
## Canadian Pharmacogenomics Network for Drug Safety



Prevention of Adverse Drug Reactions in Childhood by Identifying Predictive Genomic Markers: Use of Big (and Small) Data

Bruce Carleton British Columbia Children's Hospital BC Children's Hospital Research Institute, Vancouver University of British Columbia

### The Canadian Pharmacogenomics Network for Drug Safety has received financial support for its adverse drug reaction research from:

Canada Foundation for Innovation (CFI), Canadian Institutes of Health Research, Genome Canada, Genome British Columbia and the Provincial Health Services Authority. POPi has also received support by the University of British Columbia, Child & Family Research Institute (Vancouver), Health Canada, Michael Smith Foundation for Health Research, Eli Lilly Canada (unrestricted), Janssen Ortho Canada (unrestricted) Pfizer Canada (unrestricted) and Dynacare Next.

All industry funding was a partnership requirement of federal peer-reviewed Genome Canada research applications.

There are no patents or patents-pending for any of this work anywhere in the world.

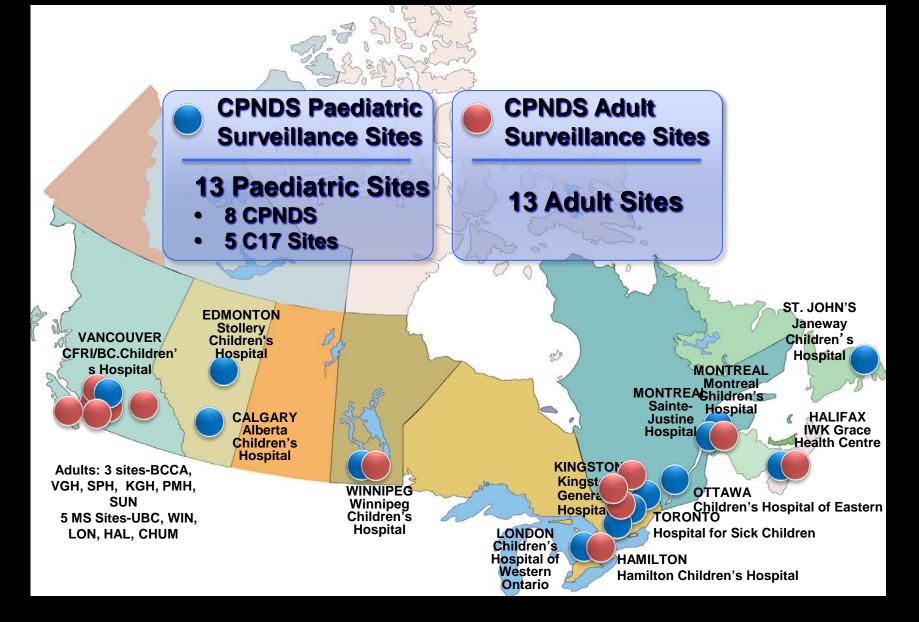
## **Big Clinical Data Challenges**

- Population Health Data is great, but drug outcomes remain a limitation
  - Particularly for quantifiable outcome data on specific outcomes (e.g., degree of cardiotoxicity induced by anthracyclines)
  - If such data can be linked, which data?
    - Pediatric echocardiography is done at baseline and throughout therapy
    - Test results bounce around
      - measurement error?
      - Measured too close to anthracycline dose?

## **ADR Case Definitions**

## Critical a priori need

- CTCAE definitions are rarely quantitative enough to use without modification
- Definition develops as data are collected and plan for analysis is refined
- Modifications to case definition are always needed over time as more data become available and more research is published


## Pharmacoepidemiology Big Data Methods

- Good at describing and dealing with limitations in the data
- Another approach is to go into the clinical data itself and define how best to address limitations
  - Sometimes best approach is to collect more data prospectively such that temporal relation between drug and outcome is better understood
  - Required data can be hidden in the clinical record where it is not expected

## Canadian Pharmacogenomics Network for Drug Safety (CPNDS)

- Established & co-founded in 2004 by Bruce Carleton first as GATC, then CPNDS
- Pan-Canadian network with clinical surveillance and research personnel located at 13 pediatric and 13 adult hospitals and clinics across Canada
- Collects detailed information on ADRs from medical records and patients/families, other sources
- Purpose-built to find high-association pharmacogenomic biomarkers, create innovative tools (pharmacogenomic tests) to predict the likelihood of ADR risk and implement drug-safety solution strategies

## **CPNDS Network in Canada**



# How are Targeted ADRs identified?

- Targeted surveillance for ADRs of interest to member institutions and Network Executive Steering Committee
- Standardized case definitions
- Complete data; clinician surveillors are paid by the Network but work under contract to the Network at local sites

