In Vitro Metabolismand Transporter-Mediated Drug-Drug Interaction Studies Guidance for Industry

DRAFT GUIDANCE

This guidance document is being distributed for comment purposes only.

Comments and suggestions regarding this draft document should be submitted within 90 days of publication in the *Federal Register* of the notice announcing the availability of the draft guidance. Submit electronic comments to https://www.regulations.gov. Submit written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the *Federal Register*.

For questions regarding this draft document, contact (CDER) Office of Clinical Pharmacology, Guidance and Policy Team at CDER_OCP_GPT@fda.hhs.gov.

U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER)

> October 2017 Clinical Pharmacology

In Vitro Metabolismand Transporter-Mediated Drug-Drug Interaction Studies Guidance for Industry

Additional copies are available from: Office of Communications, Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration 10001 New Hampshire Ave., Hillandale Bldg., 4th Floor Silver Spring, MD 20993-0002 Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353 Email: druginfo@fda.hhs.gov http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm

> U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER)

> > October 2017 Clinical Pharmacology

Draft – Not for Implementation

TABLE OF CONTENTS

I.	INTRODUCTION
II.	BACKGROUND
III.	EVALUATING METABOLISM-MEDIATED DRUG INTERACTIONS
A	A. Determining if the Investigational Drug is a Substrate of Metabolizing Enzymes 4
E	B. Determining if the Investigational Drug is an Inhibitor of Metabolizing Enzymes 5
(C. Determining if the Investigational Drug is an Inducer of Metabolizing Enzymes 6
IV.	EVALUATING TRANSPORTER-MEDIATED DRUG INTERACTIONS
A	A. Determining if the Investigational Drug is a Substrate of the Transporters P-gp and
-	BCRP
ŀ	3. Determining if the Investigational Drug is a Substrate of the Hepatic Transporters
(UAIPIBI and UAIPIBS
C	. Determining if the investigational Drug is a Substrate of the Kenai Transporters
т	OA1, OC1, and MATE
F	2. Determining if the Investigational Drug is an Inducer of a Transporter
_	
V.	EVALUATION OF THE DDI POTENTIAL OF METABOLITES16
A	A. Metabolite as a Substrate
F	B. Metabolite as an Inhibitor
VI.	LABELING RECOMMENDATIONS
VII	. APPENDICES
A	A. Evaluating Metabolism-Based Drug Interactions In Vitro
E C	5. Evaluating Transporter-Mediated Drug Interactions in vitro
C	. Using would dased r redictions to Determine a Drug's rotential to Cause DDIS 31
VII	I. ABBREVIATIONS AND ACRONYMS
IX.	REFERENCES

Draft – Not for Implementation

In Vitro Metabolism- and Transporter-Mediated Drug-Drug Interaction Studies Guidance for Industry¹

This draft guidance, when finalized, will represent the current thinking of the Food and Drug Administration (FDA or Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the FDA staff responsible for this guidance as listed on the title page.

11 12

10

1

2

7

8 9

12

14

15 I. INTRODUCTION

16

17 This guidance is intended to help drug developers plan and evaluate studies to determine the

drug-drug interaction (DDI) potential of an investigational drug product.² It focuses on in vitro experimental approaches to evaluate the interaction potential between investigational drugs that

experimental approaches to evaluate the interaction potential between investigational drugs that involves metabolizing enzymes and/or transporters. This guidance also discusses how in vitro

results can inform future clinical DDI studies. The appendices of this guidance include

22 considerations when choosing in vitro experimental systems, key issues regarding in vitro

23 experimental conditions, and more detailed explanations regarding model-based DDI prediction

strategies. See section VIII for a list of terms used in this guidance and their definitions.

25

²⁶ If an in vitro assessment suggests that the sponsor should conduct a clinical DDI study, the

sponsor should refer to a related guidance addressing the conduct and interpretation of clinical

28 drug interaction studies (draft guidance for industry entitled *Clinical Drug Interaction Studies* —

29 *Study Design, Data Analysis, and Clinical Implications*).³ Together, these two guidances

30 describe a systematic, risk-based approach to assessing the DDI potential of investigational drugs

and making recommendations to mitigate DDIs and will replace the 2012 draft guidance entitled

http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm.

¹ This guidance has been prepared by the Office of Clinical Pharmacology, Office of Translational Sciences in the Center for Drug Evaluation and Research at the Food and Drug Administration.

 $^{^{2}}$ Only small molecule drugs are covered in this guidance. Interactions involving biologics (therapeutic proteins) are beyond the scope of this guidance.

³ When final, this guidance will represent the FDA's current thinking on this topic. For the most recent version of a guidance, check the FDA Drugs guidance Web page at

Draft – Not for Implementation

Drug Interaction Studies – Study Design, Data analysis, Implications for Dosing, and Labeling
 Recommendations.

34

35 In general, FDA's guidance documents do not establish legally enforceable responsibilities.

36 Instead, guidances describe the Agency's current thinking on a topic and should be viewed only

as recommendations, unless specific regulatory or statutory requirements are cited. The use of

- the word *should* in Agency guidances means that something is suggested or recommended, but not required.
- 40 41

42 II. BACKGROUND

43

44 Evaluating the DDI potential of an investigational new drug involves: (1) identifying the principal routes of the drug's elimination; (2) estimating the contribution of enzymes and 45 transporters to the drug's disposition; and (3) characterizing the effect of the drug on enzymes 46 and transporters. This evaluation often starts with in vitro experiments to identify potential 47 factors influencing drug disposition to elucidate potential DDI mechanisms and to yield kinetic 48 parameters for use in further studies. Results of in vitro experiments, along with clinical 49 pharmacokinetic (PK) data, provide mechanistic information that can inform the need and proper 50 design of potential future clinical studies. Various modeling approaches can translate in vitro 51 52 observations into in vivo predictions of potential clinical DDIs. For example, when evaluating the drug as a perpetrator (i.e., an inhibitor or inducer) of a metabolism-mediated DDI, basic 53 models (Einolf 2007; Einolf, Chen, et al. 2014; Vieira, Kirby, et al. 2014), static mechanistic 54 models (Einolf 2007; Fahmi, Hurst, et al. 2009; Einolf, Chen, et al. 2014), or dynamic 55 mechanistic models including physiologically-based pharmacokinetic (PBPK) models (Zhao, 56 Zhang, et al. 2011; Zhao, Rowland, et al. 2012; Jones, Chen, et al. 2015; Wagner, Zhao, et al. 57 2015; FDA draft guidance for industry Physiologically Based Pharmacokinetic Analyses -58 *Format and Content*⁴) can guide decisions on when and how to conduct a clinical DDI study. 59 This guidance outlines a general framework for conducting in vitro experiments and interpreting 60 in vitro study results to determine the potential for clinical DDIs. 61 62 The recommendations in this guidance are based on current scientific understanding. The 63 recommendations outlined here may be periodically updated as the scientific field of DDIs 64 evolves and matures. Refer to the appendices for general considerations regarding in vitro 65 systems for drug development and regulatory purposes. 66

- 67
- 68
- 69

III. EVALUATING METABOLISM-MEDIATED DRUG INTERACTIONS

70

71 Many drugs undergo metabolism as a major mechanism of bioactivation (e.g., in the case of

⁴ When final, this guidance will represent the FDA's current thinking on this topic.

72	prodrugs) or	clearance from the body. Drugs can be metabolized in several organs, including,
73	but not limit	ed to, the liver, kidney, gut wall, and lung. Drug metabolism primarily occurs in the
74	liver and inte	estine. These organs express a wide variety of drug metabolizing enzymes and are
75	responsible	for the biotransformation of many drugs. Hepatic metabolism occurs primarily
76	through the	cytochrome P450 (CYP) family of enzymes located in the hepatic endoplasmic
77	reticulum bu	it can also occur through non-CYP enzymes, including Phase II glucuronosyl- and
78	sulfo-transfe	rases. Sponsors should examine the potential for interactions between these
79	metabolizing	g enzymes and investigational drugs. Although certain clinical PK information is
80	necessary to	quantify the potential for interactions between metabolizing enzymes and
81	investigation	al drugs, sponsors should initiate in vitro metabolic studies before first-in-human
82	studies to ini	form the need and design of these clinical studies. We recommend that the sponsor
83	conducts the	following in vitro studies to evaluate the potential for metabolism-mediated drug
84	interactions.	
85		
86	А.	Determining if the Investigational Drug is a Substrate of Metabolizing
87		Enzymes
88	,	
89	1.	Conducting In Vitro Studies
90		
91	The sponsor	should routinely evaluate CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19,
92	CYP2D6, an	a CYP3A4/5 using in vitro phenotyping experiments to determine which enzymes
93	metabolize t	he investigational drug. However, it is possible that the investigational drug
94	undergoes si	gnificant in vivo metabolism that is not mediated by these major CYP enzymes. In
95	this event, th	ie investigational drug is probably a substrate for additional enzymes, and the
96	sponsor shou	Ild determine what additional enzymes contribute to the metabolism of the
97	investigation	ai drug. These additional enzymes include but are not limited to:
98		
99	• CYP	enzymes including CYP2A6, CYP2J2, CYP4F2, and CYP2E1
100		
101	• Othe	r Phase I enzymes including monoamine oxidase (MAO), flavin monooxygenase
102	(FM0	J), xanthine oxidase (XO), and alcohol/aldehyde dehydrogenase
103		
104	• Phase	e II enzymes including UDP glucuronosyl transferases (UGTs)
105		
106	2.	Data Analysis and Interpretation
107		
108	The contribu	ition of a specific metabolizing enzyme to an investigational drug's clearance is
109	considered s	ignificant if the enzyme is responsible for $\geq 25\%$ of the drug's elimination based on
110	the in vitro p	phenotyping studies and human PK data. Under these circumstances, the sponsor
111	should cond	uct clinical DDI studies using strong index inhibitors and/or inducers of the enzyme
112	(see the FDA	A's draft guidance for industry entitled <i>Clinical Drug Interaction Studies</i> — <i>Study</i>

Draft – Not for Implementation

Design, Data Analysis, and Clinical Implications⁵). Refer to the appendix, section VII.A.1, for 113 additional considerations regarding data analysis. 114 115 Determining if the Investigational Drug is an Inhibitor of Metabolizing **B**. 116 **Enzymes** 117 118 119 1. Conducting In Vitro Studies 120 121 The sponsor should evaluate an investigational drug's potential to inhibit CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4/5 in both a reversible manner (i.e., 122 123 reversible inhibition) and time-dependent manner (i.e., time-dependent inhibition (TDI)). 124 2. Data Analysis and Interpretation 125 126 127 For basic models of reversible inhibition, the sponsor should calculate the predicted ratio of the area under the plasma concentration-time curve (AUC) for the victim (substrate) drug in the 128 presence and absence of an inhibitor. This ratio is referred to as R_1 (see the appendix, section 129 VII.C1). For CYP3A, R_{1,gut} should also be calculated as shown in Figure 1. 130 131 Figure 1: Equations to Calculate the Predicted Ratio of Victim Drug's AUC in the 132 Presence and Absence of an Inhibitor for Basic Models of Reversible Inhibition 133 134 $R_1 = 1 + (I_{max,u} / K_i)$ 135 136 $R_{1,gut} = 1 + (I_{gut} / K_i)$ 137 138 139 \mathbf{R}_1 or $\mathbf{R}_{1,\text{gut}}$ is the predicted ratio of the victim drug's AUC in the presence and absence of an inhibitor for basic 140 models of reversible inhibition. 141 Imax,u is the maximal unbound plasma concentration of the interacting drug.* 142 I_{gut} is the intestinal luminal concentration of the interacting drug calculated as the dose/250 mL. 143 **K**_i is the unbound inhibition constant determined in vitro. 144 Note: I and K_i need to be expressed in the same unit (e.g., in a molar concentration unit). 145 146 147 *Considering uncertainties in the protein binding measurements, the unbound fraction in plasma should be set to 1% (fraction unbound in the plasma $(f_{u,p}) = 0.01$) if experimentally determined to be < 1%. 148 149 150 For basic models of TDI, the sponsor should calculate the predicted ratio of the victim drug AUC 151 152 in the presence and absence of an inhibitor (R_2) as described in Figure 2. 153 154

⁵ When final, this guidance will represent the FDA's current thinking on this topic.

Draft – Not for Implementation

155 156	Figure 2: Equations to Calculate the Predicted Ratio of the Victim Drug's AUC in the Presence and Absence of an Inhibitor for Basic Models of TDI (Yang, Liao, et al. 2008;
157	Grimm, Einolf, et al. 2009; Vieira, Kirby, et al. 2014)
158	
159	$\mathbf{K}_2 = (\mathbf{K}_{obs} + \mathbf{K}_{deg}) / \mathbf{K}_{deg}$
160	Where $\mathbf{I}_{\mathbf{x}} = (\mathbf{I}_{\mathbf{x}} \times 50 \times \mathbf{I}_{\mathbf{x}}) / (\mathbf{V} + 50 \times \mathbf{I}_{\mathbf{x}})$
161	where $K_{obs} = (K_{inact} \times 50 \times I_{max,u}) / (K_I + 50 \times I_{max,u})$
162	\mathbf{R}_2 is the predicted ratio of the victim drug's AUC in the presence and absence of an inhibitor for basic models of
164	enzyme TDI.
165	\mathbf{k}_{obs} is the observed (apparent first order) inactivation rate constant of the affected enzyme.
166	\mathbf{k}_{deg} is the apparent first-order degradation rate constant of the affected enzyme.
167	$\mathbf{K}_{\mathbf{I}}$ is the inhibitor concentration causing half-maximal inactivation.
168 169	$\mathbf{K}_{\text{inact}}$ is the maximal inactivation rate constant.
170	That, is the maximal unbound plasma concentration of the interacting drug.
171	Note: I and K _I need to be expressed in the same unit (e.g., in a molar concentration unit).
172	
173	*Considering uncertainties in the protein binding measurements, the unbound fraction in plasma should be set to 1%
174	(fraction unbound in the plasma $(f_{u,p}) = 0.01$) if experimentally determined to be < 1%.
175	
176	If $\mathbf{P} > 1.02$ $\mathbf{P} > 1.25$ (Wising Kinks et al. 2014) on the $\mathbf{P} = > 11$ (Taskihang Keta et al. 2000)
1//	If $R_1 \ge 1.02$, $R_2 \ge 1.25$ (Vierra, Kirby et al. 2014) or the $R_{1,gut} \ge 11$ (Tachibana, Kato, et al. 2009;
178	vierra, Kirby, et al. 2014), the sponsor should further investigate the DDI potential by ether
1/9	using mechanistic models (see the appendix, section VII.C) of conducting a clinical DDI study
180	with a sensitive index substrate. If the predicted AUC ratio (AUCR) of a sensitive index
181	substrate in the presence and absence of an investigational drug is ≥ 1.25 based on static
182	mechanistic models or dynamic mechanistic models (e.g., PBPK models) (see appendix, section
183	VII.C), the sponsor should conduct a clinical DDI study using a sensitive index substrate.
184	
185	When static mechanistic models or PBPK models (see appendix, section VII.C) are used for
186	predicting DDIs caused by enzyme inhibition, the models should include the inhibition
187	mechanism only (i.e., the model should not include concurrent induction predictions for an
188	investigational drug that is hypothesized to be both an inducer and inhibitor) to definitively
189	assess the potential of the investigational drug to inhibit metabolizing enzymes.
190	
191	C. Determining if the Investigational Drug is an Inducer of Metabolizing
192	Enzymes
193	
194	1. Conducting In Vitro Studies
195	
196	The sponsor should evaluate the potential of an investigational drug to induce CYP1A2,
197	CYP2B6, CYP2C8, CYP2C9, CYP2C19, and CYP3A4/5. Initially, sponsors can conduct
198	experiments to evaluate CYP1A2, CYP2B6, and CYP3A4/5 only. If no induction of CYP3A4/5
199	enzymes is observed, evaluating the induction potential of CYP2C enzymes is not necessary

