

Approaches to Tuberculosis Diagnostics

Marco Schito, Scientific Director, Critical Path to TB Drug Regimens 19 July 2017

- 1. Available diagnostic tools
- 2. Culture: the gold standard?
- 3. Molecular tools in development
- 4. Molecular diagnostic utilization
- 5. Diagnostic discrepancies
- 6. Sequence-based assays
- 7. Clinical trial applications

ADVANCES IN AVAILABLE DIAGNOSTIC TOOLS

Critical Path to TB Drug Regimens

Conventional microscopy

Solid Cultures

Conventional, phenotypic DST

Conventional PCR

Strip speciation

Conventional chest X-ray

IGRAs

LED/FM

microscopy

Molecular DST (LPAs)

Liquid Culture

Urine LAM

MIC Sensititer

Xpert MTB/RIF & Ultra

LAMP

Portable X-ray

PET-CT

DIAGNOSTIC TESTS ACROSS TUBERCULOSIS DISEASE SPECTRUM

- Over 30% of the world's population is infected (2.2 B)
- Only ~5–10% will develop clinical disease (110 M)

 Researchers understand little about what distinguishes individuals whose infection progresses to active tuberculosis (TB) from those whose infection remains latent for decades

CULTURE: GOLD STANDARD

Pathogen-specific challenges

- TB grows slowly (3-4 weeks)
- Contamination issues
- Laboratory delays
 - Poor sample quality
 - Batch runs
 - Adjudication
 - Results back to patient

Phenotypic DST

- Additional 4-6 weeks (1st line)
- Additional 4-6 weeks (2nd line)
 - Limited capacity

PHENOTYPIC DRUG SUSCEPTIBILITY TESTS (DST)

Established challenges

- Huge investment in past decade
- Technical capacity and retention
- Infrastructure and biosafety
- Quality issues and contamination rates

Emerging challenges

- Maintenance of infrastructure and capacity
- Appropriate infection control measures and programs for staff screening
- New costs and legislation for international transfer

Need for rapid POC tests

MOLECULAR GENOMIC REVOLUTION

Tech in development

- Phage-based
- Breath detection
- Biomarkers

NEW TOOLS: PROBE-BASED GENEXPERT MTB/RIF ASSAY

- Critical Path to TB Drug Regimens
- WHO endorsed in 2010 & FDA cleared in 2013
- Provide result from sputum in 2 hours
 - Identify TB and determine resistance to Rifampicin (Rif)
 - Ultra-cartridge as sensitive as culture but lower specificity
 - New "Omni" form factor for point-of-care applications
 - New XDR cartridge will expand the drug menu

LOW UTILIZATION OF NEW TOOLS

RESEARCH ARTICLE

Low implementation of Xpert MTB/RIF among HIV/TB co-infected adults in the International epidemiologic Databases to Evaluate AIDS (IeDEA) program

Kate Clouse^{1,2,3}, Meridith Blevins^{1,4}, Mary Lou Lindegren^{1,2}, Marcel Yotebieng⁵, Dung Thi Nguyen⁶, Alfred Omondi⁷, Denna Michael⁸, Djimon Marcel Zannou⁹, Gabriela Carriquiry¹⁰, April Pettit^{2,3+}, International Epidemiologic Databases to Evaluate AIDS (IeDEA) collaboration¹¹

Table 3. TB testing utilization and outcomes among 2722 adult patients.

	n (%)
TB test utilization (n = 2722)	
Received at least one TB test	2070 (76%)
Received no TB test	650 (24%)
Missing	2 (<1%)
Type of TB test performed (n = 2555)*	
AFB smear	2025 (79%)
Culture	333 (13%)
Xpert	118 (5%)
Other NAAT	79 (3%)

"Xpert utilization was low even though the majority of sites had access to the test" Clouse et al. 2017 PLoS One

