The pathophysiology and retention of gadolinium

Brent Wagner, MD

Associate Professor of Medicine

South Texas Veterans Health Care System, Department of Medicine/Nephrology
University of Texas Health Science Center at San Antonio, San Antonio, Texas
Objectives

- **Elucidation** of the mechanisms of gadolinium-based contrast agent-induced toxicity is an **active area of investigation**

- The focus of this presentation is the work in my laboratory concerning the **mechanisms** of gadolinium-based contrast agent **toxicity** and how this is **manifested systemically**

- A **model** has been **established** in rodents

- One gadolinium-based contrast agent has been used in these experiments, Omniscan (gadodiamide/caldiamide), but the **findings** may be **applicable** for the other gadolinium-based contrast agents
Overview

- There are many different chemical formulations of gadolinium-based contrast agents used in magnetic resonance imaging.
- Gadolinium-based contrast agents have been linked to ‘nephrogenic’ systemic fibrosis cases.
- There is evidence that gadolinium is deposited in the central nervous system.
- The central nervous system toxicity warrants more study.
- Gadolinium-based contrast agents are biologically active.
- Little is known about the metabolism of gadolinium-based contrast agents, their biologic effects, and the implications of retained gadolinium.
- The toxic effects and mechanisms of gadolinium-based contrast agents is a major gap in our knowledge.
- Understanding the pathophysiology of gadolinium-induced systemic fibrosis will be critical for future discoveries.
- How gadolinium from different contrast agents distributes throughout the body is an active area of investigation.

Wagner B et al, Adv Chronic Kidney Dis, 2017
The periodic table of elements

<table>
<thead>
<tr>
<th>H</th>
<th>He</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>Be</td>
</tr>
<tr>
<td>Na</td>
<td>Mg</td>
</tr>
<tr>
<td>K</td>
<td>Ca</td>
</tr>
<tr>
<td>Rb</td>
<td>Sr</td>
</tr>
<tr>
<td>Cs</td>
<td>Ba</td>
</tr>
<tr>
<td>Fr</td>
<td>Ra</td>
</tr>
<tr>
<td>La</td>
<td>Ce</td>
</tr>
<tr>
<td>Ac</td>
<td>Th</td>
</tr>
</tbody>
</table>
‘Nephrogenic’ systemic fibrosis, a man-made disease caused by magnetic resonance imaging contrast agents

Gadolinium-based contrast agents can be acutely nephrotoxic in humans

Degeneration of tubular epithelial cells

Flattening of tubular epithelial cells

Calcium phosphate

Cellular proliferation

Glomerulosclerosis

Toluidine blue stain - Kidney

H&E stain - Kidney

Immunostain - Kidney

Electron microscopy - Kidney

Akgun H et al, Archives of Pathology & Laboratory Medicine, 2006
Widespread biodistribution of gadolinium-based contrast; remnants in the kidney cortex up to 7 days after a single, clinically-relevant injection in rat

Differential effects of gadolinium-based contrast agents in rats

H&E staining - Skin

Immunohistochemical staining – Skin
Fibronectin
GAPDH

Immunoblot - Skin

Gadodiamide administration in mice with normal renal function

Mice (C57BL6)

Control

Gadodiamide

Kidney

Skin

Gadodiamide (20-25 doses)

(2.5 mmol/kg body weight, i.p.)

Sacrifice

Gadolinium content, kidney

Gadolinium content, skin

Gadolinium content, cerebrum

Gadolinium content, cerebellum

0

2000

4000

60

20

40

0

500

1000

5000

0

20

40

60

0

500

1000

2000

4000

5000

Gadolinium (µg/g tissue)

Gadolinium (µg/g tissue)

Gadolinium (ng/g tissue)

Gadolinium (ng/g tissue)
Electron microscopy shows *electron-dense deposits* in the kidneys of gadodiamide-treated mice *with normal renal function*.