Draft – Not for Implementation

because both CYP3A4/5 and CYP2C enzymes are induced via activation of the pregnane X 200 receptor (PXR). If the investigational drug induces CYP3A4/5, however, the sponsor should 201 evaluate the potential of the investigational drug to induce CYP2C. 202 203 2. 204 Data Analysis and Interpretation 205 Several basic methods can assess the potential of an investigational drug to induce metabolizing 206 enzymes (Fahmi, Kish, et al. 2010; Fahmi and Ripp 2010; Einolf, Chen, et al. 2014). Three of 207 208 them are described in detail below: 209 Fold-change method: The sponsor can examine the fold-change in CYP enzyme mRNA 210 • levels when incubated with the investigational drug by using a cutoff determined from 211 known positive and negative controls to calibrate the system. For example, $a \ge 2$ -fold 212 increase in mRNA and a response $\geq 20\%$ of the response of the positive control in the 213 presence of an investigational drug are interpreted as a positive finding. 214 215 216 • **Correlation methods**: The sponsor may use correlation methods with predicted positive criteria defined by known positive (e.g., known inducers of the same enzyme) and 217 negative controls as described in Figure 3. 218 219 Figure 3: Two Correlation Methods to Assess the Potential of an Investigational Drug to 220 221 Induce Metabolizing Enzymes (Fahmi and Ripp, 2010) 222 **Correlation Method 1**: Calculate a relative induction score (RIS) using $(E_{max} \times I_{max,u}) / (EC_{50} + I_{max,u})$ 223 224 $I_{max.u}$) 225 OR **Correlation Method 2**: Calculate I_{max.u} / EC₅₀ values 226 227 Determine the magnitude of a clinical induction effect (e.g., AUC ratio of index substrate in the 228 229 presence and absence of inducers) according to a calibration curve of RIS scores or $I_{max,u}/EC_{50}$ for a set of known inducers of the same enzyme. 230 231 232 E_{max} is the maximum induction effect determined in vitro. 233 EC₅₀ is the concentration causing half-maximal effect determined in vitro. 234 Imax,u is the maximal unbound plasma concentration of the interacting drug.* 235 236 *Considering uncertainties in the protein binding measurements, the unbound fraction in plasma should be set to 1% 237 (fraction unbound in the plasma $(f_{u,p}) = 0.01$) if experimentally determined to be < 1%. 238 239 **Basic kinetic model**: To use this method, the sponsor should calculate the ratio of 240 • victim drug AUC in the presence and absence of an inducer (R₃) as described in Figure 4. 241 242 243

Draft – Not for Implementation

Figure 4: An Equation to Calculate the Predicted Ratio of the Victim Drug's AUC in the Presence and Absence of an Inducer for Basic Models of Induction

247 $R_3 = 1 / [1 + (d \times E_{max} \times 10 \times I_{max,u}) / (EC_{50} + (10 \times I_{max,u}))]$

R₃ is the predicted ratio of the victim drug's AUC in the presence and absence of an inducer for basic models ofenzyme induction.

d is the scaling factor and is assumed to be 1 unless supported by prior experience with the system used.

252 **E**_{max} is the maximum induction effect determined in vitro.

253 Imax,u is the maximal unbound plasma concentration of the interacting drug.*

254 **EC**₅₀ is the concentration causing half-maximal effect determined in vitro.

*Considering uncertainties in the protein binding measurements, the unbound fraction should be set to 1% if experimentally determined to be <1%.

259 If any of these methods indicates that the investigational drug has the potential to induce 260 metabolizing enzymes (using specific cutoff values developed by individual laboratories for 261 Methods 1 and 2 or if $R_3 \le 0.8$), the sponsor should further investigate the enzyme induction 262 potential of the investigational drug by using mechanistic models (see the appendix, section 263 264 VII.C) or by conducting a clinical DDI study with a sensitive index substrate. If the predicted AUCR of a sensitive index substrate in the presence and absence of an investigational drug is \leq 265 0.8 based on static mechanistic models or dynamic mechanistic models (e.g., PBPK models; see 266 appendix, section VII.C), the sponsor should further investigate potential DDIs by conducting a 267 clinical DDI study using a sensitive index substrate. 268 269

270 When static mechanistic models or dynamic mechanistic models (e.g., PBPK models; see

appendix, section VII.C) are used for predicting DDIs caused by enzyme induction, the models
should include the induction mechanism only (i.e., the model should not include concurrent
inhibition predictions for an investigational drug that is hypothesized to be both an inducer and
inhibitor) to definitively assess the potential of an investigational drug to induce metabolizing
enzymes.

276

246

248

255 256

257

258

277 278

3. Additional Considerations

The AUCR cutoffs of > 0.8 (for induction) and < 1.25 (for inhibition) using mechanistic models are the suggested default values to indicate that the investigational drug has no effect on the levels of metabolizing enzymes.

- 282
- When evaluating whether an investigational drug is an inhibitor of multiple CYP enzymes, the sponsor can prioritize in vivo DDI evaluations for various CYP enzymes with sensitive index substrates of respective pathways (see the FDA's draft guidance for industry *Clinical Drug*

Draft – Not for Implementation

Interaction Studies — Study Design, Data Analysis, and Clinical Implications⁶) based on rank-286 ordered R₁, R₂, or the predicted AUCR values, preferably using the in vitro inhibition parameters 287 obtained in the same study.⁷ That is, the sponsor may first carry out an in vivo study with a 288 sensitive index substrate of the CYP with the largest R or AUCR value. If this in vivo study 289 shows no interaction, in vivo evaluations of other CYPs with lower potencies (e.g., smaller R or 290 291 AUCR) are not needed. However, if this in vivo study shows a positive interaction between the drug and the sensitive index CYP substrate, the sponsor should conduct additional in vivo studies 292 for other CYPs, starting with the CYP with the next largest R or AUCR value. Alternatively, the 293 294 sponsor can use a PBPK model to inform the need for the conduct of additional studies. The sponsor should verify and update any PBPK models to demonstrate that the model can 295 296 adequately describe the observed findings from the first in vivo study with a sensitive index 297 substrate.

- 298
- 299 300

IV. EVALUATING TRANSPORTER-MEDIATED DRUG INTERACTIONS

301

Membrane transporters can have clinically relevant effects on the pharmacokinetics and 302 pharmacodynamics of a drug in various organs and tissues by controlling its absorption, 303 distribution, and elimination (Giacomini, Huang, et al. 2010; Giacomini and Huang 2013). In 304 contrast to drug metabolizing enzymes that are largely expressed in the liver and small intestines, 305 transporters are expressed in tissues throughout the human body and govern the access of 306 endogenous and exogenous substances to various sites in the body. Transporters, in concert with 307 metabolizing enzymes, can govern a drug's disposition and pharmacological action. Conversely, 308 a drug can also modulate transporter expression or activity, resulting in altered disposition of 309 endogenous (e.g., creatinine, glucose) or exogenous substances. 310 311 Several transporters interact with drugs in clinical use (Giacomini, Huang, et al. 2010; Giacomini 312 and Huang 2013), for example: 313

314 315

316

- P-glycoprotein (P-gp or Multi-drug Resistance 1 (MDR1) protein)
- Breast cancer resistance protein (BCRP)
- Organic anion transporting polypeptide 1B1/1B3 (OATP1B1/OATP1B3)
- Organic anion transporter 1/3 (OAT1/OAT3)
- Multidrug and toxin extrusion (MATE) proteins
- Organic cation transporter 2 (OCT2)

⁶ When final, this guidance will represent the FDA's current thinking on this topic.

 $^{^{7}}$ An orally administered drug may inhibit intestinal metabolic enzymes (e.g., CYP3A) in addition to hepatic enzymes. Therefore, in vivo DDI for CYP3A inhibition needs to be considered if $R_{1,gut}$ is greater than or equal to 11, even if R_1 for CYP3A is not the largest value among the major CYPs evaluated.

321					
322	The consequence of a drug interaction mediated by transporters may not be apparent if a clinical				
323	DDI study only measures systemic drug exposures. However, understanding whether the drug is				
324	a substrate or perpetrator (i.e., inhibitor or inducer) of these key transporters can explain some				
325	clinical consequences, such as increased toxicity or altered efficacy, that result from altered				
326	tissue distribution of a drug that is a substrate of a transporter.				
327					
328	This section focuses on transporters that have clinical evidence suggesting their involvement in				
329	drug interactions (Giacomini, Huang, et al. 2010; Brouwer, Keppler, et al. 2013; Giacomini and				
330	Huang 2013; Tweedie, Polli, et al. 2013; Zamek-Gliszczynski, Lee, et al. 2013). The sponsor				
331	should evaluate the interactions between investigational drugs acting as substrates and/or				
332	perpetrators of these transporters as outlined below. The timing of the in vitro evaluation of each				
333	transporter may vary depending on the therapeutic indications of the investigational drug. For				
334	example, if the intended population is likely to use statins, the sponsor should examine the				
335	potential of the investigational drug to interact with OATP1B1/1B3 before clinical studies in				
336	patients. If in vitro experiments indicate a low potential for an interaction between the				
337	transporter and investigational drug, subjects taking statins may be included in clinical studies to				
338	better represent the intended patient population.				
339					
340	A. Determining if the Investigational Drug is a Substrate of the Transporters P-				
341	gp and BCRP				
341 342	gp and BCRP				
341 342 343	P-gp and BCRP are expressed in various tissues including the gastrointestinal tract, liver, kidney,				
341342343344	P-gp and BCRP are expressed in various tissues including the gastrointestinal tract, liver, kidney, and brain. Thus, both transporters have the potential to impact the oral bioavailability, the tissue				
 341 342 343 344 345 	P-gp and BCRP P-gp and BCRP are expressed in various tissues including the gastrointestinal tract, liver, kidney, and brain. Thus, both transporters have the potential to impact the oral bioavailability, the tissue distribution, and the hepatic and renal elimination of substrates.				
 341 342 343 344 345 346 	P-gp and BCRP are expressed in various tissues including the gastrointestinal tract, liver, kidney, and brain. Thus, both transporters have the potential to impact the oral bioavailability, the tissue distribution, and the hepatic and renal elimination of substrates.				
 341 342 343 344 345 346 347 	 gp and BCRP P-gp and BCRP are expressed in various tissues including the gastrointestinal tract, liver, kidney, and brain. Thus, both transporters have the potential to impact the oral bioavailability, the tissue distribution, and the hepatic and renal elimination of substrates. <i>1. Conducting In Vitro Studies</i> 				
 341 342 343 344 345 346 347 348 	 gp and BCRP P-gp and BCRP are expressed in various tissues including the gastrointestinal tract, liver, kidney, and brain. Thus, both transporters have the potential to impact the oral bioavailability, the tissue distribution, and the hepatic and renal elimination of substrates. <i>1. Conducting In Vitro Studies</i> 				
 341 342 343 344 345 346 347 348 349 	gp and BCRPP-gp and BCRP are expressed in various tissues including the gastrointestinal tract, liver, kidney, and brain. Thus, both transporters have the potential to impact the oral bioavailability, the tissue distribution, and the hepatic and renal elimination of substrates.1.Conducting In Vitro StudiesSponsors should evaluate most investigational drugs in vitro to determine whether they are				
341 342 343 344 345 346 347 348 349 350	gp and BCRPP-gp and BCRP are expressed in various tissues including the gastrointestinal tract, liver, kidney, and brain. Thus, both transporters have the potential to impact the oral bioavailability, the tissue distribution, and the hepatic and renal elimination of substrates.1.Conducting In Vitro StudiesSponsors should evaluate most investigational drugs in vitro to determine whether they are substrates of P-gp and BCRP using the experimental systems described in the appendix, section				
 341 342 343 344 345 346 347 348 349 350 351 	gp and BCRPP-gp and BCRP are expressed in various tissues including the gastrointestinal tract, liver, kidney, and brain. Thus, both transporters have the potential to impact the oral bioavailability, the tissue distribution, and the hepatic and renal elimination of substrates.1.Conducting In Vitro StudiesSponsors should evaluate most investigational drugs in vitro to determine whether they are substrates of P-gp and BCRP using the experimental systems described in the appendix, section VII.B. P-gp and BCRP are not expected to impact the oral bioavailability of highly permeable				
 341 342 343 344 345 346 347 348 349 350 351 352 	gp and BCRPP-gp and BCRP are expressed in various tissues including the gastrointestinal tract, liver, kidney, and brain. Thus, both transporters have the potential to impact the oral bioavailability, the tissue distribution, and the hepatic and renal elimination of substrates.1.Conducting In Vitro StudiesSponsors should evaluate most investigational drugs in vitro to determine whether they are substrates of P-gp and BCRP using the experimental systems described in the appendix, section VII.B. P-gp and BCRP are not expected to impact the oral bioavailability of highly permeable and highly soluble drugs. In vitro assessment of these drugs as P-gp or BCRP substrates is not				
341 342 343 344 345 346 347 348 349 350 351 352 353	 P-gp and BCRP P-gp and BCRP are expressed in various tissues including the gastrointestinal tract, liver, kidney, and brain. Thus, both transporters have the potential to impact the oral bioavailability, the tissue distribution, and the hepatic and renal elimination of substrates. <i>1.</i> Conducting In Vitro Studies Sponsors should evaluate most investigational drugs in vitro to determine whether they are substrates of P-gp and BCRP using the experimental systems described in the appendix, section VII.B. P-gp and BCRP are not expected to impact the oral bioavailability of highly permeable and highly soluble drugs. In vitro assessment of these drugs as P-gp or BCRP substrates is not suggested unless there are potential safety concerns with the drug distributing into tissues (e.g., 				
 341 342 343 344 345 346 347 348 349 350 351 352 353 354 	 P-gp and BCRP are expressed in various tissues including the gastrointestinal tract, liver, kidney, and brain. Thus, both transporters have the potential to impact the oral bioavailability, the tissue distribution, and the hepatic and renal elimination of substrates. <i>I.</i> Conducting In Vitro Studies Sponsors should evaluate most investigational drugs in vitro to determine whether they are substrates of P-gp and BCRP using the experimental systems described in the appendix, section VII.B. P-gp and BCRP are not expected to impact the oral bioavailability of highly permeable and highly soluble drugs. In vitro assessment of these drugs as P-gp or BCRP substrates is not suggested unless there are potential safety concerns with the drug distributing into tissues (e.g., the kidney and brain). See the FDA's guidance for industry entitled <i>Waiver of In Vivo</i> 				
 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 	 gp and BCRP P-gp and BCRP are expressed in various tissues including the gastrointestinal tract, liver, kidney, and brain. Thus, both transporters have the potential to impact the oral bioavailability, the tissue distribution, and the hepatic and renal elimination of substrates. <i>1. Conducting In Vitro Studies</i> Sponsors should evaluate most investigational drugs in vitro to determine whether they are substrates of P-gp and BCRP using the experimental systems described in the appendix, section VII.B. P-gp and BCRP are not expected to impact the oral bioavailability of highly permeable and highly soluble drugs. In vitro assessment of these drugs as P-gp or BCRP substrates is not suggested unless there are potential safety concerns with the drug distributing into tissues (e.g., the kidney and brain). See the FDA's guidance for industry entitled <i>Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms</i> 				
 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 	 P-gp and BCRP P-gp and BCRP are expressed in various tissues including the gastrointestinal tract, liver, kidney, and brain. Thus, both transporters have the potential to impact the oral bioavailability, the tissue distribution, and the hepatic and renal elimination of substrates. <i>Conducting In Vitro Studies</i> Sponsors should evaluate most investigational drugs in vitro to determine whether they are substrates of P-gp and BCRP using the experimental systems described in the appendix, section VII.B. P-gp and BCRP are not expected to impact the oral bioavailability of highly permeable and highly soluble drugs. In vitro assessment of these drugs as P-gp or BCRP substrates is not suggested unless there are potential safety concerns with the drug distributing into tissues (e.g., the kidney and brain). See the FDA's guidance for industry entitled <i>Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System⁸ to determine if the investigational drug can</i> 				
 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 	 gp and BCRP P-gp and BCRP are expressed in various tissues including the gastrointestinal tract, liver, kidney, and brain. Thus, both transporters have the potential to impact the oral bioavailability, the tissue distribution, and the hepatic and renal elimination of substrates. <i>1. Conducting In Vitro Studies</i> Sponsors should evaluate most investigational drugs in vitro to determine whether they are substrates of P-gp and BCRP using the experimental systems described in the appendix, section VII.B. P-gp and BCRP are not expected to impact the oral bioavailability of highly permeable and highly soluble drugs. In vitro assessment of these drugs as P-gp or BCRP substrates is not suggested unless there are potential safety concerns with the drug distributing into tissues (e.g., the kidney and brain). See the FDA's guidance for industry entitled <i>Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System⁸ to determine if the investigational drug can be classified as highly permeable and/or highly soluble (e.g., biopharmaceutics classification</i> 				
 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 	 gp and BCRP P-gp and BCRP are expressed in various tissues including the gastrointestinal tract, liver, kidney, and brain. Thus, both transporters have the potential to impact the oral bioavailability, the tissue distribution, and the hepatic and renal elimination of substrates. <i>1. Conducting In Vitro Studies</i> Sponsors should evaluate most investigational drugs in vitro to determine whether they are substrates of P-gp and BCRP using the experimental systems described in the appendix, section VII.B. P-gp and BCRP are not expected to impact the oral bioavailability of highly permeable and highly soluble drugs. In vitro assessment of these drugs as P-gp or BCRP substrates is not suggested unless there are potential safety concerns with the drug distributing into tissues (e.g., the kidney and brain). See the FDA's guidance for industry entitled <i>Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System</i>⁸ to determine if the investigational drug can be classified as highly permeable and/or highly soluble (e.g., biopharmaceutics classification system class 1 drugs). 				
 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 	 gp and BCRP P-gp and BCRP are expressed in various tissues including the gastrointestinal tract, liver, kidney, and brain. Thus, both transporters have the potential to impact the oral bioavailability, the tissue distribution, and the hepatic and renal elimination of substrates. <i>1. Conducting In Vitro Studies</i> Sponsors should evaluate most investigational drugs in vitro to determine whether they are substrates of P-gp and BCRP using the experimental systems described in the appendix, section VII.B. P-gp and BCRP are not expected to impact the oral bioavailability of highly permeable and highly soluble drugs. In vitro assessment of these drugs as P-gp or BCRP substrates is not suggested unless there are potential safety concerns with the drug distributing into tissues (e.g., the kidney and brain). See the FDA's guidance for industry entitled <i>Waiver of In Vivo</i> <i>Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms</i> <i>Based on a Biopharmaceutics Classification System</i>⁸ to determine if the investigational drug can be classified as highly permeable and/or highly soluble (e.g., biopharmaceutics classification system class 1 drugs). 				