Country (WHO classification)	Cartridges Procured ⁽⁾ (n)	$\begin{array}{c} \text{Modules} \\ \text{Procured} \ ^{\beta} \ (n) \end{array}$	Initial Smears ^C (n)	Smear/Xperl Cartridge Ratio ^f	% change in smear/Xpert ratio 2014-2015	Algorithm ⁴	Smear/Xpert Ratio		tio 1000	10000		
Thailand	45.190	120	192.585	4.26	-96.56	HIV+, DR, Children, EPTB			-	-		
South Africa	2,777,190	9	164,735	0.06	-96.29	All, HIV+, DR, Children, EPTB		_			2	014
Niperia	152.450	377	165,968	1.09	-96.08	HIV+, DR, Children, EPTB			_		2	015
Kenya	199,150	252	570.000	2.85	-93.99	HIV+, DR, Children, EPTB		1.		•		_
Ethiopia	165.300	36	4.600.000	27.83	-92.65	HIV+, DR, Children, EPTB				_	•	
India	766.860	140	7.026,841	9.16	-87.18	HIV+, DR, Children, EPTB			-	-		
Philippines	169.200	516	1.628,642	9.63	-77.03	HIV+, DR, Children, EPTB			-	•		
Pakistan	181,800	106	1,384,621	7.62	-75.43	HIV+, DR, Children, EPTB						
Vietnam	88,400	84	1,651,749	18.68	-70.15	HIV+, DR, Children, EPTB				-		
China	220,000##	3600##	5.079,636	23.09	-68.92	DR				-		
Myanmar	110,800	132	850,000	7.67	-66.93	HIV+, DR, EPTB ^µ						
Cambodia	38,300	135	344,345	8.99	-57.39	HIV+, DR, EPTB			-			
Mozambique	66,550	128	207,441	3.12	-49.72	HIV+, DR, Children, EPTB		1.1				
Russia	4,550	N/A	6,096,500	1,339.89	-43.85	All, Children, HIV+, DR, EPTB						i
Brazil	207,350	280	820,000	3.95	-36.22	All, HIV+, DR, Children, EPTB						
United Rep. of Tanzania	33,990	64	362,054 [#]	10.65	-11.24	All, HIV+, DR, Children, EPTB						
Uganda	84,280	24	309,068	3.67	-10.56	HIV+, DR, Children			•			
Bangladesh	116,800	2	3,615,109	30.951	-8.97	HIV+, DR, EPTB				•		
Indonesia	70,000	88	2,678,829	38.27	-2.62	HIV+, DR, Children, EPTB				•		
Afghanistan	4,450	20	437,688	98.36	165.83	HIV+, DR 4						
Zimbabwe	75,570	180	224,284	2.97	394.65	HIV+, DR, Children, EPTB		-	•=			
DR Congo	12,800	46	2,760,000	215.63	591.11	DR						

Cazabon et al. ERJ in press

Fig 1. Participating countries (n = 18) and number of patients included by each. Map created in July 2016 by Kate Ocuse using ArcMap/015 10.2.1 (bar), Redands, CAL

CONCORDANCE AMONG DIFFERENT DST ASSAYS

Why the discrepancies?

- Phenotypic test issues for some drugs
- Unknown, rare or unique Single Nucleotide Polymorphisms (SNPs)
- Epidemiological cut-off and critical concentrations poorly characterized
- Low-level mixed populations (hetero-resistance)

NEXT GENERATION SEQUENCING

NEXT GENERATION SEQUENCING FOR DRUG RESISTANCE

<u>Whole Genome</u>

- Strengths
 - Full genome
 - Comprehensive
- Weaknesses
 - Slow
 - Culture dependent
 - Expensive
 - Bioinformatics

Targeted Amplicon

- Strengths
 - Sequence direct from sputum
 - Simpler and faster
 - Deeper sequencing
 - Up to several hundred loci
- Weaknesses
 - Less information
 - Prior knowledge of targets
 - Optimization

Need for a comprehensive database to provide a priori information regarding *Mtb* drug loci and mutations associated with drug resistance

RESEQTB SEQUENCE INTERPRETATION

				NUC	Res w/	Susc w/					
Defined Criteria	Drug	Gene	AA Change	Change	Mutation	Mutation	Sens	Spec	LR+	p-value	
	AMI	rrs	NA	1401A>G	202	13	0.759	0.988	>10	0.000	\bigcirc
 Statistical 	AMI	rrs	NA	1402C>T	1	2	0.004	0.998	2.10	0.474	0
) Homoplasy	AMI	rrs	NA	1484G>T	2	0	0.008	1.000	>10	0.037	\bigcirc
	CAP	rrs	NA	1401A>G	129	38	0.713	0.960	>10	0.000	\bigcirc
3) IVIIC	CAP	rrs	NA	1402C>T	2	2	0.011	0.998	5.31	0.120	0
 Clin outcome 	CAP	rrs	NA	1484G>T	2	0	0.011	1.000	>10	0.025	\bigcirc
5 Eunctional	KAN	rrs	NA	1401A>G	112	6	0.569	0.992	>10	0.000	\bigcirc
	KAN	rrs	NA	1402C>T	0	1	0.000	0.999	0.00	0.797	Ο
Genetics	KAN	rrs	NA	1484G>T	1	0	0.005	1.000	>10	0.203	0
	MFX	gyrA	Ala90Val	269C>T	7	5	0.104	0.993	>10	0.000	\bigcirc
	MFX	gyrA	Asp94Ala	281A>C	5	5	0.075	0.993	>10	0.001	\bigcirc
	MFX	gyrA	Asp94Asn	280G>A	2	1	0.030	0.999	>10	0.021	\bigcirc
	MFX	gyrA	Asp94Gly	281A>G	21	13	0.313	0.982	>10	0.000	\bigcirc
	MFX	gyrA	Asp94His	280G>C	3	1	0.045	0.999	>10	0.002	\bigcirc
	MFX	gyrA	Gly88Ala	263G>C	0	1	0.000	0.999	0.00	0.914	Ο
	MFX	gyrA	Gly88Cys	262G>T	1	0	0.015	1.000	>10	0.086	0
	MFX	gyrA	Ser91Pro	271T>C	6	2	0.090	0.997	>10	0.000	Ó
	MFX	gyrA	Ser95Thr	284G>C	64	658	0.955	0.075	1.03	0.268	Ο