## **CPNDS ACTIVE Surveillance**

- Responsive to local needs
- No local funding, despite my efforts and the alarming number of ADRs of clinical relevance
- Best way to determine ADR causation is to witness it or find temporal relations that can be further explored (e.g., ECGs before/after drug administration in two unlabeled populations receiving ondansetron)

## Surveillance Tools

Clinical Characterization System Development: Case Definitions

- serious skin rashes (SJS/TEN, HSS) data collection form
- nephrotoxicity (cisplatin)
- pancreatitis
- thrombosis
- hepatotoxicity (valproic acid)
- Clinical Characterization Quality Assurance
- Site quarterly reporting
- Training Logs: Site visitation and training



### Standardized data collection

#### Rash

| Morphology: | Typical targets               |  |  |  |  |
|-------------|-------------------------------|--|--|--|--|
|             | Raised atypical targets       |  |  |  |  |
|             | Flat atypical targets         |  |  |  |  |
|             | Macules with/without blisters |  |  |  |  |
|             | Erythema                      |  |  |  |  |
|             | Other                         |  |  |  |  |
|             |                               |  |  |  |  |

#### Description:

| % BSA affected:        |
|------------------------|
| % BSA skin detachment: |
| Duration of eruption:  |

Photographs: Yes 🗆 No 🗆

 Mucous membrane involvement
 Yes
 No

 Number of sites affected:
 Location:

Fever Yes No Peak temperature: Time of onset:

Lymphadenopathy Yes I No I Number of sites affected: Location:

#### Diagnostics

| Blood count:        | Yes 🗌 No 🗌 |
|---------------------|------------|
|                     | Result:    |
| Liver function test | Yes 🗌 No 🗌 |
|                     | Result:    |
| Renal function test | Yes 🗌 No 🗌 |
|                     | Result:    |
| Dermatology consult | Yes 🗌 No 🗌 |
|                     | Result:    |
| Skin biopsy         | Yes 🗌 No 🗌 |
|                     | Result:    |
| Other:              | Result:    |
|                     |            |

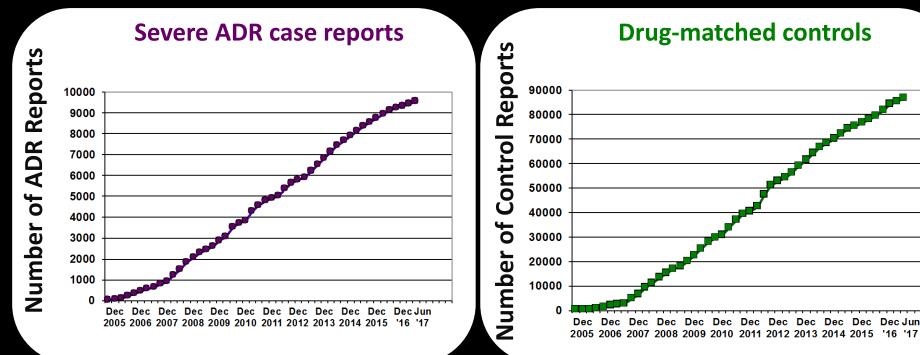
#### Other organ manifestations


| Lung:     | Yes 🗆 No 🗆   |
|-----------|--------------|
|           | Description: |
| CNS:      | Yes 🗌 No 🗌   |
|           | Description: |
| Heart:    | Yes 🗌 No 🗌   |
|           | Description: |
| Muscle:   | Yes 🗌 No 🗌   |
|           | Description: |
| GI tract: | Yes 🗌 No 🗌   |
|           | Description: |
| Thyroid:  | Yes 🗌 No 🗌   |
|           | Description: |
|           |              |

#### Infections/Virus reactivation

| HIV                   | Yes 🗆 | No 🗆 | Not assessed 🗆 |
|-----------------------|-------|------|----------------|
| HHV-6                 | Yes 🗆 | No 🗆 | Not assessed 🗆 |
| Mycoplasma pneumoniae | Yes 🗆 | No 🗆 | Not assessed 🗆 |
| Other:                |       |      |                |