 $^{^{8}}$ When final, this guidance will represent the FDA's current thinking on this topic.

Draft – Not for Implementation

360	2.	Data Analysis and Interpretation
361		
362	The followi	ng results suggest that an investigational drug is an in vitro P-gp substrate:
363		
364	• A ne	et flux ratio (or efflux ratio (ER)) of ≥ 2 for an investigational drug in cells that
365	expr	ess P-gp (e.g., Caco-2 cells or other cells overexpressing P-gp) ⁹
366		
367	• A fl	ax that is inhibited by at least one known P-gp inhibitor at a concentration at least 10
368	time	s its K_i (e.g., the ER decreases to < 50% of the ER in the absence of inhibitor or the
369	flux	reduced to unity).
370		
371	When using	Caco-2 cells that express multiple efflux transporters, the sponsor should use more
372	than one P-g	gp inhibitor to determine the specificity of the efflux. The sponsor may use a net flux
373	ratio cutoff	other than 2 or a specific relative ratio to positive controls if prior experience with
374	the cell syst	em justifies these alternative methods.
375		
376 277	If in vitro st	udies indicate that a drug is a P-gp substrate, the sponsor should consider whether to
378	concomitan	t medications that are known P-gn inhibitors in the indicated patient population (see
379	the FDA's d	raft guidance for industry entitled <i>Clinical Drug Interaction Studies</i> — Study Design
380	Data Analy	sis and Clinical Implications ¹⁰)
381	Dala Inaly	
382	The sponsor	may also use the above procedures to determine whether the drug is a BCRP
383	substrate by	using known BCRP inhibitors. If in vitro studies indicate that a drug is a BCRP
384	substrate. th	e sponsor should consider whether to conduct an in vivo study based on the drug's
385	safety marg	in, therapeutic index, and likely concomitant medications that are known BCRP
386	inhibitors in	the indicated patient population (see the FDA's draft guidance for industry entitled
387	Clinical Dr	ug Interaction Studies — Study Design, Data Analysis, and Clinical Implications ¹¹).
388		
389	В.	Determining if the Investigational Drug is a Substrate of the Hepatic
390		Transporters OATP1B1 and OATP1B3
391		
392	OATP1B1 :	and OATP1B3 are key uptake transporters expressed on the sinusoidal membrane of

OATP1B1 and OATP1B3 are key uptake transporters expressed on the sinusoidal membrane of
 hepatocytes and play an important role in the hepatic uptake of various drugs.

⁹ The ER can be calculated as the ratio of the basal to apical (B-A) transport rate to the apical to basal (A-B) transport rate. The net flux ratio can be calculated as the ratio of the ER between cells expressing the transporter of interest to cells not expressing the transporter.

¹⁰ When final, this guidance will represent the FDA's current thinking on this topic.

¹¹ When final, this guidance will represent the FDA's current thinking on this topic.

394	
395	1. Conducting In Vitro Studies
396	
397	If in vitro studies or human/animal absorption, distribution, metabolism, and/or excretion
398	(ADME) data suggest that an investigational drug's hepatic uptake or elimination is significant
399	(i.e., the drug's clearance through hepatic metabolism or biliary secretion is $\geq 25\%$ of the total
400	drug's clearance), or the drug's uptake into the liver is clinically important (e.g., for
401	biotransformation or to exert a pharmacological effect), the sponsor should evaluate the
402	investigational drug in vitro to determine whether it is a substrate for the hepatic uptake
403	transporters OATP1B1 and OATP1B3 (see the appendix, section VII.B).
404	
405	2. Data Analysis and Interpretation
406	
407	An investigational drug is considered an in vitro substrate for OATP1B1 or OATP1B3 if: (1) the
408	uptake of the drug in OATP1B1- or OATP1B3-transfected cells is \geq 2-fold of the drug's uptake
409	in empty vector-transfected cells; and (2) a known inhibitor (e.g., rifampin) can decrease the
410	drug's uptake to $\leq 50\%$ at a concentration at least 10 times that of the K _i or IC ₅₀ . The sponsor
411	may justify alternative cutoff ratios based on its prior experience with the cell system.
412	
413	If in vitro studies indicate that a drug is an OATP1B1 or OATP1B3 substrate, the sponsor should
414	consider whether to conduct an in vivo study based on the drug's safety margin, therapeutic
415	index, and likely co-medications that are known OATP1B1 or OATP1B3 inhibitors in the
416	indicated patient populations (see the FDA's draft guidance for industry entitled <i>Clinical Drug</i>
417	Interaction Studies — Study Design, Data Analysis, and Clinical Implications ¹²).
418	
419	C. Determining if the Investigational Drug is a Substrate of the Renal
420	Transporters OAT, OCT, and MATE
421	
422	OATI, OAT3, and OCT2 are renal transporters expressed on the basolateral membrane of the
423	renal proximal tubule. MATE1 and MATE2-K are expressed on the brush border membrane.
424	All of the aforementioned renal transporters can play a role in the active renal secretion of
425	investigational drugs.
426	1 Conducting In Viters Studies
427	1. Conducting in vitro Studies
428	If the investigational drug's ADME data suggest that active renal secretion is significant for a
429 130	In the investigational utug S ADIVIL data suggest that active reliai secretion is Significant 101 a $drug (i.e., active secretion of the parent drug by the kidney is > 25% of the total closerance), the$
430	und (i.e., active secretion of the parent und by the Kinney is $\geq 25\%$ of the total clearance), the
431	sponsor should evaluate the drug in vitro to determine whether it is a substrate of OAT 1/3, OCT2

¹² When final, this guidance will represent the FDA's current thinking on this topic.

and MA calculat	ATEI	and MATE2-K (see appendix, section VII.B). See Figure 5 for the equation to tive secretion.
Figure	5: A	n Equation to Calculate Active Secretion*
Active	secre	etion = $CL_r - (f_{u,p} \times GFR)$
Cl r is the	e renal	clearance.
GFR is t	he old	und fraction in plasma.
OF K 15 (ine gre	
*This eq normal r	uatior enal f	is valid assuming that there is no re-absorption. The GFR is set as 125 mL/min for subjects with unction if the GFR is not measured.
	2.	Data Analysis and Interpretation
uptake the tran IC_{50} . T system.	in co ispor The sp	ntrol cells (or cells containing an empty vector) is ≥ 2 ; and (2) a known inhibitor of ter decreases the drug's uptake to $\leq 50\%$ at a concentration at least 10 times its K _i or ponsor may justify alternative cutoff ratios based on its prior experience with the cel
If in vit sponsor therape transpo entitled <i>Implica</i>	tro st r sho putic i prters l <i>Clin</i> utions	udies indicate that a drug is a substrate of one or more of these renal transporters, the uld consider whether to conduct an in vivo study based on the drug's safety margin, index, and likely concomitant medications that are known inhibitors of these renal in the indicated patient populations (see the FDA's draft guidance for industry <i>bical Drug Interaction Studies — Study Design, Data Analysis, and Clinical</i> S^{13}).
	D.	Determining if the Investigational Drug is an Inhibitor of a Transporter
	1	Conducting In Vitno Studios
	1.	Conducting In VIITO Studies
The sp	าทรุกฯ	should conduct in vitro studies to evaluate whether an investigational drug is an
inhihito	or of	P-gn BCRP OATP1B1 OATP1B3 OCT2 MATEs (MATE-1 MATE-2K) OAT1
and OA	T3(see appendix, section VII.B for considerations regarding in vitro systems)
		see appending is even with the considerations regurating in vitro systems).
	2.	Data Analysis and Interpretation
		· 1

 $^{^{\}rm 13}$ When final, this guidance will represent the FDA's current thinking on this topic.

Draft – Not for Implementation

P-gp and BCRP: The sponsor should conduct studies to determine if an investigational drug 473 inhibits the net flux of a known P-gp or BCRP substrate in Caco-2, P-gp- or BCRP-474 overexpressed cells and determine the drug's inhibition potency (i.e., IC₅₀ or K_i). The 475 investigational drug has the potential to inhibit P-gp or BCRP in vivo if the investigational drug 476 is administered orally, and the $I_{gut}/IC_{50} \ge 10$ where $I_{gut} = dose of inhibitor/250 mL$. To determine 477 the IC₅₀, a unidirectional assay based on the probe substrate can also be considered. This cutoff 478 value is based on a limited dataset (Zhang, Zhang, et al. 2008; Tachibana, Kato, et al. 2009; 479 Agarwal, Arya, et al. 2013; Ellens, Deng, et al. 2013). The sponsor may calibrate its internal in 480 481 vitro systems with known inhibitors and non-inhibitors and propose a different cutoff value with proper justification (see appendix, section VII.B for detailed recommendations). 482 483 If in vitro studies indicate that a drug is a P-gp or BCRP inhibitor, the sponsor should consider 484 whether to conduct an in vivo study based on likely concomitant medications that are known P-485 gp or BCRP substrates in the indicated patient populations (see the FDA's draft guidance for 486 487 industry entitled Clinical Drug Interaction Studies — Study Design, Data Analysis, and Clinical *Implications*¹⁴). 488 489 **OATP1B1 and OATP1B3**: The sponsor should conduct studies to determine the inhibition 490 potency (i.e., IC₅₀ or K_i) of the investigational drug on the uptake of a known OATP1B1 or 491 OATP1B3 substrate in cells overexpressing the relevant transporter. Because some known 492 OATP1B1/3 inhibitors demonstrate time-dependent inhibition, the sponsor should determine 493 IC_{50} values following pre-incubation with the investigational drug for a minimum of 30 minutes 494 (Amundsen, Christensen, et al. 2010; Gertz, Cartwright, et al. 2013; Izumi, Nozaki, et al. 2015). 495 The investigational drug has the potential to inhibit OATP1B1/3 in vivo if the R value (as 496 described in Figure 6 below) is > 1.1. 497 498 Figure 6: Equation to Calculate the Predicted Ratio of the Victim Drug AUC in the 499 Presence and Absence of the Investigational Drug to Determine the Potential to Inhibit 500 **OATP1B1/3*** 501 502 503 $R=1+((f_{u,p} \times I_{in,max})/IC_{50}) \ge 1.1$ 504 505 **R** is the predicted ratio of the victim drug's AUC in the presence and absence of the investigational drug as the 506 inhibitor. $\mathbf{f}_{u,p}$ is the unbound fraction in plasma. 507 IC₅₀ is the half-maximal inhibitory concentration. 508 Jin,max is the estimated maximum plasma inhibitor concentration at the inlet to the liver. It is calculated as: 509 510 511 $I_{in,max} = (I_{max} + (F_aF_g \times k_a \times Dose))/Q_h/R_B$ Continued 512

¹⁴ When final, this guidance will represent the FDA's current thinking on this topic.