Transmission electron microscopy - Glomeruli

Transmission electron microscopy - Tubules

Wagner laboratory, unpublished
The renal deposits resemble Gd$_2$O$_3$ disordered mesh-like nanowire/nanoparticle aggregates *in vitro*

Transmission electron microscopy - Mesangium

Transmission electron microscopy - Tubule

Transmission electron microscopy - Water

Transmission electron microscopy – Phagolysosomal-simulated fluid

Wagner laboratory, unpublished

Gadodiamide induces renal fibrosis in mice

Control
Gadodiamide

PAS staining - Kidney
Fibronectin
Collagen IV

Control
Gadodiamide

PAS staining - Kidney

免疫印迹 - 皮肤

Wagner laboratory, unpublished

Fibronectin
GAPDH
220 kDa
Gadodiamide induces oxidative stress in the mouse kidney

DHE fluorescence with confocal laser scanning microscopy

Amplex red assay

Wagner laboratory, unpublished
Gadodiamide induces skin fibrosis in mice with normal renal function

H&E staining - Skin

Cellularity

Skin fold thickness

Control
Gadodiamide
Control
Gadodiamide

Immunofluorescent staining - Skin

Fibronectin (marker of fibrosis)

DAPI (nuclei)

Wagner laboratory, unpublished
Gadodiamide treatment leads to inflammation and bone marrow-derived cells to the dermis in mice with normal renal function.

Wagner laboratory, unpublished
Gadodiamide increases oxidative stress in the skin of mice with normal renal function.

3-Nitrotyrosine

Control | Gadodiamide

DAPI (nuclei)

Control | Gadodiamide

Immunofluorescent staining - Skin

In situ DHE staining and confocal microscopy - Skin

Wagner laboratory, unpublished
Experimental design: Tagged bone marrow transplant in mice with normal renal function

Green fluorescent protein (GFP) donor mice

1 \times 10^7 cells

Engraftment

Control

Gadodiamide

2.5 mmol/kg i.p. for 4 weeks

GFP

Collagen IV

Merge

DAPI (nuclei)

Immunofluorescent staining – Kidney

Wagner laboratory, unpublished
Gadodiamide induces the recruitment of bone marrow-derived fibroblasts to the skin in mice
Biopsies of patients with NSF demonstrate significant expression of the hematopoietic progenitor marker CD34.

*H&E staining - Skin
Dermal hyper-cellularity

*Immunostaining for CD34 - Skin

Clinical photographs of a patient showing skin lesions

Conclusions

- **Gadolinium retention** can be detected in **humans** and in **our models**; This allows the **mechanistic** study of gadolinium-induced **organ injury**

- The pathologic **effects** of gadolinium-based contrast agents are **not well-characterized**

- Our experiments show that **renal insufficiency** is **not requisite** for fibrosis

- Mechanistically, our experiments demonstrate that it is the recruitment of **bone marrow-derived cells** that mediate the **deleterious actions**

- We provide examples of important avenues to **understanding the mechanisms of disease** (lending itself to the **discovery of biomarkers**)

- **Dechelation** of gadolinium is a **hypothetical** pathologic mechanism.

- Studies concerning the biologic effects of **rare earth metals** in general and their **retention** in human organs are in the **nascent stage**

- The **science** on this topic is at **ground zero**
Working hypothesis

Patient with normal kidney function

MRI
Gadolinium-based contrast exposure

Gadolinium-induced disease

Impaired function

Gadolinium retention

Organ injury

MRI
Gadolinium-based contrast exposure

Biomarkers
Precision/Personalized Medicine
Working hypothesis

Patient with normal kidney function

Gadolinium-based contrast exposure

Gadolinium retention

Organ injury

Impaired function

Gadolinium-induced disease

Pre-existing conditions (obesity, diabetes, pregnancy, inflammation, etc.)

MRI

Gadolinium-based contrast exposure
Acknowledgments

UTHSCSA
Nephrology

Wagner’s Laboratory
- Chunyan Tan
- Catherine Do, M.D.
- Viktor Drel, Ph.D.

Yves Gorin, Ph.D.
- Denis Féliers, Ph.D.
- Jeffrey L. Barnes, Ph.D.
- Seema Ahuja, M.D.
- Doug-Yoon Lee, Ph.D.
- Hanna E. Abboud, M.D.

Rush University Medical Center
Internal Medicine Department
- Jochen Reiser, M.D., Ph.D.

Northwestern

Keith MacRenaris, Ph.D.

UTSA

Miguel Yacaman, Ph.D.
Josefina Arellano-Jimenez, Ph.D.

UNC

Michael Jay, Ph.D.
John Prybylski, Ph.D.

Supported by:

- NIDDK
 NIH RO1DK102085 (PI)

- Veterans Administration
 Merit Award I01BX001958 (PI)
 Career Development Award (PI)
 VISN 17 New Investigator Award (PI)