Canadian
 Pharmacogenomics
 Network
 for Drug Safety


# Could take 4-5 hours, or up to 4-5 days to complete clinical characterizations



| DNA   | Inform  | nation             |                  |                    |                          |                                                                    |              |                        |              |           |             |                  |            |
|-------|---------|--------------------|------------------|--------------------|--------------------------|--------------------------------------------------------------------|--------------|------------------------|--------------|-----------|-------------|------------------|------------|
|       | San     | nple colle         | ected            | (                  | Collection (             | method ?                                                           | D            | ate sent to            | CMMT         | ?         | Courier tra | cking/bill of la | ading #?   |
| Patie | ent     |                    | C                | Blood              | Saliva                   | OBuccal S                                                          | wab          | 21/02/20               | )12 21-1     | eb-2012   |             |                  |            |
| Moth  | ier 🔘   | Yes OI             | No               | Blood              | Saliva                   | OBuccal S                                                          | wab          | 21/02/20               | 12 21-1      | eb-2012   |             |                  |            |
| Fath  | er O    | Yes 🔘              | No               | Blood              | OSaliva                  | OBuccal S                                                          | wab          |                        | DD-          | мм-үүүү   |             |                  |            |
| Patie | nt Inf  | ormatio            | n                |                    |                          |                                                                    |              |                        |              |           |             |                  |            |
| 1.1 [ | Date of | birth 2            | 25-05-           | 1998               | 25-May-1998              | Age at ti                                                          | me of        | <sup>f</sup> enrolment | 13.7         | years     |             |                  |            |
| 1.2   | leight  | [ [ ]              | inches           | <b>130.8</b> c     | m Body S                 | urface Area                                                        | 0.93         | m <sup>2</sup>         |              |           |             |                  |            |
| 1.3   | Veight  |                    | lbs              | <b>24</b> k        | g                        |                                                                    |              |                        |              |           |             |                  |            |
| 1.4 ( | Country | y of Ance          | estry ?          |                    |                          |                                                                    |              |                        |              |           |             |                  |            |
| F     | Patient | Ire/Ge             | rm/Ei            | ng 🔻               |                          |                                                                    |              |                        |              |           |             |                  |            |
| ľ     | other   | Ireland            | d/Geri           | man 🔻              | Maternal g               | Irandmothei                                                        | Irel         | and                    | <b></b> ₹]   | laternal  | grandfather | Germany          | <b>   </b> |
| F     | ather   | Germa              | ny/En            | glan 🔻             | Paternal g               | randmother                                                         | Ger          | many                   | <b>▼</b> ] P | aternal g | grandfather | England          | •          |
| 1.5 9 | Sex 🔘   | Male O             | Femal            | e OUn              | known                    |                                                                    |              |                        |              |           |             |                  |            |
| r     | lotes   | Protoco<br>Modifie | ol AAL<br>ed Pro | L0434,<br>tocol 0  | Arm C (E<br>232 (Sept    | ell acute ly<br>December 2<br>tember to 1<br>cember 200            | 2006<br>Nove | to Septem<br>mber 2008 | ber 20<br>3) |           | ember 200   | 6                | <u>_</u>   |
|       |         | Anthra             | cyclin           | es give<br>ven: To | n: Total c<br>tal body r | lative dos<br>umulative<br>adiation, <u>1</u><br>ion, <u>1200c</u> | dose         | : 275mg/r<br>Gy (Decer | nber 2       |           |             |                  | -          |

| 6.1 Generic Name tobramycin              |                                                             | 0       |
|------------------------------------------|-------------------------------------------------------------|---------|
| Dose ? 35-40 mg q8h                      | Total daily dose ?                                          | :       |
| Dose/kg ?                                | Combination Product ? OYes  No (If "Yes" press: +)          | Switch  |
| Route used 🔿 Oral 🔘 IV 🛛 I               | M OSC OOther:                                               |         |
| Therapy Dates: ? from 09/11              | /2009 09-Nov-2009 to 11/02/2010 11-Feb-2010 Duration 94 day | /S      |
| Indication ?                             |                                                             |         |
| Brand Name ?                             | Manufacturer ?                                              |         |
| Therapeutic Class ? antibiotic           | -aminoglycoside                                             | ▼ 🔍     |
| Notes ? Intermittent: 09/11              | 1/09-11/11/09, 11/12/09-21/12/09, 27/01/10-11/02/10         |         |
| 6.1 Generic Name vancomycin              |                                                             | 0       |
| Dose ? 150-200 mg q6-8h                  | Total daily dose ?                                          |         |
| Dose/kg ?                                | Combination Product ? OYes  No (If "Yes" press: +)          | Switch  |
| Route used 🔿 Oral 🔍 IV 🔗 I               |                                                             |         |
| Therapy Dates: ? from 29/01              | /2010 29-Jan-2010 to 13/08/2010 13-Aug-2010 Duration 196 da | iys     |
| Indication ?                             |                                                             |         |
| Brand Name ?                             | Manufacturer ?                                              |         |
| Therapeutic Class? antibiotic            |                                                             | ▼ 🔍     |
| Notes ? Intermittent: 29/01<br>-13/08/10 | L/10-10/02/10, 21/04/10-23/04/10, 18/05/10-22/05/10, 1      | 1/08/10 |

## Recruitment of ADR cases and drugmatched controls in Canada



9,537 ADR case reports

#### 86,818 Drug-matched controls

## Human Genome: ~3 billion nucleotides. Typed out 1 per mm = 3,000 km long

Judiactimi Ittgcctaacctco tggagacatoctat tgtgtaccttgtost ctttcttctactor aagttttatcato tgatattector

## Human Genome: ~3 billion nucleotides. Typed out 1 per mm = 3,000 km long x 2 copies



### Single Nucleotide Polymorphisms (SNP)

[A/G]