Draft – Not for Implementation

Figure 6 continued. Equation to Calculate the Predicted Ratio of the Victim Drug AUC in the Presence and Absence of the Investigational Drug to Determine the Potential to Inhibit OATP1B1/3*

516	
517	$\mathbf{F}_{\mathbf{a}}$ is the fraction absorbed.
518	$\mathbf{F}_{\mathbf{g}}$ is the intestinal availability.
519	\mathbf{k}_{a} is the absorption rate constant.
520 521	$\mathbf{Q}_{\mathbf{h}}$ is the blood to plasma concentration ratio
522	R is the blood-to-plasma concentration ratio.
523	*If unknown, $F_aF_g = 1$ and $k_a = 0.1/min$ can be used as a worst-case estimate.
524	Considering uncertainties in the protein binding measurements, the unbound fraction $(f_{u,p})$ should be set to 1% if
525	experimentally determined to be less than 1%.
526	
527	
528	The cutoff value described in Figure 6 is based on limited published data (Yoshida, Maeda, et al.
529	2012; Tweedie, Polli, et al. 2013; Vaidyanathan, Yoshida, et al. 2016). Sponsors may calibrate
530	their internal in vitro systems with known inhibitors and non-inhibitors of these transporter
531	systems and propose a specific cutoff value with proper justification.
532	
533	If in vitro studies indicate that a drug is an OATP1B1 or OATP1B3 inhibitor, the sponsor should
534	consider whether to conduct an in vivo study based on whether the likely concomitant
535	medications used in the indicated patient populations are known OATP1B1or OATP1B3
536	substrates (see the FDA's draft guidance for industry entitled <i>Clinical Drug Interaction Studies</i>
537	— Study Design, Data Analysis, and Clinical Implications ¹⁵).
538	
539	OAT, OCT, and MATE : Sponsors should conduct studies to determine the inhibition potency
540	(i.e., IC_{50} or K_i) of the investigational drug on the uptake of a known substrate for renal
541	transporters (i.e., OAT1, OAT3, OCT2, MATE1, and MATE2K) in cells overexpressing these
542	transporters. The investigational drug has the potential to inhibit these transporters in vivo if the
543	$I_{max,u}/IC_{50}$ value is ≥ 0.1 for OAT1/OAT3/OCT2 or the $I_{max,u}/IC_{50}$ value is ≥ 0.02 for MATEs. ¹⁶
544	These cutoff values are based on limited data (Dong, Yang, et al. 2016a; Dong, Yang, et al.
545	2016b). Sponsors may calibrate their unique in vitro systems with known inhibitors and non-
546	inhibitors of these transporter systems and propose a different cutoff value with proper
547	justification. Creatinine is also a substrate for OCT2, MATEs, and OAT2 (Lepist, Zhang, et al.
548	2014). Elevated serum creatinine levels in observed in clinical studies could be due to inhibition
549	of these transporters by the investigational drug. Confirmation of the mechanism of an increase
550	in serum creatinine with the investigational drug requires additional evidence such as clinical

¹⁵ When final, this guidance will represent the FDA's current thinking on this topic.

¹⁶ Considering uncertainties in the protein binding measurements, the unbound fraction should be set to 1% if experimentally determined to be less than 1%.

Draft – Not for Implementation

mechanistic studies. 551

552

553 If in vitro studies indicate that a drug is an inhibitor of these renal transporters, the sponsor should consider whether to conduct an in vivo study based on whether the likely concomitant 554 medications used in the indicated patient populations are known substrates of these renal 555 transporters (see the FDA's draft guidance for industry entitled Clinical Drug Interaction Studies 556 — Study Design, Data Analysis, and Clinical Implications¹⁷). 557

558 559

E. Determining if the Investigational Drug is an Inducer of a Transporter

560 Certain transporters such as P-gp are induced through mechanisms similar to those for CYP 561 enzymes (e.g., by activation of specific nuclear receptors). Because of these similarities, 562 information from CYP3A induction studies can inform P-gp induction studies (see the FDA's 563 draft guidance for industry entitled *Clinical Drug Interaction Studies* — *Study Design, Data* 564 Analysis, and Clinical Implications¹⁸). However, in vitro methods to evaluate the induction of P-565 gp and other transporters are not well established at this time. Therefore, the FDA does not 566 currently recommend in vitro evaluation of investigational drugs as transporter inducers. 567 568

- 569
- 570

V. **EVALUATION OF THE DDI POTENTIAL OF METABOLITES**

571 Sponsors should evaluate the DDI potential of an investigational drug's metabolites for their 572 impact on the drug's safety and efficacy using a risk-based assessment that considers safety 573 margins, likely concomitant medications, and therapeutic indications. 574

575

A metabolite with significant plasma exposure or pharmacological activities may need to be 576 evaluated for its DDI potential as a substrate or as an inhibitor of metabolizing enzymes (see 577 sections V.A and V.B below). In vitro studies normally use a synthesized or purified metabolite 578 standard or radiolabeled drug. Alternative methods are acceptable if the sponsor can justify that 579 the DDI potential of the metabolites can be adequately assessed (Callegari, Kalgutkar, et al. 580 2013; Yu and Tweedie 2013; Yu, Balani, et al. 2015). 581

582

Published data have shown that some Phase II metabolites can be better substrates (more polar 583 than the parent) or inhibitors of various transporters leading to a higher chance of DDIs than the 584 parent drug (Zamek-Gliszczynski et al, 2014). Therefore the DDI potential of a metabolite as a 585 substrate or a perpetrator of major drug transporters should be assessed on a case-by-case basis. 586 The same principles and strategies mentioned above for parent drug should be applied where

587

¹⁷ When final, this guidance will represent the FDA's current thinking on this topic.

¹⁸ When final, this guidance will represent the FDA's current thinking on this topic.

588	applicable.	
589		
590	А.	Metabolite as a Substrate
591		
592	1.	Conducting In Vitro Studies
593		
594	The sponsor	should evaluate the potential for a metabolite to cause DDIs by acting as a substrate
595 596	of metabolizi	ng enzymes if the metabolite: (1) is active (i.e., has the potential to affect safety or d on in vitro pharmacology and toxicology assessments): and (2) contributes to \geq
597	50% of the or	we call activity considering both in vitro recentor potency and in vivo exposure
598	5070 Of the 0	veran activity, considering both in vito receptor potency and in vivo exposure.
599	2	Data Analysis and Interpretation
600	2.	
601	The sponsor	should consider in vivo DDI studies of the metabolite based on in vitro assessments
602	using the sam	the strategies as those for the parent drugs (see section III.A).
603		
604	В.	Metabolite as an Inhibitor
605		
606	1.	Conducting In Vitro Studies
607		
608	If in vitro ass	essments suggest that the parent drug inhibits major CYP enzymes and transporters
609	and in vivo D	DDI studies are warranted, in vitro assessments of metabolites as enzyme or
610	transporter in	hibitors may not be needed because the in vivo inhibition potential of metabolites
611	would be eva	luated in vivo along with the parent drug, unless clinically relevant exposures of the
612	metabolite ca	nnot be adequately represented in the in vivo DDI study (i.e., the study duration
613	does not allo	w the metabolite to accumulate). However, if in vitro assessments suggest that the
614	parent drug a	lone will not inhibit major CYP enzymes or transporters, in vivo DDIs caused by
615	metabolites n	nay still be possible. In this situation, the sponsor should evaluate the in vitro
616	inhibition po	tential of a metabolite on CYP enzymes taking into account the following factors:
617	(1) the system	nic exposure of the metabolite relative to the parent drug; and (2) any structural
618	alerts, such a	s Quantitative Structure-Activity Relationship (QSAR) for potential time-dependent
619	inhibition (Y	u and Tweedie 2013; Yu, Balani, et al. 2015). Additional considerations are
620	discussed in o	detail below:
621		
622	• The s	ponsor should conduct an in vitro inhibition study of the metabolite if a metabolite
623	is less	s polar than the parent drug and the AUC _{metabolite} $\geq 25\% \times \text{the AUC}_{\text{parent}}$ (i.e.,
624	AUC	$netabolite \ge 0.25 \times AUC_{parent}$).
625		
626	• The s	ponsor should conduct an in vitro inhibition study of the metabolite if a metabolite
627	is mo	re polar than the parent drug, and the AUC _{metabolite} $\geq 100\% \times AUC_{parent}$ (i.e.,
628	AUC	$metabolite \ge AUC_{parent}$).
629		

630 631 632 633 634 635 636	•	The sponsor should conduct an in vitro inhibition study of the metabolite on CYP enzymes if a metabolite with a structural alert for TDI has an AUC _{metabolite} $\geq 25\% \times$ the AUC _{parent} and an AUC _{metabolite} $\geq 10\% \times$ the AUC of the total drugs (determined with radioactivity). If there are no radioactivity data but the AUC _{metabolite} $\geq 25\% \times$ the AUC _{parent} , then the sponsor should conduct an in vitro DDI assessment with the metabolite.
637 (28		2. Data Analysis and Interpretation
038 639	Based	on the results of in vitro DDI assessments of the metabolite, the sponsor should consider
640	an in v	vivo DDI study of the metabolite using the same strategies as those for the parent drug (see
641	sectio	n III.B).
642		
643		
644	VI.	LABELING RECOMMENDATIONS
645	D	
646	for the	sets and affective use of the drug product by the health care provider and must be based
047 648	on dat	ta derived from human experience whenever possible ¹⁹ In the absence of clinical
649	inforn	nation, the sponsor should include in vitro information regarding the characterization of
650	metab	olic and transporter pathways as well as PK interactions between the drug and other
651	prescr	iption drugs, over-the-counter drugs, classes of drugs, dietary supplements, and foods or
652	juices	(including inhibition, induction, and genetic characteristics) in prescription drug labeling,
653	if clin	ically significant. In addition, the results of pertinent in vitro studies that establish the
654	absen	ce of an effect must be included. ²⁰ In vitro information that has been superseded by
655	clinica	al information should not be included in the prescription drug labeling unless it is essential
656	to und	lerstanding the clinical results.
657 658	This is	n vitro information should generally be placed under the 12.3 Pharmacohinatics subsection
659	of the	CLINICAL PHARMACOLOGY section In rare cases the clinical significance of the in
660	vitro i	nformation may require placement in other sections of the prescription drug labeling (e.g.,
661	BOXE	ED WARNING, CONTRAINDICATIONS, WARNINGS AND PRECAUTIONS, and/or
662	DRU	G INTERACTIONS sections).
663		
664	See th	e following FDA guidances for industry for labeling recommendations relevant to drug
665	metab	olism and transporter pathways as well as clinical DDIs:
666		

¹⁹ 21 CFR 201.56(a)(3).

²⁰ 21 CFR 201.57(c)(13)(c)(i)(C).

Draft – Not for Implementation

667 668	•	Clinical Pharmacology Labeling for Human Prescription Drug and Biological Products — Considerations, Content, and Format ²¹
669		
670	•	Clinical Drug Interaction Studies — Study Design, Data Analysis, and Clinical
671		Implications ²²
672		

²¹ This guidance is available on the FDA Drugs guidance Web page at http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm

 $^{^{22}}$ When final, this guidance will represent the FDA's current thinking on this topic.

Draft – Not for Implementation

673 VII. APPENDICES

674	
675	A. Evaluating Metabolism-Based Drug Interactions In Vitro
676	
677	Various hepatic in vitro systems can be used to evaluate the drug interaction potential of an
678	investigational drug, including:
679	
680	(1) Subcellular human liver tissue fractions such as reconstituted microsomal systems,
681	supernatants after 9000 g centrifugation of liver homogenate (S9), and cytosol (adding
682	appropriate co-factors as necessary)
683	
684	(2) Recombinant CYP enzymes in various expression systems that can identify the
685	production of individual drug metabolites and the involvement of certain classes of enzymes
686	
687	(3) Human liver tissues, including freshly prepared hepatocytes and cryopreserved
688	hepatocytes that preserve enzyme architecture and contain the full complement of Phase I
689	and Phase II drug metabolizing enzymes
690	
691	Although the main focus of this guidance is on CYP and hepatic metabolism, sponsors should
692	consider non-CYP, enzyme-based metabolism (e.g., Phase II enzymes) and metabolism
693	occurring in extra-hepatic tissues when relevant for their investigational drugs.
694	
695	1. Determining if the Investigational Drug is an Enzyme Substrate
696	
697	Drug metabolizing enzyme identification studies, often referred to as reaction phenotyping
698	studies, are a set of in vitro experiments that identify the specific enzymes responsible for the
699	metabolism of a drug. Along with other information (e.g., in vivo pharmacokinetics, enzyme
700	polymorphism of DDI data), in vitro phenotyping data are often used to quantify disposition
701	pathways of an investigational drug.
702	Conducting matchelic nathway identification synamicants
703	a. Conducting metabolic pathway identification experiments
704	Matchelic pathway identification experiments identify the number and structures of matchelites
705	produced by a drug and whether the metabolic pethways are percellal or sequential. These
700	experiments use intect human liver systems (e.g., human hepatocytes), human liver microsomes
707	or recombinant enzyme systems. Data obtained from metabolic nathway identification
700	experiments help to determine whether and how to conduct a reaction phenotyping study
710	experiments help to determine whether and now to conduct a reaction phenotyping study.
711	b Identifying the enzymes that metabolize an investigational drug
712	5. Identifying the enzymes that inclusionze an investigational drug
713	The sponsor should conduct in vitro experiments to identify specific metabolizing enzymes that
714	are involved in the metabolism of an investigational drug, preferably before first-in-human
715	studies. There are two widely used methods for identifying the individual CYP enzymes

 716 717 718 719 720 721 	responsible for a drug's metabolism: (1) the first method uses chemicals, drugs, or antibodies as specific enzyme inhibitors in pooled (e.g., a pool of more than 10 donors) human liver microsomes and (2) the second method uses individual human recombinant CYP enzymes. The sponsor should consider the following recommendations when performing reaction phenotyping experiments:
722 723 724	• The sponsor should use both methods to identify the specific enzymes responsible for a drug's metabolism.
725 726 727 728	• When using individual recombinant CYP enzymes, the sponsor should consider the difference in the amount of CYP contents between recombinant CYP enzyme systems and the human liver.
729 730 731 732 733	• The in vitro system for these studies should: (1) be robust and reproducible; and (2) include the necessary selective in vitro probe substrate as a positive control to prove the activity of each enzyme. A list of probe substrates can be found on the FDA's Web site on Drug Development and Drug Interactions. ²³
734 735 736 737 738 739	• Whenever possible, the sponsor should conduct all experiments with drug concentrations deemed appropriate by kinetic experiments and under initial rate conditions (linearity of metabolite production rates with respect to time and enzyme concentrations). The sponsor should conduct an adequate number of replicates (e.g., three or more replicates per drug concentration) in a single study.
740 741 742 743 744 745	• When conducting an in vitro study to examine the contribution of individual CYP enzymes to the overall metabolism of an investigational drug, the measurement of parent drug depletion is preferred over the measurement of metabolite formation, unless all of the major metabolites have been identified and quantified in metabolite formation experiments.
746 747 748 749	• When conducting in vitro studies to examine the contribution of individual CYP enzymes to the formation of a specific metabolite, the sponsor should measure the formation rate of the metabolite.
750 751 752	• The sponsor should develop validated and reproducible analytical methods to measure levels of the parent drug and each metabolite.

²³ A list of probe substrates: https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm0 93664.htm#table1.

