of Florida

Acknowledgements

Co-investigators Lawrence J Lesko, Mirjam Trame, Sihem Bihorel and Joshua Brown for their leadership in executing the research

The many post-doctoral research associates working under the mentorship of the faculty co-investigators

Dr. Lanyan Fang and her FDA team of collaborators for their suggestions and enabling this research

The FDA for funding the research under a collaborative contract U01FD005210-03

Research at the University of Florida Center for Pharmacometrics and Systems Pharmacology

- To develop a quantitative and integrative approach that will separate post-marketing "signals from noise"
- If the "signal" is credible, develop a strategy using quantitative methods and modeling to provide insight into causal mechanisms

The UF Research Strategy is Based on Three Pillars to Make Regulatory Decisions

Bioinformatics: develop associations between drugs, targets, pathways and "signals"

PBPK Models: develop oral absorption models to conduct PSA of API and formulations and feed into PK simulations

Pop-PK/PD Models: link to PD to predict impact of product differences in PK on drug response

The Workflow for the Case Examples

ADE: FAERS, consumer complaints, www.peoplespharmacy.com, clinical studies, ISMP and other public databases

Causality of generic drug-AE pair Confirmation -**FAERS** analysis **Prediction Modeling** Replication – Truven® database **PBPK Absorption Models:** PK/PD Models: **Benefit and Risk Sensitivity Analysis Enhanced FAERS** analysis − EvidexTM by Advera Health **Confirm targets and** Model pathways, and prediction **Interpretation and** of ADEs − MH EffectTM Report

Drugs and Formulations Selected To Demonstrate a Wide Range of Applications

Case I: anti-epileptic drugs considers BCS classification that can have a significant effect on absorption. BCS class II (carbamazepine, lamotrigine and phenytoin) and BCS class III (gabapentin and levetiracetam)

Case II: metoprolol XL examines a complex CR formulation to predict PK and PD profiles from a PSA and differences in *in vitro* dissolution

Case III: anticoagulants that belong to the same therapeutic class (DOACs) that are not yet available as generics to gain a mechanistic understanding of potential biolNequivalence

Medicines and Healthcare Products Regulatory Agency (MHRA) Considers BCS Classes for Risk Categorization

- Category 1 definite concerns
 - Phenytoin (BCS class II) [1]
 - Carbamazepine (BCS class II) [1]
- Category 2 possible concerns
 - Lamotrigine (BCS class II) [1]
 - Topiramate (BCS class III) [1]
 - Valproate (BCS class I) [2]
- Category 3 unlikely to be concerns
 - Levetiracetam (BCS class I/III) [1,3]
 - Lacosamid (BCS class I) [4]
 - Pregabalin (BCS class I) [5]
 - Gabapentin (BCS class III) [1]

Impact of Drug- and Formulation Parameters on AUC and C_{max}

Case I: Levetiracetam (BCS I/III, 2008)

ADE: FAERS, consumer complaints, www.peoplespharmacy.com, clinical studies, ISMP and other public databases

- Indication: antiepileptic drug (RCT: 1433 patients)
- > Generics: 25 from variety of manufacturers
 - Report from physician to FAER8 on 08-24-2012

Patient: male

Complaints: frequent nosebleeds, easy bruising

♦ Reaction: decreased WBC, anemia, thrombocytopenia AE resulted in: hospitalization

Suspect Drug: levetiracetam after switch to generic

Other Conmeds: Valproic acid

The Biopharmaceutics Classification System

(as defined by FDA after Amidon et al.)

BE study perspective: subjects serve as their own controls \rightarrow permeability is unlikely to change within subjects during the study \rightarrow it's a solubility problem

A systems perspective applied to BE studies: What is the rate limiting step for absorption? Solubility? Permeability? Other?

Rate-Limiting Step: Drug Release From Extended Release (ER) Formulations

The Korsmeyer-Peppas Model (The Power Law) is frequently used to describe drug release from ER dosage forms

$$M_t/M_{\infty} = Kt^N$$

 M_{*}/M_{∞} is the fraction of drug release at time t **K** is the release constant and **N** is the release exponent

Release exponent (N)	Drug transport mechanism	Rate as a function of time	
0.5	Fickian diffusion	t ^{-0.5}	IR
0.5 <n<1< td=""><td>Non-Fickian diffusion</td><td>tⁿ⁻¹</td><td></td></n<1<>	Non-Fickian diffusion	t ⁿ⁻¹	
1	Case II transport	Zero order release	ER
>1	Super Case II transport	t ⁿ⁻¹	

Plain English, Please!