T/C

[T//C]

Variations in DNA (frequency >1%)
 SNPs make up >90% of genetic variation

 When comparing 2 people:
 1 SNP occurs every 1200 bp approx (= 5 differences, ~99.9% identical)

More than 15 Million known SNPs

SNPs can alter the amino acid sequence of the encoded protein as well as alter RNA splicing and transcription

New technology can test > 24 million SNPs per day



Illumina Sentrix™ Array Matrix

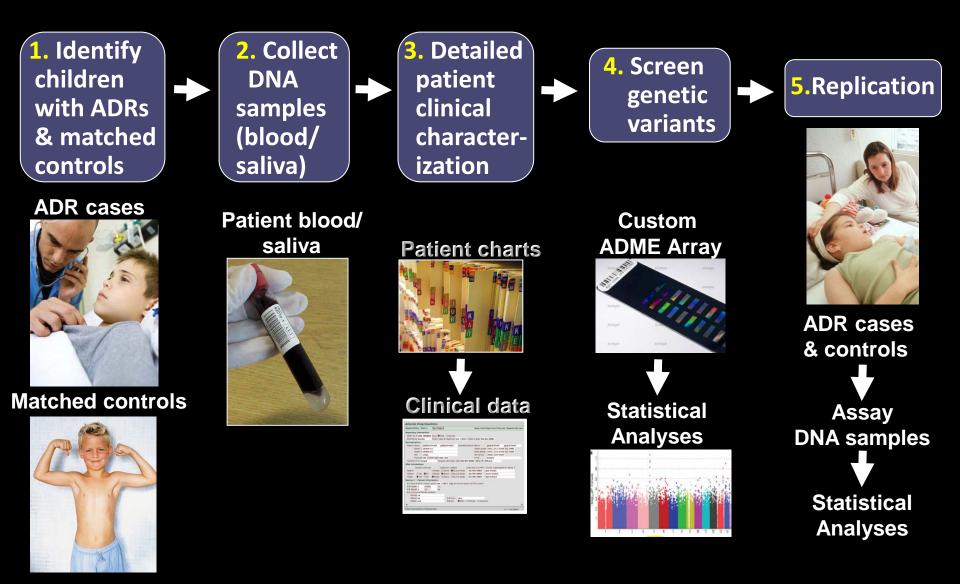
## **ADME/Tox Genes SNP Arrays**

| Gene Classification           | Examples                  |  |  |  |
|-------------------------------|---------------------------|--|--|--|
| Phase I Metabolizing Enzymes  | CYP1A1, CYP2B6, ALDH2     |  |  |  |
| Phase II Metabolizing Enzymes | UGT2B7, GSTM1, NAT1, COMT |  |  |  |
| Receptors / Drug Targets      | VDR, PPARG, CETP          |  |  |  |
| Transporters                  | ABCB1, ABCC1, ABCC2       |  |  |  |
| Transcription factors         | HNF4A, STAT3, NR1I2       |  |  |  |
| Immunity                      | HLA variants              |  |  |  |
| Ion Channels                  | SCN5A, KCNH2, KCNQ1       |  |  |  |
| Others                        | EPHX1, FMO1, PTGS1        |  |  |  |

Versions:

Initial: 2k ADME SNP panel (220 genes)




Phase II: 4.6k ADME (300 genes) or 1.2M genome-wide scan



Current: 10k ADME & 2.5-5M+ arrays Exome and genome sequencing



#### **CPNDS Biomarker Discovery Strategy**



## What Data are Missing?

- A lot
  - QoL impacts, longitudinal outcomes
  - Especially in pediatrics
    - Outcomes should be measured in yrs, not months

## Systems Pharmacology is needed

## Networks of interactions

- Drug-protein, protein-protein, cell signaling
- Physiological (at cellular, tissue, organ and whole body levels)

## Even bigger data are needed!

## If the Purpose of Surveillance is to Improve Patient Care...

- Buy-in from clinicians is critical for quantity AND quality of data submitted
- Surveillors need to know HOW the data are being used to improve reporting details
- Detailed reporting can fill in missing gaps from epidemiological databases
- Active surveillance can help confirm epidemiological findings such that practice change is more likely to occur

## **Small Data Solutions for Big Data**

- Active surveillance both retrospective and prospective to ensure proper granularity of data is captured
- Directed by relevant public health needs

These two things address data limitations
 Get whatever data you desire or need

## **Case Report**

A previously healthy 10-year-old child presented with neuroblastoma to B.C. Children's Hospital

Began doxorubicin chemotherapy

Prior to last cycle of treatment, child became unwell during a routine CT scan at BC Children's Hospital

- Intubated and rushed to ICU
- Developed serious cardiac dysfunction, virtually no cardiac output

Child placed on extracorporeal membrane oxygenation (ECMO) (heart-lung machine)