753 754 755 756	• The use of a radiolabeled drug substrate is advantageous because samples can be analyzed using liquid chromatography coupled with a radioactivity detector or a mass spectrometer to identify and quantify drug-related species.
757 758 759	• The sponsor should separately evaluate individual isomers of racemic drugs when it is important to understand the different disposition characteristics of each isomer (e.g., when two isomers have different pharmacological activities).
760 761 762 763 764 765 766	• Most chemical inhibitors are not specific for an individual CYP enzyme. The sponsor should verify the selectivity and potency of inhibitors in the same experimental conditions using probe substrates for each CYP enzyme. Commonly used in vitro CYP enzyme inhibitors can be found on the FDA's Web site on Drug Development and Drug Interactions. ²⁴
767 768 769 770 771	• The sponsor should test the inhibitory effect of an antibody to a CYP enzyme at sufficiently low and high concentrations to establish a titration curve and ensure the maximal inhibition of a particular pathway (ideally resulting in greater than 80 percent inhibition). The sponsor should verify the effect of an antibody using probe substrates of each CYP isoform and with the same experimental conditions.
772 773 774	2. Determining if the Investigational Drug is an Enzyme Inhibitor or Inducer
775 776	a. Conducting in vitro enzyme inhibition studies
777 778 779 780 781 782 783	The potential of an investigational drug to inhibit CYP enzymes is usually investigated in human liver tissue systems using probe substrates to determine the inhibition mechanisms (e.g., reversible or time-dependent inhibition) and inhibition potencies (e.g., K_i for reversible inhibition, and K_I and k_{inact} for time-dependent inhibition). The in vitro systems used for these studies include human liver microsomes, microsomes obtained from recombinant CYP-expression systems, or hepatocytes (Bjornsson, Callaghan, et al. 2003).
783 784 785 786 787	Kinetic data from in vitro inhibition studies of an investigational drug can be used in quantitative models to predict the investigational drug's effects on the pharmacokinetics of other drugs in humans. These analyses inform the decision on whether to conduct an in vivo DDI study using sensitive enzyme index substrates (see section III.B.2).
788 789	The sponsor should consider the following recommendations when designing an in vitro CYP

²⁴ Examples of in vitro selective inhibitors for P450-mediated metabolism: https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm0 93664.htm#table1-2

790 791	inhibition study:
792 793 794 795 796 797	• A probe substrate should be selective (e.g., predominantly metabolized by a single enzyme in pooled human liver microsomes or recombinant CYPs) and have simple metabolic schemes (ideally, the drug does not undergo sequential metabolism). Commonly used in vitro probe substrates and their marker reactions can be found on the FDA Web site on Drug Development and Drug Interactions. ²⁵
798 799 800	• The sponsor should use a validated and reproducible analytical assay to measure the formation of a probe substrate's metabolite.
 801 802 803 804 805 806 807 808 809 810 811 	• The in vitro system of choice for enzyme inhibition should be robust and reproducible and include the appropriate strong probe inhibitors as positive controls (see the FDA's Web site on Drug Development and Drug Interactions). ²⁶ Kinetic constants (K _i , IC ₅₀ , K _I , and/or k _{inact}) of the probe inhibitors should be comparable to literature-reported values. In vitro systems may be pooled human liver microsomes (e.g., pooled from more than 10 donors), pooled cryopreserved hepatocytes (e.g., pooled from more than 10 donors), or individual microsomes expressing recombinant CYP enzymes. To obtain inhibition parameters, the sponsor may consider primary hepatocytes enriched with human plasma as an in vitro system that represents physiological conditions (Lu, Miwa, et al. 2007; Mao, Mohutsky, et al. 2012).
812 813 814 815 816	• When used as an inhibitor, the investigational drug concentrations should generally be as high as possible to maximize the inhibition effect. However, the drug concentration should not exceed the drug's solubility limits or cause deleterious effects (e.g., cytotoxicity) in the cell models.
817 818 819 820	• The sponsor should test four to six different concentrations of the investigational drug with the probe substrate. The sponsor should first conduct experiments with a high concentration of test drug to study its inhibition potential on a particular enzyme (e.g., 50 times the unbound C_{max} , or 0.1 times the dose/250 mL). If the initial high concentration

²⁵ Examples of in vitro marker reactions for P450-mediated metabolism and in vitro selective inhibitors for P450mediated metabolism:

https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm093664.htm#table1

²⁶ Examples of in vitro selective inhibitors for P450-mediated metabolism:

https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm0 93664.htm#table1-2

821 822	of the test drug is able to inhibit a particular enzyme, the sponsor should test lower drug concentrations to calculate the drug's IC_{50} or K_i value.
823	
824	• Typical experiments to determine the IC ₅₀ value of a drug involve incubating the
825	substrate at a concentration at or below its K _m to more closely relate the inhibitor's IC ₅₀
826	to its K _i . For K _i determinations, the sponsor should vary both the substrate and inhibitor
827	concentrations to cover ranges above and below the substrate's K _m and the inhibitor's K _i .
828	
829	• Microsomal protein concentrations are usually less than 1 mg/mL. The sponsor should
830	correct for nonspecific binding during the incubation if this binding is expected to
831	influence the analysis of kinetic data. Nonspecific binding can be measured
832	experimentally (e.g., using equilibrium dialysis or ultrafiltration) (Hallifax and Houston
833	2006) or predicted using in silico methods (Gertz, Kilford, et al. 2008).
834	
835	• Because buffer strength, type, and pH can all significantly affect the determination of
836	V_{max} and K_m , the sponsor should use standardized assay conditions.
837	
838	• In general, the sponsor should avoid any significant depletion of the substrate or inhibitor.
839	However, when substrates have a low K _m , it may be difficult to avoid substrate depletion
840	at low substrate concentrations. In these circumstances, the sponsor should consider
841	substrate depletion when determining inhibition kinetics.
842	
843	• The sponsor should choose an incubation time and an enzyme amount that result in linear
844	formation of the metabolite (at an initial rate of the metabolite formation).
845	
846	• The sponsor should use any organic solvents at low concentrations (<1%
847	(volume/volume) and preferably $< 0.5\%$) because some solvents can inhibit or induce
848	enzymes. The experiment should include a no-solvent control and a solvent (vehicle)
849	control.
850	
851	• The sponsor should determine inhibition kinetics according to appropriate mechanisms
852	(e.g., competitive, noncompetitive, or TDI).
853	
854	• The sponsor should routinely study TDI in standard in vitro screening protocols by pre-
855	incubating the investigational drug (e.g., for at least 30 min) before adding any substrate.
856	Any significant time-dependent and co-factor-dependent (e.g., NADPH for CYPs) loss of
857	initial product formation may indicate TDI. In these circumstances, the sponsor should
858	conduct definitive in vitro studies to obtain TDI parameters (i.e., kinact and KI) (Grimm,
859	Einolf, et al. 2009).
860	
861	b. Evaluating enzyme induction in vitro
862	

Draft – Not for Implementation

863	The sponsor can investigate the potential of an investigational drug to act as an inducer of CYP
864	enzymes in plateable, cryopreserved or freshly isolated, human hepatocytes. Other, alternative in
865	vitro systems such as immortalized hepatic cell lines may be used and are acceptable methods to
866	determine the CYP induction potential of investigational drugs. Cell receptor assays may be
867	used, but the results from these studies are considered supportive, rather than definitive, in nature.
868	The sponsor should justify both why any alternative in vitro system is appropriate for the
869	purpose of the study as well as the method to interpret the data. Acceptable study endpoints
870	include mRNA levels and/or enzyme activity levels using a probe substrate (Fahmi and Ripp
871	2010; Einolf, Chen, et al. 2014). A major challenge of measuring only the enzyme's activity is
872	that the induction may be masked in the presence of concomitant inhibition. Transcriptional
873	analysis through the measurement of mRNA levels may address this challenge. Regardless of
874	which in vitro system and endpoint are chosen, the sponsor should validate the system to show
875	that all major CYP enzymes are functional and inducible with positive controls.
876	
877	When using in vitro systems to study enzyme induction, the sponsor should consider the
878	following recommendations:
879	
880	• The sponsor should evaluate the ability of an investigational drug to induce the major
881	CYPs, including CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, and CYP3A4/5.
882	
883	 The sponsor should individually evaluate CYP1A2, CYP2B6, and CYP3A4/5 first
884	because they are induced via different nuclear receptors.
885	
886	 Activation of a nuclear receptor, PXR, may lead to co-induction of CYP3A4/5 and
887	CYP2C enzymes. Thus, a negative in vitro result for CYP3A4/5 induction eliminates the
888	need for additional in vitro or in vivo induction studies for CYP3A4/5 and CYP2C
889	enzymes. If in vitro CYP3A4/5 induction results are positive, the sponsor should
890	evaluate the ability of the investigational drug to induce CYP2C8, CYP2C9, and
891	CYP2C19 either in vitro or in vivo.
892	
893	• The in vitro system of choice to evaluate enzyme induction should be robust and
894	reproducible and include appropriate clinical inducers and/or non-inducers as positive
895	and negative controls (see the FDA's Web site on Drug Development and Drug
896	Interactions). ²⁷ When applicable, the sponsor should conduct pilot experiments to
897	establish a test system (e.g., a particular lot of cryopreserved human hepatocytes) for

²⁷ For more information, see: https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm0 93664.htm.

Draft – Not for Implementation

898 899		routine studies of CYP induction (Fahmi, Kish et al. 2010; Fahmi and Ripp 2010; Einol Chen et al. 2014)	f,
900			
901	•	The sponsor should investigate drug concentrations that reflect the expected or observed	1
902	·	human plasma drug concentrations or intestinal drug concentrations (for CYP3A4/5)	L
903		Drug concentrations should span the range of therapeutic exposures. If the drug	
904		solubility permits this range of drug concentrations should include at least one drug	
905		concentration that is an order of magnitude greater than the maximum unbound steady-	
906		state plasma drug concentration in vivo. The sponsor should conduct three replicate	
907		experiments per drug concentration. The sponsor should measure the concentration of	
908		unbound test drug to help predict the magnitude of clinical DDIs.	
909		and the cost and g to help product and magnitude of chinese 2.2.15.	
910	•	The sponsor should use hepatocyte preparations from at least three donors. If the result	
911		from at least one donor's hepatocytes exceeds the predefined threshold, the sponsor	
912		should consider the drug an inducer in vitro and conduct a follow-up evaluation.	
913			
914	•	The sponsor should demonstrate that the experimental approach is capable of identifying	σ
915		the absence and presence of the investigational drug's induction potential and avoids	>
916		false negative predictions with the selected system and endpoints.	
917			
918	•	Incubation of an investigational drug usually lasts for 48-72 hours to allow complete	
919		induction to occur. Incubations include a daily addition of the investigational drug, and	
920		the medium containing the drug is changed regularly. The optimal time course for	
921		incubation should allow the sponsor to detect enzyme induction without causing cell	
922		toxicity. The sponsor should justify the rationale for shorter incubation durations.	
923			
924	•	Data on the actual concentration of drug in the system are important for extrapolating in	1
925		vitro results to in vivo scenarios. The sponsor should measure concentrations of the	
926		parent drug in the medium at several time points during the last day of the incubation,	
927		unless loss of the parent drug due to in vitro drug metabolism, degradation, or lysosoma	1
928		trapping is negligible, or if loss of the parent drug was quantified in the system before the	ıe
929		induction assay and compensated for through the amount of drug added or the intervals	
930		between medium changes.	
931			
932		B. Evaluating Transporter-Mediated Drug Interactions In Vitro	
933			
934	In vitr	o transporter assays can determine whether an investigational drug is a substrate or	
935	inhibi	or of a particular transporter. Coupled with appropriate in vitro-to-in vivo extrapolation	
936	metho	ds (see section IV), these assays can determine if the sponsor should conduct an in vivo	

938 939

937

understood.

drug interaction study. Currently, in vitro methods to evaluate transporter induction are not well

Draft – Not for Implementation

- 940 *1. General Considerations When Using In Vitro Experimental Systems to Evaluate* 941 *Transporter-Mediated Drug Interactions*
- 942
- a. Selecting an in vitro test system
- 943 944

The sponsor should choose an in vitro test system that is suitable for a specific transporter, such as a membrane vesicle system, a polarized cell-based bidirectional assay for efflux transporters, or a cell-based assay for uptake transporters. Selecting the in vitro model may depend on the purpose of the study and the questions to be addressed. Table 1 summarizes examples of in vitro systems to investigate potential transporter-mediated drug interactions with an investigational drug as either a substrate or an inhibitor of a specific transporter.

951

Table 1. Examples of In Vitro Systems to Investigate Transporter-Mediated Drug

953 Interactions

Transporter	In Vitro Systems
ABC Transporte	rs
BCRP, P-gp	Caco-2 cells, commercial or in-house membrane vesicles, knock-
	out/down cells, transfected cells (MDCK, LLC-PK ₁ , etc.)
Solute Carrier (S	SLC) Transporters
OATPs	Hepatocytes, transfected cells (CHO, HEK293, MDCK, etc.)
OATs, OCTs	Transfected cells (CHO, HEK293, MDCK, etc.)
MATEs*	Commercial or in-house membrane vesicles, transfected cells (CHO,
	HEK293, MDCK)

954 CHO: Chinese hamster ovary cell

955 HEK293: human embryonic kidney 293 cell

956 LLC-PK1: Lewis-lung cancer porcine kidney 1 cell

957 MDCK: Madin-Darby canine kidney cell

958
959 *The function of MATEs depends on the driving force from oppositely directed proton gradient; therefore, the
960 appropriate pH of MATE assay system should be employed.

961

Details regarding each in vitro test system to investigate transporter-mediated drug interactions are described below:

964 965

966

970

973

• Membrane vesicles:

- In vitro systems using inside-out membrane vesicles evaluate whether an
 investigational drug is a substrate or inhibitor of P-gp or BCRP but may fail to
 identify highly permeable drugs as substrates.
- Assays using membrane vesicles should directly measure the adenosine
 triphosphate (ATP)-dependent, transporter-mediated uptake of drugs.
- Bi-directional transport assays with cell-based systems:

975	
976	- Bidirectional assays evaluate whether an investigational drug is a substrate or
977	inhibitor of efflux transporters such as P-gp or BCRP.
978	
979	- Cell monolayers grow on semi-porous filters in a device with apical (AP) and
980	basolateral (BL) chambers.
981	
982	- The sponsor should add the test drug to either the AP or BL side of the cell
983	monolayer and measure the amount of the drug permeating through the cell
984	monolayers in the receiver chamber over time.
985	
986	- The sponsor should calculate the apparent permeability (P _{app}) of the drug in both
987	the AP \rightarrow BL (absorption) and BL \rightarrow AP (efflux) directions and calculate an efflux
988	ratio from the ratio of BL \rightarrow AP to AP \rightarrow BL P _{app} values for the substrate.
989	
990	- When using transfected cell lines, the sponsor should compare the efflux ratios of
991	the transfected cell line to the parental or empty vector-transfected cell line.
992	
993	• Uptake assays with cell-based systems:
994	
995	- Uptake assays evaluate whether an investigational drug is a substrate or inhibitor
996	of SLC transporters such as OCT, OAT, OATP and MATE.
997	
998	- When transfected cell lines are used, the sponsor should compare the drug uptake
999	in the transfected cell line to the parental or empty vector-transfected cell line.
1000	
1001	- The sponsor may use human hepatocytes or hepatic cell lines in suspension,
1002	plated, or sandwich-cultured assays.
1003	
1004	b. Determining in vitro test conditions
1005	
1006	The sponsor should validate the model system and experimental conditions, including culture
1007	and transport assay conditions, within the same laboratory. The sponsor should include
1008	appropriate positive and negative controls in the test study to ensure the validity of the study's
1009	results. The sponsor should consider the following recommendations during assay development
1010	and validation:
1011	
1012	• The sponsor should develop and optimize transport assays to ensure consistent
1013	transporter expression (e.g., mRNA expression, protein expression) and transporter
1014	function (e.g., uptake, efflux).
1015	

Draft – Not for Implementation

1016 • 1017 1018 1019	The sponsor should verify the functionality of the assay by conducting studies with known positive and negative controls (see the FDA's Web site on Drug Development and Drug Interactions ²⁸).
1020 • 1021 1022 1023 1024 1025	The sponsor should characterize the following conditions whenever applicable: the source of the membrane vesicles or cells, the cell culture conditions (e.g., cell passage number, seeding density, monolayer age), the probe substrate/inhibitor concentrations, the incubation time, the buffer/pH conditions, the sampling interval, and the methods for calculating parameters such as the IC ₅₀ , K_i , and K_m .
1026 • 1027 1028 1029 1030	The sponsor should use any organic solvents at low concentrations (< 1% volume/volume and preferably < 0.5%) because some solvents can affect cell integrity or transporter function. The experiment should include a no-solvent control and a solvent (vehicle) control.
1031 • 1032 1033	For both substrate and inhibitor studies, the sponsor should attempt to assess the impact of the following factors:
1032 1034 1035 1036 1037 1038 1039 1040	 The stability of the test drug for the duration of study The effect of nonspecific binding of the test drug to cells/apparatus The test drug's solubility limits The effect of prefiltration The effect of adding serum protein to the media The effect of other experimental steps involved in transport studies
1041 • 1042	The sponsor should conduct transport studies under linear transport rate conditions.
1043 • 1044 1045 1046 1047	The sponsor should establish laboratory acceptance criteria for study results (e.g., monolayer integrity, passive permeability, efflux or uptake of probe substrates, K_m for a probe substrate, IC_{50} for probe inhibitor). The K_m value of a probe substrate or the IC_{50} value of a probe substrate or inhibitor should be comparable to literature-reported values.
1048 • 1049 1050	The substrate (which may be the test drug) should be readily measured with no interference from the assay matrix.
1051 1052	2. Determining if the Investigational Drug is a Transporter Substrate

²⁸ For more information, see:

http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm09 3664.htm.