- N is indicative of the release mechanism
- N depends on the type, grade, and MW of the release controlling polymer → fairly reproducible
- K is indicative of the release rate from a swellable polymer matrix, such as HPMC
- ➤ K depends on the porosity and tortuosity of the polymer matrix → can be (highly) variable depending on processing conditions
- K may be subject to lab-to-lab or batch-to-batch variability
 CMC

PBPK Model Flowchart to Evaluate the Impact of Formulation Factors on PK Profiles of Metoprolol ER

DDDPlusTM

Advanced Compartment and Transit (ACAT) module in GastroPlus™

Impact of Changes in K on AUC and C_{max} of Metoprolol ER

→ FDA takes stringent measures to prevent post-approval changes [6,7]

Dissolution Testing

In Silico PK/PD Results

Case II: Metoprolol XL (BCS I, 2006)

2

PBPK Absorption Models: Sensitivity Analysis

PK/PD Models: Benefit and Risk

3

- > Indication: antihypertensive
- > Generics: at least 3 from various manufacturers
 - ♦ Report from physician to TDA on 86-23-2014

Patient: male

Complaints: chest pains

Reaction: Increase HP, increase BP, dizziness, migraine

AE resulted in: switch back to brand name product

Suspect Drug: metoprolol after substitution

https://www.nytimes.com/2014/06/24/health/warning-unheeded-heart-drugs-are-recalled.html

Can Our Approach Predict the Relative Risk of Bioinequivalence Before Generics Hit the Market?

<u>Case III: DOACs – Work in</u> <u>Progress</u>

Apixaban
Dabigatran
Edoxaban
Rivaroxaban

Case III: PK/PD Simulations to Evaluate the Impact of Bioinequivalence on Response to DOACs

PURPOSE

➤ The objective of this collaborative research was to determine the impact of hypothetical bio-IN-equivalence (BIN) in AUC and/or C_{max} on the efficacy (ischemic stroke) and safety (major bleeding) profiles of the direct oral anticoagulants (DOACs): dabigatran, edoxaban, rivaroxaban, and apixaban.

METHODS

- We simulated out 3 sets of BIN scenarios by altering the rate (k_a) and/or extent (F).
- Changes in PK were then implemented into pop-PK/PD and time to event (TTE) models available from the respective NDAs and literatures.
- ➤ Comparison with real-world data: additional statistical analyses were performed to compare the results to the real-world data from FDA Adverse Event Reporting System and Truven MarketScan Health Analytics.

Case III: PK/PD Simulations to Evaluate the Impact of Bioinequivalence on Response to DOACs

Dabigatran Example

Note that the ER curves from the FDA reports were established using different PK inputs. Thus, computed probabilities provide trends but cannot be compared directly one another.

→ Future work has to be conducted in order to harmonize employed PK/PD indices across DOACs.

Real-world data (see below ↓)

Summary: Regulatory Use of Our Research

- A. Mechanistic model-based "tool" to investigate purported postmarketing claims of biolNequivalence between generic and brand name products
- B. "Tool" can be used to assess differences in BA between clinical trial formulations and to-be-marketed dosage forms of new brand name drugs
- C. Scientific basis to define if new BE criteria are warranted to better assure interchangeability of generic and brand name product
- D. Justification for future targeted post-marketing surveillance of high risk generic drugs

References

- Intra-Agency Agreement Between the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the U.S. Food and Drug Administration (FDA) Oral Formulations Platform—Report 1 https://bpca.nichd.nih.gov/collaborativeefforts/initiatives/documents/formulations_platform_report1.pdf
- 2. PROPOSAL TO WAIVE IN VIVO BIOEQUIVALENCE REQUIREMENTSFOR THE WHO MODEL LIST OF ESSENTIAL MEDICINES IMMEDIATE RELEASE, SOLID ORAL DOSAGE FORMS WHO http://www.who.int/medicines/services/expertcommittees/pharmprep/QAS04_109Rev1_Waive_invivobloequiv.pdf
- 3. Petrusevska, M., et al., *Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms:* Levetiracetam. J Pharm Sci, 2015. **104**(9): p. 2676-87.
- 4. Lacosamid oral solution NDA (NDA 22-255)
- 5. Cook, J., W. Addicks, and Y.H. Wu, *Application of the biopharmaceutical classification system in clinical drug development--an industrial view.* AAPS J, 2008. **10**(2): p. 306-10.
- 6. Guidance for Industry, SUPAC-MR: Modified Release Oral Dosage Forms. https://www.fda.gov/downloads/Drugs/Guidances/ucm070640.pdf
- 7. Guidance for Industry, CMC Postapproval Manufacturing Changes to Be Documented in Annual Reports. https://www.fda.gov/downloads/Drugs/.../Guidances/UCM217043.pdf