- Child received a heart transplant
- First transplanted heart rejected
- Child received a second heart transplant

Child is currently cancer remission

## **Anthracycline-induced Cardiotoxicity**

- Most important risk factor is high cumulative dose
- However there is no absolute safe dose
- Large inter-individual variability suggests genetic susceptibility

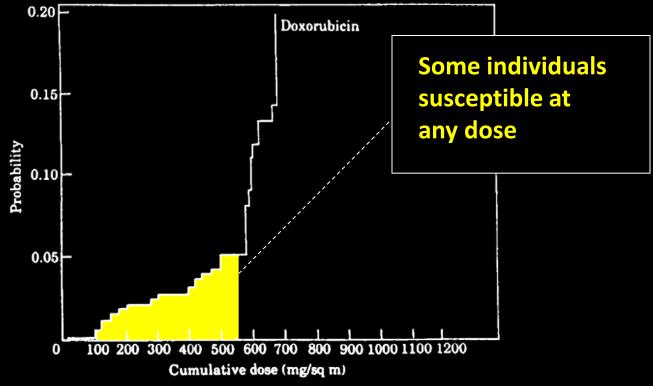
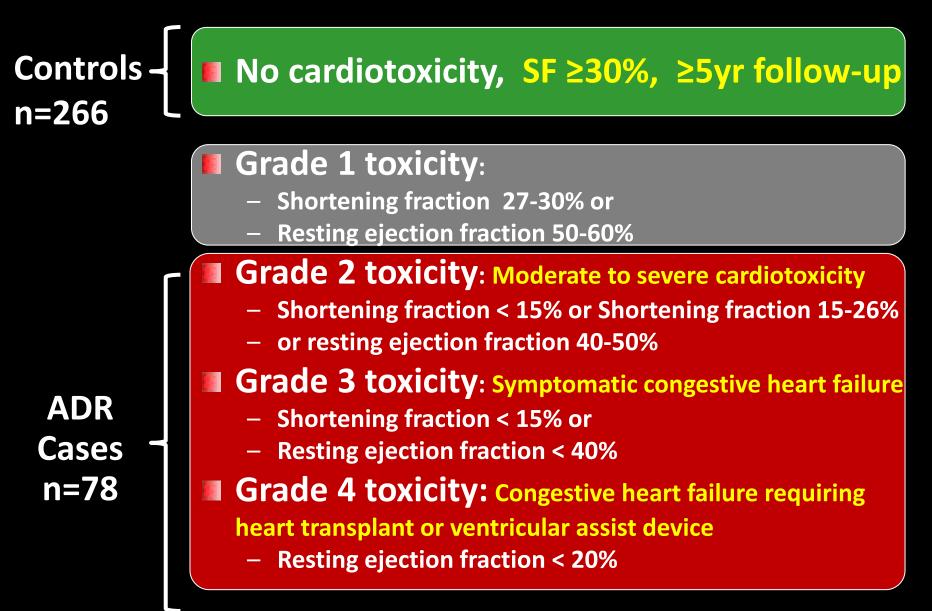
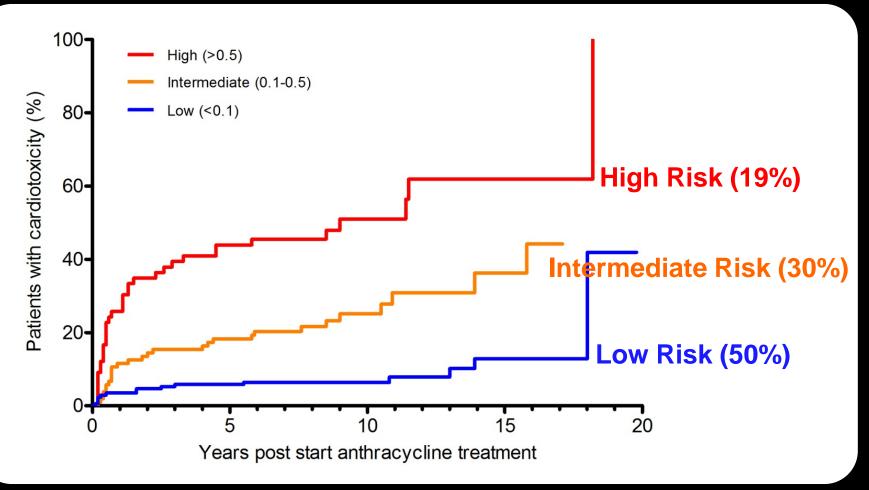




Figure adopted from: Launchbury & Habboubi. *Cancer Treat Rev.* 1993;19(3):197-228


Wouters et al. *Br J Haematol.* 2005;131(5):561-78 Lipshultz et al. *Heart.* 2008;94(4):525-33

## **Classification of Anthracycline-Cardiotoxicity**



Modified National Cancer Institute Common Terminology Criteria for Adverse Events v3.0 *With modified Grade 1 from 24-30% SF to 27-30% SF* 