1053	When using in vitro systems to study whether an investigational drug is a substrate of	
1054	transp	orters, the sponsor should consider the following factors:
1055		
1056	•	The sponsor should evaluate multiple concentrations of the test drug to cover the range of
1057		clinically relevant concentrations.
1058		
1059	•	Several factors may limit test drug concentrations in the in vitro assays, including
1060		aqueous solubility, nonspecific binding to the culture vessel, and cytotoxicity.
1061		
1062	•	The sponsor should evaluate the recovery (mass balance), stability, and/or nonspecific
1063		binding of the test drug.
1064		
1065	•	If the in vitro system expresses multiple transporters, the sponsor should conduct
1066		additional experiments to confirm the findings with two or more known potent inhibitors.
1067		
1068		3. Determining if the Investigational Drug is a Transporter Inhibitor
1069		
1070	When	using in vitro systems to study whether an investigational drug is an inhibitor of
1071	transp	orters, the following should be considered:
1072	-	
1073	•	Test-drug concentrations should generally be as high as possible to maximize the
1074		inhibition effect. However, the drug concentration should not exceed the drug's
1075		solubility limits or cause deleterious effects (e.g., cytotoxicity) in the cells.
1076		
1077	•	The sponsor should evaluate approximately four to six concentrations of the test drug
1078		with the probe substrate. The sponsor should start with a high concentration of the test
1079		drug, at least an order of magnitude higher than the drug's clinically relevant
1080		concentration. Because transporters are expressed in different locations in tissues, the
1081		sponsor should consider different clinically relevant concentrations (e.g., the unbound
1082		C_{max} for renal uptake transporters, unbound maximum hepatic inlet concentration for
1083		hepatic uptake transporters (see Figure 6), or dose/250 mL for apical intestinal
1084		transporters). If the test drug demonstrates inhibitory activity, the sponsor should test
1085		additional concentrations to calculate IC_{50} or K_i values. The sponsor can then compare
1086		these values to clinical plasma or intestinal concentrations to predict the potential for
1087		DDIs.
1088		
1089	•	Experiments should include a probe substrate concentration range that results in linear
1090		transport of the substrate. The probe substrate concentration should be at or below its K_m
1091		for the transporter.
1092		1
1093	•	The sponsor should consider a pre-incubation step with the test drug (for a minimum of
1094		30 minutes) for OATP1B1 and OATP1B3 inhibition to evaluate whether TDI could result

1095 1096 1097	in a lower IC_{50} of the test drug. For example, recent data show that cyclosporine and its metabolite AM1 are time-dependent OATP1B inhibitors (Amundsen, Christensen et al. 2010; Gertz, Cartwright et al. 2013; Izumi, Nozaki et al. 2015).
1098 1099 1100 1101 1102 1103	• Inhibition can be substrate dependent; therefore, the sponsor should determine the inhibition constant of the test drug with a probe substrate that may also be used in later clinical studies. Alternatively, the sponsor may use a probe substrate that usually generates a lower IC ₅₀ for known inhibitors to avoid underestimating the interaction potential of the investigational drug.
1104 1105 1106 1107	• The sponsor could use positive and negative controls to calibrate their internal in vitro systems to generate cutoff values to inform potential future clinical DDI studies.
1107 1108 1109 1110	C. Using Model-Based Predictions to Determine a Drug's Potential to Cause DDIs
1111 1112 1113 1114 1115	Mathematical models can evaluate the results of in vitro and in vivo DDI studies to determine whether, when, and how to conduct further clinical DDI studies in drug development. In many cases, negative findings from early in vitro and clinical studies, in conjunction with model-based predictions, can eliminate the need for additional clinical investigations of an investigational drug's DDI potential.
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130	Mathematical models that integrate in vitro findings and are verified with clinical PK data can play an important role in predicting the DDI potential of an investigational drug under various scenarios. There are several models to consider when evaluating the drug as a perpetrator of a metabolism-based DDI. <i>Basic models</i> generally serve simple purposes, such as the identification of low levels of inhibition or induction of metabolizing enzymes by an investigational drug. <i>Static mechanistic models</i> can account for the disposition characteristics of both the perpetrator and the index substrate drugs (Fahmi, Hurst, et al. 2009). <i>Dynamic mechanistic models</i> , including PBPK models that integrate system-dependent parameters (e.g., based on human physiology) and drug-dependent parameters (Zhao, Zhang, et al. 2011) and their time course of changes, can support decisions on when and how to conduct a clinical DDI study. Furthermore, these models can quantitatively predict the magnitude of DDI in various clinical situations, such as in patients with renal impairment or patients with genetic deficiencies in certain metabolizing enzymes.
1130 1131 1132 1133	1. General Considerations When Using Predictive Models to Evaluate Enzyme- Based DDIs
1134 1135	a. Basic models to predict the effect of a drug as an enzyme modulator
1136 1137	Evaluating a drug as a potential enzyme inhibitor or inducer begins with the use of a basic model, which includes the following components:

1138	
1139	• The R value is the ratio of intrinsic clearance values of an index substrate for an
1140	enzymatic pathway in the absence and presence of a potential modulator (perpetrator).
1141	Assuming changes in intrinsic clearance are proportional to those in total clearance, the R
1142	value can be used to represent the AUC ratio of a victim drug in the presence and absence
1143	of a potential modulator (perpetrator). This guidance uses R_1 (including $R_{1,g}$), R_2 , and R_3
1144	for reversible inhibition, time-dependent inhibition, and induction, respectively. The R
1145	value is calculated using the concentration of the interacting drug available at the enzyme
1146	site (defined as [I]) and the appropriate kinetic parameters for each basic model (see
1147	section III)).
1148	
1149	• [I] represents the concentration of the interacting drug (potential inhibitor or inducer)
1150	available at the enzyme site. The basic models described in this guidance use the
1151	maximal unbound plasma concentration of the interacting drug for [I]. For CYP3A at the
1152	gut, [I] is Igut, which is calculated as dose/250 mL for the basic model.
1153	
1154	• Kinetic parameters are estimates for each basic model (reversible inhibition, time-
1155	dependent inhibition, and induction).
1156	
1157	The sponsor should compare the calculated R values to the predefined cutoff criteria to
1158	determine whether it is possible to rule out the potential for a DDI. If the basic model does not
1159	rule out the potential for a DDI, the sponsor should further evaluate the DDI potential of the
1160	investigational drug by conducting additional modeling analyses, using static mechanistic
1161	models or PBPK models (see below) or by conducting an in vivo DDI study.
1162	
1163	b. Using static mechanistic models to predict the effect of a drug as an
1164	enzyme modulator
1165	
1166	Static mechanistic models incorporate more detailed drug disposition and drug interaction
1167	mechanisms for both interacting and substrate drugs (Fahmi, Hurst, et al. 2009). The following
1168	equation can be used to calculate the overall effect (inhibition or induction) of the investigational
1169	drug on substrate drugs (represented as the AUCR) (see Figure 7).
1170	
1171	

Draft – Not for Implementation

1172 Figure 7: Equation to Calculate AUCR of the Substrate Drugs (AUC plus investigational drug/AUC

1173 minus investigational drug)

$$\mathbf{AUCR} = \left(\frac{1}{\left[\mathbf{A}_{g} \times \mathbf{B}_{g} \times \mathbf{C}_{g}\right] \times \left(1 - \mathbf{F}_{g}\right) + \mathbf{F}_{g}}\right) \times \left(\frac{1}{\left[\mathbf{A}_{h} \times \mathbf{B}_{h} \times \mathbf{C}_{h}\right] \times \mathbf{f}_{m} + (1 - \mathbf{f}_{m})}\right)$$

- **A** is the effect of reversible inhibitions.
- **B** is the effect of TDI.
- **C** is the effect of induction.
- $\mathbf{F}_{\mathbf{g}}$ is the fraction available after intestinal metabolism.
- $\mathbf{f}_{\mathbf{m}}$ is the fraction of systemic clearance of the substrate mediated by the CYP enzyme that is subject to
- 1182 inhibition/induction.
- **Subscripts 'h'** denote liver.
- **Subscripts 'g'** denote gut.

1186 Each value can be estimated with the following equations:

- $[\mathbf{I}]_{\mathbf{h}} = f_{u,p} \times (C_{max} + F_a \times k_a \times \text{Dose}/Q_h/R_B) \text{ (Ito, Iwatsubo, et al. 1998)}$
- $[I]_g = F_a \times k_a \times Dose/Q_{en}$ (Rostami-Hodjegan and Tucker 2004)

 $\mathbf{f}_{u,p}$ is the unbound fraction in plasma. When it is difficult to measure accurately due to high protein binding (i.e., $f_{u,p}$ 1191 <0.01) in plasma, a value of 0.01 should be used for $f_{u,p}$.

C_{max} is the maximal total (free and bound) inhibitor concentration in the plasma at steady state.

 $\mathbf{F}_{\mathbf{a}}$ is the fraction absorbed after oral administration; a value of 1 should be used when the data are not available.

 \mathbf{k}_{a} is the first order absorption rate constant in vivo; a value of 0.1 min⁻¹ (Ito, Iwatsubo, et al. 1998) can be used 1195 when the data are not available.

Q_{en} is the blood flow through enterocytes (e.g., 18 L/hr/70 kg (Yang, Jamei, et al. 2007a)).

Q_h is the hepatic blood flow (e.g., 97 L/hr/70 kg (Yang, Jamei, et al. 2007b)).

 $\mathbf{R}_{\mathbf{B}}$ is the blood-to-plasma concentration ratio.

- 1201 One should separately use inhibition mechanisms (A and B only) to predict a drug's enzyme
- inhibition potential (i.e., assuming C is equal to 1), and use induction mechanisms (C only) to
- 1203 predict a drug's enzyme induction potential (i.e., assuming A and B are equal to 1).

Draft – Not for Implementation

1205 c. Using PBPK models to predict enzyme-based DDIs

PBPK models can predict the DDI potential of an investigational drug as an enzyme substrate or
an enzyme perpetrator. Figure 8 shows a general PBPK model-based framework to predict the
DDI potential for the purposes of DDI study planning in clinical development.

Figure 8. A PBPK Model-Based Framework to Explore the DDI Potential Between a Substrate Drug and an Interacting Drug (Modified from Zhao, Zhang, et al. 2011)*

1221	Figure 8 continued. A PBPK Model-Based Framework to Explore the DDI Potential
1222	Between a Substrate Drug and an Interacting Drug (Modified from Zhao, Zhang, et al.
1223	2011)*
1224	
1225	CL _R is the renal clearance.
1226	DDI is a drug-drug interaction.
1227	EC ₅₀ is the concentration causing half maximal effect.
1228	E _{max} is the maximum effect.
1229	F is the bioavailability.
1230	$\mathbf{F}_{\mathbf{a}}$ is the fraction absorbed.
1231	\mathbf{F}_{g} is the bioavailability in the gut.
1232	$\mathbf{F}_{\mathbf{h}}$ is the bioavailability in the liver.
1233	$I_{u,p}$ is the unbound fraction in plasma.
1234	γ is the Hill coefficient.
1235	$I_{\rm concentration}$ causing nair maximal inhibition.
1230	I_{max} is the maximum rate of transporter mediated of flux/uptake
1237	\mathbf{J}_{max} is the first-order absorption rate constant
1230	$\mathbf{K}_{\mathbf{a}}$ is the dissociation constant of a drug-protein complex
1237	\mathbf{K}_i is the reversible inhibition constant, concentration causing half maximal inhibition
1241	$\mathbf{K}_{\mathbf{I}}$ is the apparent inactivation constant, concentration causing half maximum inactivation
1242	$\mathbf{k}_{\text{inact}}$ is the apparent maximum inactivation rate constant.
1243	$\mathbf{K}_{\mathbf{m}}$ is the Michaelis-Menten constant, substrate concentration causing half maximal reaction or transport
1244	$\mathbf{K}_{\mathbf{p}}$ is the tissue to plasma partition coefficient.
1245	LogP is the logarithm of the octanol-water partition coefficient.
1246	MOA is the mechanism of action.
1247	PD is the pharmacodynamics of a drug
1248	\mathbf{P}_{eff} is the jejunum permeability.
1249	PK is pharmacokinetics of a drug.
1250	PopPK is population pharmacokinetics.
1251	V is the volume of distribution.
1252	V_{max} is the maximum rate of metabolite formation.
1253	$\mathbf{\mathbf{Y}} \mathbf{\mathbf{Y}} \mathbf{$
1254	*Note: PBPK models for both substrate and interacting drug (inhibitor or inducer) should be constructed separately
1255	using in vitro and in vivo disposition parameters and be verified before they are linked through appropriate
1250	mechanisms to predict the degree of DDI.
1257	
1250	• When using PRPK modeling, the sponsor should provide comprehensive justifications on
1239	• When using FDFK modeling, the sponsor should provide comprehensive justifications on
1260	any model assumptions, the physiological and biochemical plausionity of the model,
1261	variability, and uncertainty measures. Submissions using advanced models like PBPK
1262	models should include a description of the structural model, the sources and justifications
1263	for both system- and drug-dependent parameters, the types of error models, all model
1264	outputs, the data analysis, and an adequate sensitivity analysis (see the FDA's guidance
1265	for industry <i>Physiologically Based Pharmacokinetic Analyses</i> — <i>Format and Content</i> ²⁹).