#### SLC28A3 + UGT1A6 + Clinical Variables for Risk Prediction of Anthracycline Cardiotoxicity



ROC: AUC (SNPs + Clinical) = 0.76

#### Cdn Cohorts

#### **1<sup>ST</sup> GWAS of Anthracycline Cardiotoxicity uncovers** *RARG*

Stage 1& 2 – Discovery & Replication, European Patients

|                             | Canada<br>280 patients                 |                        | The Netherlands<br>96 patients |                                  |                    |                            | nbined<br>patients |  |
|-----------------------------|----------------------------------------|------------------------|--------------------------------|----------------------------------|--------------------|----------------------------|--------------------|--|
| <u>Gene</u> <u>Variant</u>  | <u>O.R</u> <u>P-valı</u>               | ue                     | <u>O.R.</u>                    | <u>P-value</u>                   |                    | <u>O.R.</u>                | <u>P-value</u>     |  |
| RARG rs2229774              | 6.0 4.1x1                              | <b>0</b> <sup>-8</sup> | 4.1                            | 0.0043                           |                    | 4.9                        | <b>1.2x10</b> -9   |  |
|                             |                                        |                        |                                |                                  |                    |                            |                    |  |
|                             |                                        |                        |                                |                                  |                    |                            |                    |  |
| Stage 3 – Ro<br>(N          | / <mark>ide:</mark><br>ntrols)         | Variant<br>rs2229774   | <u>O.R</u><br>> 6              | . <u>-va</u><br>0.00             |                    |                            |                    |  |
|                             | Africans<br>11 patients                | Hispa<br>23 pat        |                                | First Nat<br>15 patie            |                    | East Asians<br>31 patients |                    |  |
| <u>Variant</u><br>rs2229774 | <u>O.R</u> <u>P-value</u><br>9.5 0.026 | <u>O.R</u> P<br>12.3   | <mark>-value</mark><br>0.052   | <u>O.R</u> <u>P-v</u><br>9.9 0.0 | <u>alue</u><br>)12 | <u>0.</u><br>5.            |                    |  |

## **Novel Biomarker in Adult Patients**

| Adult Cancer Patients from BCCA, VGH and SPH<br>N = 73 patients: 41 cases and 32 drug-matched controls |                |             |                |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|----------------|-------------|----------------|--|--|--|--|--|
| <u>Gene</u>                                                                                            | <u>Variant</u> | <u>O.R.</u> | <u>P-value</u> |  |  |  |  |  |
| RARG                                                                                                   | rs2229774      | 11.0        | 0.0064         |  |  |  |  |  |

|                   |           |                              |              |                 | Logistic Regression Analysis (Additive Model) |                                    |        |                         |  |
|-------------------|-----------|------------------------------|--------------|-----------------|-----------------------------------------------|------------------------------------|--------|-------------------------|--|
| Genetic Biomarker |           |                              |              |                 |                                               | Without Covariates Adjusting for I |        |                         |  |
| Gene              | Variant   | Function                     | MAF<br>Cases | MAF<br>Controls | Р                                             | Odds Ratio<br>(95%Cl)              | Ρ      | Odds Ratio<br>(95%Cl)   |  |
| RARG              | rs2229774 | NON-SYN<br>CODING<br>(S427L) | 0.073        | 0               | 0.0067                                        | 1.5 x 10 <sup>+16</sup>            | 0.0064 | 1.7 x 10 <sup>+16</sup> |  |

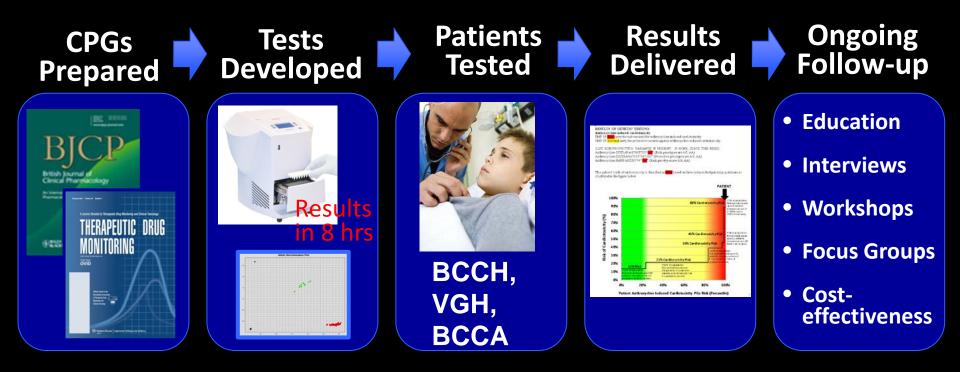
#### Manuscript in Preparation



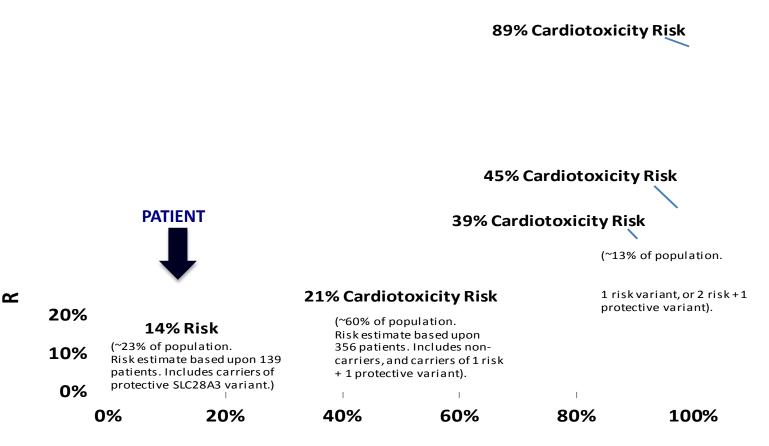
## A coding variant in *RARG* confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer

Folefac Aminkeng<sup>1,2,13</sup>, Amit P Bhavsar<sup>2,3,13</sup>, Henk Visscher<sup>1,4</sup>, Shahrad R Rass**Akhin Kengret a**<sup>1,3</sup>, **Impresse2**015 Liam R Brunham<sup>6</sup>, Huib N Caron<sup>7</sup>, Elvira C van Dalen<sup>7</sup>, Leontien C Kremer<sup>7</sup>, Helena J van der Pal<sup>7,8</sup>, Ursula Amstutz<sup>2,3,12</sup>, Michael J Rieder<sup>9</sup>, Daniel Bernstein<sup>10</sup>, Bruce C Carleton<sup>2,3,11,14</sup>, Michael R Hayden<sup>1,2,6,14</sup>, Colin J D Ross<sup>1-3,11,14</sup> & The Canadian Pharmacogenomics Network for Drug Safety Consortium<sup>15</sup>




### Personalized Medicine Program (PMP):

Implementation of a Pharmacogenomic ADR Prevention Program in British Columbia




ADRs: Cisplatin-induced ototoxicity
 Anthracycline-induced cardiotoxicity

 Sites: BC Children's Hospital, BCCA, and VGH



#### Pediatric Anthracycline Cardiotoxicity Risk Prediction Tool



Patient Anthracycline-Induced Cardiotoxicity PGx Risk (Percentile)

## Potential Clinical Options for Personalized Anthracycline Therapy

Depending on risk prediction, clinician could take different actions:

### Low Risk

- Echocardiogram follow-up as usual

### **Intermediate Risk**

Intensify echocardiogram follow-up

e.g. patients in rural centres often miss appointments

## High Risk

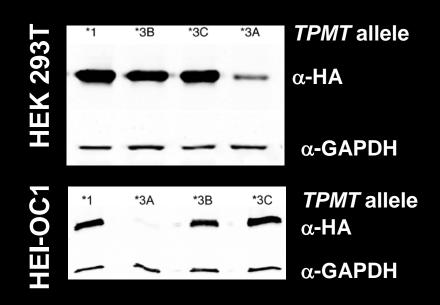
- Alternative medication or dose
- Add cardioprotectant (e.g. dexrazoxane)
- Start treatment with ACE-inhibitors or beta-blockers to prevent further damage

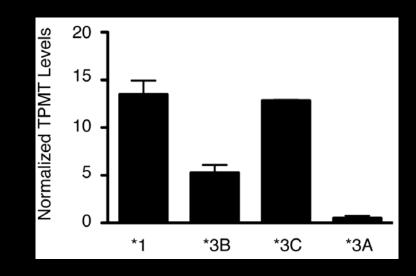
## Functional Validation of Pharmacogenetic Biomarkers



RESEARCH ARTICLE

Pharmacogenetic variants in *TPMT* alter cellular responses to cisplatin in inner ear cell lines


Amit P. Bhavsar<sup>1,2<sup>a</sup></sup>, Erandika P. Gunaretnam<sup>1,2,3</sup>, Yuling Li<sup>2,3</sup>, Jafar S. Hasbullah<sup>2,4</sup>, Bruce C. Carleton<sup>2,3</sup>, Colin J. D. Ross<sup>1,2</sup>\*


Aim: Explore the impact of pharmacogenetic variants in *TPMT* on cellular responses to cisplatin