 $^{^{29}}$ When final, this guidance will represent the FDA's current thinking on this topic.

1266 1267 1268 1269	When using predefined models (structural and error) from commercially available software, the sponsor should specify the software version and list any deviations from the predefined models (Zhao, Rowland, et al. 2012).
1270 • 1271 1272 1273	When using PBPK modeling to predict the DDI potential of the investigational drug as an <i>enzyme substrate</i> , the sponsor should address the following questions (Vieira, Kim, et al. 2014; Wagner, Pan, et al. 2015; Wagner, Pan, et al. 2016):
1273 1274 1275 1276 1277	- Can the base PBPK model of the investigational substrate describe the available clinical PK data using different dosing regimens (e.g., a dose proportionality study) and dosing routes (e.g., intravenous or oral)?
1278 1279 1280	- Are elimination pathways quantitatively assigned in the substrate's model according to available in vitro and in vivo data?
1281 1282 1283	- Are index perpetrator models verified with regard to their modulating effect on enzyme activity in humans?
1284 1285 1286	- Are there sensitivity analyses for parameters exhibiting a high level of uncertainty?
1287 1288 1289 1290	- If complex metabolic and transport mechanisms are expected, do the substrate and modulator models include the major disposition and interaction mechanism and are they verified in a step-wise manner? (see also 2.b below for transporters)
1293 1291 1292 1293 1294	The sponsor may use PBPK models to predict the effects of enzyme modulators on the PK of an investigational substrate if the models can describe the available data on DDIs for a strong enzyme inhibitor or inducer (Wagner, Zhao, et al. 2015; Wagner, Pan, et al. 2015; Wagner, Pan, et al. 2016).
1295 1296 • 1297 1298 1200	When using PBPK modeling to predict the drug interaction potential of an investigational drug as an <i>enzyme perpetrator</i> , the sponsor should address the following questions (Vieira, Zhao, et al. 2012; Wagner, Pan, et al. 2015; Wagner, Pan, et al. 2016):
1299 1300 1301 1302 1202	- Can the base PBPK model of the investigational perpetrator describe the available clinical PK data using different dosing regimens (e.g., a dose proportionality study) and dosing routes (e.g., intravenous or oral)?
1303 1304 1305 1306	- Are index substrate models verified with regard to the effect of altered enzyme activity on its PK in humans?
1307 1308	- Were inhibition and induction mechanisms separately considered to ensure a conservative prediction of in vivo enzyme inhibition or induction?

Draft – Not for Implementation

1309	
1310	- Did the simulation use the highest clinical dose of the investigational perpetrator?
1311	
1312	- Are there sensitivity analyses for parameters exhibiting high levels of uncertainty?
1313	
1314	2. General Considerations When Using Predictive Models to Evaluate
1315	Transporter-Mediated DDIs
1316	
1317	a. Using basic models to predict the effect of a drug as a transporter inhibitor
1318	
1319	Evaluating a drug as a potential transporter inhibitor begins with the use of a basic model,
1320	applying the same concepts as for metabolizing enzymes (see section IV.B). The predictions
1321	and predefined cutoff criteria from this basic model approach determine the need to further
1322	evaluate transporter inhibition in vivo. Generally, the sponsor should assume reversible
1323	inhibition and use the IC_{50} as a practical substitute for the K _i . The basic models described in
1324	this document use the gut luminal concentration, the maximal unbound plasma concentration,
1325	and/or the estimated maximal unbound concentration at the negatic inlet of the interacting
1326	drug for [1]. The sponsor should compare the calculated R or $[1]/IC_{50}$ values to predefined
1327	cutoff criteria to determine whether it is possible to rule out the potential for a DDI. If the
1328	basic model does not rule out the potential for DDIs, the sponsor should further evaluate the
1329	DDI potentiai of the investigational drug.
1330	h Using DDDV models to predict transporter based DDIs
1331	b. Using PBPK models to predict transporter-based DDIs
1332	DRDK models can include ADME processes modiated by transporters as well as passive
1333	diffusion and metabolism. Compared to CVP anzymes, the predictive performance of PBPK
1334	modeling for transporter-based DDIs has not been established (Wagner, Zhao, et al. 2015)
1335	This is largely due to knowledge gaps in transporter biology and limited experience in
1330	determining and modeling the kinetics of transporters (Pan Hsu et al. 2016). Recent
1338	applications of PBPK models to evaluate the interplay between transporters and enzymes
1339	suggest that a model of an investigational drug as a substrate of multiple transporters and
1340	enzymes is only adequate for confident predictions of untested DDI scenarios after the model
1341	has been verified with clinical data from a wide range of DDI or pharmacogenetic studies for
1342	the applicable enzyme or transporter (Varma, Lai, et al. 2012; Gertz, Cartwright, et al. 2013;
1343	Varma, Lai, et al. 2013: Varma, Lin, et al. 2013: Jamei, Bajot, et al. 2014: Varma, Scialis, et
1344	al. 2014; Snoeys, Beumont, et al. 2015). For drugs that are potential transporter inhibitors.
1345	the sponsor should establish and verify models for transporter substrates (Gertz.
1346	Tsamandouras, et al. 2014; Tsamandouras, Dickinson, et al. 2015; Snoevs, Beumont, et al.
1347	2015).
1348	

1349

Draft – Not for Implementation

1350 VIII. ABBREVIATIONS AND ACRONYMS

- 1351
- 1352 ADME: absorption, distribution, metabolism, and/or excretion
- 1353 AP: apical
- 1354 ATP: adenosine triphosphate
- 1355 AUC: area under the plasma concentration-time curve
- 1356 AUC_{metabolite}: area under the plasma concentration-time curve of metabolite
- 1357 AUC_{parent}: area under the plasma concentration-time curve of parent drug
- 1358 AUCR: area under the plasma concentration-time curve ratio
- 1359 BL: basolateral
- 1360 B/P: blood to plasma ratio
- 1361 BCRP: breast cancer resistance protein
- 1362 CHO: Chinese hamster ovary cell
- 1363 Clint: intrinsic clearance
- 1364 CL_r: renal clearance
- 1365 C_{max}: total maximal concentration in plasma
- 1366 CYP: cytochrome P450
- 1367 d: scaling factor
- 1368 DDI: drug-drug interaction
- 1369 EC₅₀: concentration causing half maximal effect determined in vitro
- 1370 E_{max}: maximum induction effect determined in vitro
- 1371 ER: efflux ratio
- 1372 F_a: fraction absorbed
- 1373 F_g: intestinal availability
- 1374 f_m: fraction of systemic clearance of the substrate mediated by the CYP enzyme that is subject to
- 1375 inhibition/induction.
- 1376 FMO: flavin monooxygenase
- 1377 $f_{u,p}$: unbound fraction in plasma
- 1378 GFR: glomerular filtration rate
- 1379 HEK293: human embryonic kidney 293 cell
- 1380 [I]: concentration of the interacting drug
- 1381 IC₅₀: half-maximal inhibitory concentration
- 1382 I_{gut} : intestinal luminal concentration estimated as dose/250 mL
- 1383 I_{in,max}: estimated maximum plasma inhibitor concentration at the inlet to the liver
- 1384 I_{max,u}: maximal unbound plasma concentration of the interacting drug
- 1385 J_{max}: maximal flux rate
- 1386 k_a: absorption rate constant
- 1387 k_d: dissociation constant
- 1388 k_p: partition coefficient
- 1389 k_{deg} : apparent first-order degradation rate constant of the affected enzyme
- 1390 K_i: inhibition constant
- 1391 K_I: inhibitor concentration causing half-maximal inactivation
- 1392 k_{inact}: maximal inactivation rate constant

- 1393 K_m: Michaelis-Menton constant
- 1394 k_{obs}: observed (apparent first order) inactivation rate constant of the affected enzyme
- 1395 LLC-PK1: Lewis-lung cancer porcine kidney 1 cell
- 1396 LogP: octanol-water partition coefficient
- 1397 MAO: monoamine oxidase
- 1398 MATE: multidrug and toxin extrusion
- 1399 MDCK: Madin-Darby canine kidney cell
- 1400 MDR1: multi-drug resistance 1 protein
- 1401 NADPH: nicotinamide adenine dinucleotide phosphate (reduced form)
- 1402 OAT: organic anion transporter
- 1403 OATP: organic anion transporting polypeptide
- 1404 OCT: organic cation transporter
- 1405 P_{app}: apparent permeability
- 1406 PBPK: physiologically-based pharmacokinetic
- 1407 PD: pharmacodynamics
- 1408 P-gp: P-glycoprotein
- 1409 PK: pharmacokinetic
- 1410 pKa: negative logarithm of the ionization constant (Ka) of an acid, a measure of the strength of
- 1411 an acid
- 1412 PXR: pregnane X receptor
- 1413 Q_{en}: blood flow through enterocytes
- 1414 Q_h: hepatic blood flow rate
- 1415 R: ratio of victim AUC in the presence and absence of perpetrators (inhibitors or inducers),
- 1416 predicted with basic models
- 1417 R_B: blood to plasma ratio
- 1418 S9: supernatants after 9000 g centrifugation
- 1419 SCH: sandwich cultured hepatocytes
- 1420 SLC: solute carrier
- 1421 TDI: time-dependent inhibition
- 1422 UGT: uridine diphosphate (UDP)-glucuronosyl transferase
- 1423 V_{max}: maximal rate
- 1424 V_{ss} : steady-state volume of distribution
- 1425 XO: xanthine oxidase

Draft – Not for Implementation

1426 IX. REFERENCES

1427

Agarwal, S, V Arya, and L Zhang, 2013, Review of P-gp Inhibition Data in Recently Approved
New Drug Applications: Utility of the Proposed [I(1)]/IC(50) and [I(2)]/IC(50) Criteria in the Pgp Decision Tree, J Clin Pharmacol, 53(2):228-233.

- 1431
- Amundsen, R, H Christensen, B Zabihyan, and A Asberg, 2010, Cyclosporine A, But Not
- 1433 Tacrolimus, Shows Relevant Inhibition of Organic Anion-Transporting Protein 1B1-Mediated
- 1434 Transport of Atorvastatin, Drug Metab Dispos, 38(9):1499-1504.
- 1435
- Bjornsson, TD, JT Callaghan, HJ Einolf, V Fischer, L Gan, S Grimm, J Kao, SP King, G Miwa,
- 1437 L Ni, G Kumar, J McLeod, RS Obach, S Roberts, A Roe, A Shah, F Snikeris, JT Sullivan, D
- 1438 Tweedie, JM Vega, J Walsh, SA Wrighton, and R Pharmaceutical, G Manufacturers of America,
- 1439 Drug Metabolism/Clinical Pharmacology Technical Working, FDACfD Evaluation and Research,
- 1440 2003, The Conduct of In Vitro and In Vivo Drug-Drug Interaction Studies: A Pharmaceutical
- 1441 Research and Manufacturers of America (PhRMA) Perspective, Drug Metab Dispos, 31(7):815-1442 832.
- 1443
- Brouwer, KL, D Keppler, KA Hoffmaster, DA Bow, Y Cheng, Y Lai, JE Palm, B Stieger, R
 Evers, and C International Transporter, 2013, In Vitro Methods to Support Transporter
- 1446 Evaluation in Drug Discovery and Development, Clin Pharmacol Ther, 94(1):95-112.
- 14471448 Callegari, E, AS Kalgutkar, L Leung, RS Obach, DR Plowchalk, and S Tse, 2013, Drug
- Metabolites as Cytochrome p450 Inhibitors: A Retrospective Analysis and Proposed Algorithm for Evaluation of the Pharmacokinetic Interaction Potential of Metabolites in Drug Discovery
- and Development, Drug Metab Dispos, 41(12):2047-2055.
- Dong Z, X Yang, V Arya, and L Zhang, 2016a, Comparing Various In Vitro Prediction Criteria
 to Assess the Potential of a New Molecular Entity (NME) to Inhibit Organic Anion Transporter 1
 and 3 (OAT1 and 3), Clin Pharmacol Ther, 99(S1):S94.
- 1456
- Dong Z, X Yang, V Arya, and L Zhang, 2016b, Comparing Various In Vitro Prediction Criteria
 to Assess the Potential of a New Molecular Entity (NME) to Inhibit OCT2 and MATE
 Transporters In Vivo, Clin Pharmacol Ther, 99(S1):S94.
- Einolf, HJ, 2007, Comparison of Different Approaches to Predict Metabolic Drug-Drug
 Interactions, Xenobiotica, 37(10-11):1257-1294.
- 1463

1460

- 1464 Einolf, HJ, L Chen, OA Fahmi, CR Gibson, RS Obach, M Shebley, J Silva, MW Sinz, JD
- 1465 Unadkat, L Zhang and P Zhao, 2014, Evaluation of Various Static and Dynamic Modeling
- 1466 Methods to Predict Clinical CYP3A Induction Using In Vitro CYP3A4 mRNA Induction Data,

1467 Clin Pharmacol Ther, 95(2):179-188.

1468

Draft – Not for Implementation

Ellens, H, S Deng, J Coleman, J Bentz, ME Taub, I Ragueneau-Majlessi, SP Chung, K Heredi-1469 Szabo, S Neuhoff, J Palm, P Balimane, L Zhang, M Jamei, I Hanna, M O'Connor, D Bednarczyk, 1470 M Forsgard, X Chu, C Funk, A Guo, KM Hillgren, L Li, AY Pak, ES Perloff, G Rajaraman, L 1471 Salphati, JS Taur, D Weitz, HM Wortelboer, CQ Xia, G Xiao, T Yamagata, and CA Lee, 2013, 1472 Application of Receiver Operating Characteristic Analysis to Refine the Prediction of Potential 1473 1474 Digoxin Drug Interactions, Drug Metab Dispos, 41(7):1367-1374. 1475 Fahmi, OA, S Hurst, D Plowchalk, J Cook, F Guo, K Youdim, M Dickins, A Phipps, A Darekar, 1476 1477 R Hyland, and RS Obach, 2009, Comparison of Different Algorithms for Predicting Clinical Drug-Drug Interactions, Based on the Use of CYP3A4 In Vitro Data: Predictions of Compounds 1478 1479 as Precipitants of Interaction, Drug Metab Dispos, 37(8):1658-1666. 1480 1481 Fahmi, OA, M Kish, S Boldt, and RS Obach, 2010, Cytochrome P450 3A4 mRNA is a More Reliable Marker than CYP3A4 Activity for Detecting Pregnane X Receptor-Activated Induction 1482 1483 of Drug-Metabolizing Enzymes, Drug Metab Dispos, 38(9):1605-1611. 1484 1485 Fahmi, OA and SL Ripp, 2010, Evaluation of Models for Predicting Drug-Drug Interactions Due to Induction, Expert Opin Drug Metab Toxicol, 6(11):1399-1416. 1486 1487 Gertz, M, CM Cartwright, MJ Hobbs, KE Kenworthy, M Rowland, JB Houston, and A Galetin, 1488 1489 2013, Cyclosporine Inhibition of Hepatic and Intestinal CYP3A4, Uptake and Efflux Transporters: Application of PBPK Modeling in the Assessment of Drug-Drug Interaction 1490 Potential, Pharm Res, 30(3):761-780. 1491 1492 Gertz, M, N Tsamandouras, C Säll, JB Houston, and A Galetin, 2014, Reduced Physiologically 1493 Based Pharmacokinetic Model of Repaglinide: Impact of OATPB1 and CYP2C8 Genotype and 1494 1495 Source of In Vitro Data on the Prediction of Drug-Drug Interaction Risk, Pharm Res, 1496 31(9):2367-2382. 1497 Gertz, M, PJ Kilford, JB Houston, and A Galetin, 2008, Drug Lipophilicity and Microsomal 1498 Protein Concentration as Determinants in the Prediction of the Fraction Unbound in Microsomal 1499 Incubations, Drug Metab Dispos, 36(3):535-542. 1500 1501 1502 Giacomini, KM and SM Huang, 2013, Transporters in Drug Development and Clinical Pharmacology, Clin Pharmacol Ther, 94(1):3-9. 1503 1504 1505 Giacomini, KM, SM Huang, DJ Tweedie, LZ Benet, KL Brouwer, X Chu, A Dahlin, R Evers, V Fischer, KM Hillgren, KA Hoffmaster, T Ishikawa, D Keppler, RB Kim, CA Lee, M Niemi, JW 1506 Polli, Y Sugiyama, PW Swaan, JA Ware, SH Wright, SW Yee, MJ Zamek-Gliszczynski, and L 1507 Zhang, 2010, Membrane Transporters in Drug Development, Nat Rev Drug Discov, 9(3):215-1508 236. 1509 1510 Grimm, SW, HJ Einolf, SD Hall, K He, HK Lim, KH Ling, C Lu, AA Nomeir, E Seibert, KW 1511