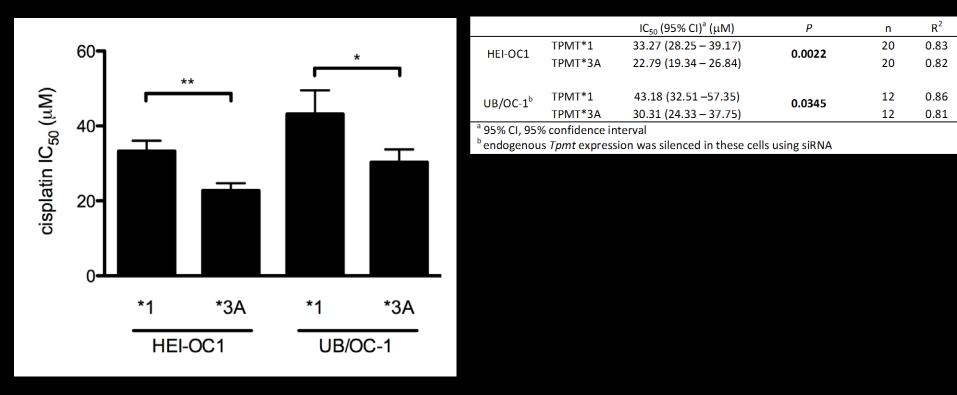
Approach:

- 1. Express *TPMT* variants in murine inner ear cell lines (HEI-OC1 and UB/OC-1)
- 2. Monitor the impact of *TPMT* variants on cisplatin response in these cell lines by measuring:
  - Cytotoxicity (MTT assay)
  - Activation of a sensitive cisplatin-response gene (*TLR4*)

## Results: TPMT variants expressed in cells, and as expected, TPMT\*3A is unstable in cell culture



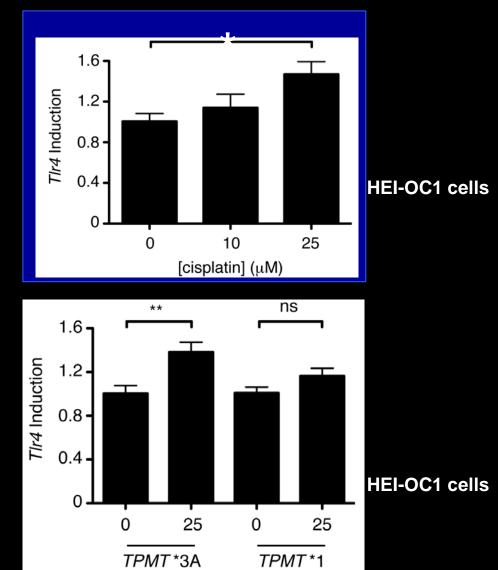



Western blot of HA-epitope tagged TPMT constructs: \*3B (Ala154Thr) \*3C (Tyr240Cys) \*3A (Ala154Thr, Tyr240Cys)

• TPMT\*3A is especially unstable

## Normalized protein expression

 Reduced protein levels of \*3B and \*3A


## Results: TPMT\*3A expression sensitizes cells to cisplatin cytotoxicity compared to \*1 (wild-type)

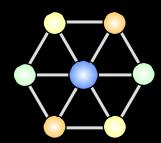


 TPMT\*3A-expressing cells have cellular phenotypes consistent with higher effective cisplatin concentrations Results: TPMT \*3A expressing cells exhibit a significantly greater response to cisplatin, as measured by TLR4, a sensitive marker of cisplatin-response

- TLR4 is a sensitive cisplatin biosensor:
  - TLR4 expression is induced by increasing cisplatin concentrations

- TPMT\*3A-expressing cells exhibit significantly increased TLR4-response to cisplatin
  - Consistent with higher effective cisplatin concentrations in TPMT\*3A expressing cells




#### **Cisplatin Functional Validation Summary**

- Multiple independent *in vitro* cisplatin phenotypes altered by genetic variations in *TPMT* gene
- Validates a cisplatin-TPMT drug-gene interaction
- Functionally validates the pharmacogenomic association between TPMT variants and cisplatin ototoxicity:
  - TPMT\*3A-expressing cells have cellular phenotypes consistent with higher effective cisplatin concentrations
  - Suggests TPMT is involved in cisplatin metabolism
  - We postulate that a nephrotoxic glutathione-derived cisplatin-thiol conjugate<sup>1,2</sup> could act as a TPMT substrate
    - 1. Townsend, D. M. *et al. J Am Soc Nephrol* 14, 1-10 (2003).
    - 2. Zhang, L. & Hanigan, M. H. *J Pharmacol Exp Ther* 306, 988-994, (2003).



## **Concerns for the Future**

- National and international networks are needed
  - Particularly in childhood or rare diseases
- No real funding options for sustained funding of international networks
  - Need longitudinal Big Data for outcomes, particularly in childhood cancer where late effects of drugs are an increasing concern



### Canadian Pharmacogenomics Network for Drug Safety



At the Child & Family Research Institute Children's & Women's Health Centre of British Columbia Vancouver, CANADA

## **Contact/Questions**

Bruce Carleton, Professor and Chair Division of Clinical Pharmacology Department of Paediatrics, Faculty of Medicine University of British Columbia

bcarleton@popi.ubc.ca