Draft – Not for Implementation

Skordos, GR Tonn, R Van Horn, RW Wang, YN Wong, TJ Yang, and RS Obach, 2009, The 1512 Conduct of In Vitro Studies to Address Time-Dependent Inhibition of Drug-Metabolizing 1513 Enzymes: A Perspective of the Pharmaceutical Research and Manufacturers of America, Drug 1514 Metab Dispos, 37(7):1355-1370. 1515 1516 Hallifax, D and JB Houston, 2006, Binding of Drugs to Hepatic Microsomes: Comment and 1517 Assessment of Current Prediction Methodology With Recommendation for Improvement, Drug 1518 Metab Dispos, 34(4):724-726; author reply 727. 1519 1520 Ito, K, T Iwatsubo, S Kanamitsu, K Ueda, H Suzuki, and Y Sugiyama, 1998, Prediction of 1521 1522 Pharmacokinetic Alterations Caused by Drug-Drug Interactions: Metabolic Interaction in the 1523 Liver, Pharmacol Rev, 50(3):387-412. 1524 Izumi, S, Y Nozaki, K Maeda, T Komori, O Takenaka, H Kusuhara, and Y Sugiyama, 2015, 1525 1526 Investigation of the Impact of Substrate Selection on In Vitro Organic Anion Transporting Polypeptide 1B1 Inhibition Profiles for the Prediction of Drug-Drug Interactions, Drug Metab 1527 Dispos, 43(2):235-247. 1528 1529 1530 Jamei, M, F Bajot, S Neuhoff, Z Barter, J Yang, A Rostami-Hodjegan, and K Rowland-Yeo, 2014, A Mechanistic Framework for In Vitro-In Vivo Extrapolation of Liver Membrane 1531 1532 Transporters: Prediction of Drug-Drug Interaction Between Rosuvastatin and Cyclosporine, Clin Pharmacokinet, 53(1):73-87. 1533 1534 Jones, H, Y Chen, C Gibson, T Heimbach, N Parrott, S Peters, J Snoeys, V Upreti, M Zheng, and 1535 S Hall, 2015, Physiologically Based Pharmacokinetic Modeling in Drug Discovery and 1536 Development: A Pharmaceutical Industry Perspective, Clin Pharmacol Ther, 97(3):247-262. 1537 1538 1539 Lepist, EI, X Zhang, J Hao, J Huang, A Kosaka, G Birkus, BP Murray, R Bannister, T Cihlar, Y Huang, and AS Ray, 2014, Contribution of the Organic Anion Transporter OAT2 to the Renal 1540 Active Tubular Secretion of Creatinine and Mechanism for Serum Creatinine Elevations Caused 1541 by Cobicistat, Kidney Int, 86(2):350-357. 1542 1543 Lu, C, GT Miwa, SR Prakash, LS Gan, and SK Balani, 2007, A Novel Model for the Prediction 1544 1545 of Drug-Drug Interactions in Humans Based on In Vitro Cytochrome P450 Phenotypic Data, Drug Metab Dispos, 35(1):79-85. 1546 1547 1548 Mao, J, MA Mohutsky, JP Harrelson, SA Wrighton, and SD Hall, 2012, Predictions of Cytochrome P450-Mediated Drug-Drug Interactions Using Cryopreserved Human Hepatocytes: 1549 Comparison of Plasma and Protein-Free Media Incubation Conditions, Drug Metab Dispos, 1550 40(4):706-716. 1551 1552

Draft – Not for Implementation

Pan Y, V Hsu, M Grimstein, L Zhang, V Arya, V Sinha, JA Grillo, and P Zhao, 2016, The 1553 Application of Physiologically Based Pharmacokinetic Modeling to Predict the Role of Drug 1554 Transporters: Scientific and Regulatory Perspectives, J Clin Pharmacol, 56:S122-31. 1555 1556 1557 Rostami-Hodjegan, A and G Tucker, 2004, In Silico Simulations to Assess the In Vivo Consequences of In Vitro Metabolic Drug-Drug Interactions, Drug Discov Today Technol, 1558 1(4):441-448. 1559 1560 1561 Snoeys, J, M Beumont, M Monshouwer, and S Ouwerkerk-Mahadevan, 2015, Mechanistic Understanding of the Nonlinear Pharmacokinetics and Intersubject Variability of Simeprevir: A 1562 1563 PBPK-Guided Drug Development Approach, Clin Pharmacol Ther, 99(2):224-234. 1564 1565 Tachibana, T, M Kato, T Watanabe, T Mitsui, and Y Sugiyama, 2009, Method for Predicting the Risk of Drug-Drug Interactions Involving Inhibition of Intestinal CYP3A4 and P-Glycoprotein, 1566 1567 Xenobiotica, 39(6):430-443. 1568 1569 Tweedie, D, JW Polli, EG Berglund, SM Huang, L Zhang, A Poirier, X Chu, B Feng, and C 1570 International Transporter, 2013, Transporter Studies in Drug Development: Experience to Date 1571 and Follow-Up on Decision Trees from the International Transporter Consortium, Clin Pharmacol Ther, 94(1):113-125. 1572 1573 Tsamandouras, N, G Dickinson, Y Guo, S Hall, A Rostami-Hodjegan, A Galetin, and L Aarons, 1574 2015, Development and Application of a Mechanistic Pharmacokinetic Model for Simvastatin 1575 and Its Active Metabolite Simvastatin Acid Using an Integrated Population PBPK Approach, 1576 Pharm Res, 32(6):1864-1883. 1577 1578 1579 Vaidyanathan, J, K Yoshida, V Arya, and L Zhang, 2016. Comparing Various In Vitro Prediction Criteria to Assess the Potential of a New Molecular Entity (NME) to Inhibit Organic 1580 Anion Transporting Polypeptide 1B1 (OATP1B1) In Vivo, J Clin Pharm, 56 Suppl 7:S59-72. 1581 1582 Varma, MV, Y Lai, B Feng, J Litchfield, TC Goosen, and A Bergman, 2012, Physiologically 1583 Based Modeling of Pravastatin Transporter-Mediated Hepatobiliary Disposition and Drug-Drug 1584 Interactions, Pharm Res, 29(10):2860-2873. 1585 1586 Varma, MV, Y Lai, E Kimoto, TC Goosen, AF El-Kattan, and V Kumar, 2013, Mechanistic 1587 Modeling to Predict the Transporter- and Enzyme-Mediated Drug-Drug Interactions of 1588 Repaglinide, Pharm Res, 30(4):1188-1199. 1589 1590 1591 Varma, MV, J Lin, YA Bi, CJ Rotter, OA Fahmi, JL Lam, AF El-Kattan, TC Goosen, and Y Lai, 2013, Quantitative Prediction of Repaglinide-Rifampicin Complex Drug Interactions Using 1592 Dynamic and Static Mechanistic Models: Delineating Differential CYP3A4 Induction and 1593 OATP1B1 Inhibition Potential of Rifampicin, Drug Metab Dispos, 41(5):966-974. 1594 1595

Draft – Not for Implementation

Varma, MV, RJ Scialis, J Lin, YA Bi, CJ Rotter, TC Goosen, and X Yang, 2014, Mechanism-1596 1597 Based Pharmacokinetic Modeling to Evaluate Transporter-Enzyme Interplay in Drug Interactions and Pharmacogenetics of Glyburide, AAPS J, 16(4):736-748. 1598 1599 Vieira, ML, B Kirby, I Ragueneau-Majlessi, A Galetin, JY Chien, HJ Einolf, OA Fahmi, V 1600 Fischer, A Fretland, K Grime, SD Hall, R Higgs, D Plowchalk, R Riley, E Seibert, K Skordos, J 1601 Snoeys, K Venkatakrishnan, T Waterhouse, RS Obach, EG Berglund, L Zhang, P Zhao, KS 1602 Reynolds, and SM Huang, 2014, Evaluation of Various Static In Vitro-In Vivo Extrapolation 1603 1604 Models for Risk Assessment of the CYP3A Inhibition Potential of an Investigational Drug, Clin Pharmacol Ther, 95(2):189-198. 1605 1606 Vieira MD, MJ Kim, S Apparaju, V Sinha, I Zineh, SM Huang, and P Zhao, 2014, PBPK 1607 model describes the effects of comedication and genetic polymorphism on systemic exposure of 1608 drugs that undergo multiple clearance pathways, Clin Pharmacol Ther, 95(5):550-557. 1609 1610 Vieira, ML, P Zhao, EG Berglund, KS Reynolds, L Zhang, LJ Lesko, and SM Huang, 2012, 1611 1612 Predicting Drug Interaction Potential With a Physiologically Based Pharmacokinetic Model: A 1613 Case Study of Telithromycin, a Time-Dependent CYP3A Inhibitor, Clin Pharmacol Ther, 1614 91(4):700-708. 1615 1616 Wagner, C, P Zhao, Y Pan, V Hsu, J Grillo, S Huang, and V Sinha, 2015, Application of Physiologically Based Pharmacokinetic (PBPK) Modeling to Support Dose Selection: Report of 1617 an FDA Public Workshop on PBPK, Clin Pharm Ther: Pharmacometrics & Systems 1618 1619 Pharmacology, 4:226-230. 1620 Wagner, C, Y Pan, V Hsu, JA Grillo, L Zhang, KS Reynolds, V Sinha, and P Zhao, 2015, 1621 1622 Predicting the Effect of Cytochrome P450 Inhibitors on Substrate Drugs: Analysis of Physiologically Based Pharmacokinetic Modeling Submissions to the US Food and Drug 1623 Administration, Clin Pharmacokinet, 54(1):117-127. 1624 1625 Wagner C, Y Pan, V Hsu, V Sinha, and P Zhao, 2016, Predicting the Effect of CYP3A Inducers 1626 on the Pharmacokinetics of Substrate Drugs Using Physiologically Based Pharmacokinetic 1627 (PBPK) Modeling: An Analysis of PBPK Submissions to the US FDA, Clin Pharmacokinet, 1628 1629 55(4):475-83. 1630 Yang, J, M Jamei, KR Yeo, A Rostami-Hodjegan, and GT Tucker, 2007a, Misuse of the Well-1631 1632 Stirred Model of Hepatic Drug Clearance, Drug Metab Dispos, 35(3):501-502. 1633 Yang, J, M Jamei, KR Yeo, GT Tucker, and A Rostami-Hodjegan, 2007b, Prediction of 1634 Intestinal First-Pass Drug Metabolism, Curr Drug Metab, 8(7):676-684. 1635 1636 Yang, J, M Liao, M Shao, M Jamei, KR Yeo, GT Tucker, and A Rostami-Hodjegan, 2008, 1637 1638 Cytochrome P450 Turnover: Regulation of Sythesis and Degradation, Methods for Determining

1639	Rates, and Implications for the Prediction of Drug Interactions, Curr Drug Metab, 9(5):384-394.
1640	
1641	Yoshida, K, K Maeda, and Y Sugiyama, 2012, Transporter-Mediated Drug-Drug Interactions
1642	Involving OATP Substrates: Predictions Based on In Vitro Inhibition Studies, Clin Pharmacol
1643	Ther, 91(6):1053-1064.
1644	
1645	Yu, H, SK Balani, W Chen, D Cui, L He, WG Humphreys, J Mao, WG Lai, AJ Lee, HK Lim, C
1646	MacLauchlin, C Prakash, S Surapaneni, S Tse, A Upthagrove, RL Walsky, B Wen, and Z Zeng,
1647	2015, Contribution of Metabolites to P450 Inhibition-Based Drug-Drug Interactions:
1648	Scholarship from the Drug Metabolism Leadership Group of the Innovation and Quality
1649	Consortium Metabolite Group, Drug Metab Dispos, 43(4):620-630.
1650	
1651	Yu, H and D Tweedie, 2013, A Perspective on the Contribution of Metabolites to Drug-Drug
1652	Interaction Potential: The Need to Consider Both Circulating Levels and Inhibition Potency,
1653	Drug Metab Dispos, 41(3):536-540.
1654	
1655	Zamek-Gliszczynski, MJ, CA Lee, A Poirier, J Bentz, X Chu, H Ellens, T Ishikawa, M Jamei, JC
1656	Kalvass, S Nagar, KS Pang, K Korzekwa, PW Swaan, ME Taub, P Zhao, A Galetin, and C
1657	International Transporter, 2013, ITC Recommendations for Transporter Kinetic Parameter
1658	Estimation and Translational Modeling of Transport-Mediated PK and DDIs in Humans, Clin
1659	Pharmacol Ther 94(1):64-79.
1660	
1661	Zamek-Gliszczynski, MG, X Chu, JW Polli, MF Paine, and A Galetin, 2014, Understanding the
1662	Transport Properties of Metabolites: Case Studies and Considerations for Drug Development,
1663	Drug Metab Dispos, 42(4):650-654.
1664	
1665	Zhang, L, YD Zhang, JM Strong, KS Reynolds, and SM Huang, 2008, A Regulatory Viewpoint
1666	on Transporter-Based Drug Interactions, Xenobiotica, 38(7-8):709-724.
1667	
1668	Zhao, P, M Rowland, and SM Huang, 2012, Best Practice in the Use of Physiologically Based
1669	Pharmacokinetic Modeling and Simulation to Address Clinical Pharmacology Regulatory
1670	Questions, Clin Pharmacol Ther, 92(1):17-20.
1671	
1672	Zhao, P, L Zhang, JA Grillo, Q Liu, JM Bullock, YJ Moon, P Song, SS Brar, R Madabushi, TC
1673	Wu, BP Booth, NA Rahman, KS Reynolds, E Gil Berglund, LJ Lesko, and SM Huang, 2011,
1674	Applications of Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation
1675	During Regulatory Review, Clin Pharmacol Ther, 89(2):259-267.
1676	