- LR>10 High confidence that the mutation confers drug or is associated with resistance.
- LR <10 or >5 O Additional data desirable for improving evidence that the mutation confers or is associated with drug resistance (include data that is available such as numerator, denominator, and lineage).
- LR<5 or >1 Inconclusive evidence that the mutation confers or is associated with drug resistance. Substantial additional data required (suggest additional clinical test to follow up).
- LR<1 No evidence of association between mutation and drug resistance.

SEQUENCING IN CLINICAL TRIALS

Transmission Relapse vs. re-infection Drug resistance Hetero-resistance

OPEN CACCESS Freedy available ordine		© PLOS		
Elucidating En Resistant Tube Patients by W	nergence and Transmiss erculosis in Treatment E Witney et al. BMC Medicine (2017) 15:71 DOI 10.1186/s12916-017-0834-4	sion of Multidrug- xperienced		
Taane G. Clark ^{1,2} , Kim Ma Ogwang ⁴ , Francis Mumbo Eisenach ^{7,3} , Moses Jolobi López ³ , Ruth McNerney ¹¹ ¹ Faculty of Infectious and Tropical I Population Health, London School of I Kingdom, 4 Joint Clinical Research Kampala, Uganda, 6 Mulago Hospital Sciences, Little Rock, Arkansas, Unite of Infectious Diseases, Department of America Abstract Background: Understand its control. MDR-TB in pri- during inadequate therapy sufficient to distinguish str- assess the degree of tra <i>tuberculosis</i> strains isolate Methods and Findings polymorphisms and large patients attending a TB re of MDR-TB cases identifie individual patients (2-15 S comprising a total of 8 pa resistance to rifampicin ; susceptible disease were i another patient in the coho Conclusions: Whole gen patient. The transmission importance of early deted resistance in patients und avoid onward transmission	<section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>	OPEN @ACCESS Freely available online First Evaluation Misdetection of Probe Assay Due Gyra Access Assay Due Access	Correction Control of the analysis software is logical to any provided the original author and source are credied. Cations: Colman RE, Schupp JM, Hicks ND, Smith DE, Buchhagen JL, Valder F, et al. (2015) Detection of Low-Lavel Mixed-Population Drug Resistance in Mycobacterium biborucius is Using High Fields Mycobacterium biborucius Using High Fields Mycobacterium and Jacobacter 24, 2014 Academic Estitor: John Z Metcalla, University of Catifornia, San Francisco, UNITED STATES Received: October 24, 2014 Accepted: April 3, 2015 Copyright: © 2015 Colman et al. This is an open access afticle distribution, and reproduction in any medium, provided the original author and source are credied. Data Arailability Statement: The analysis software is found at https://gith.ocm/TGerNonftSMOR, as anderemod in the manuaccipt, and the amplicon read dats is deposible in NH short ned active (bioproject # PR/N4271805).	<section-header><section-header><text><text><text><text><section-header></section-header></text></text></text></text></section-header></section-header>

HETERO-RESISTANCE

Hetero-resistance (low-level mixed populations)

- The presence of a small number of organisms that are resistant to an antimicrobial drug within a population that are susceptible to the drug
- May explain why failure to eradicate an infection occurs in some patients treated with seemingly appropriate antibiotics

Sensitivity of detecting hetero-resistance

Sanger: 30-50%

...TTTCTCCCTTGCTTTATGAAGAGCA... ...TTTCTCCCTTGCTTTATGAAGAGAGCA... ...TTTCTCCCTTGCTTTATGAAGAGAGCA... ...TTTCTCCCTTGCATTATGAAGAGAGCA... ...TTTCTCCCTTGCTTTATGAAGAGAGCA... ...TTTCTCCCTTGCTTTATGAAGAGAGCA... ...TTTCTCCCTTGCTTTATGAAGAGAGCA... ...TTTCTCCCTTGCTTTATGAAGAGAGCA... ...TTTCTCCCCTTGCTTTATGAAGAGAGCA...

WGS: 5-10%

<u>Culture</u>: 1-5%

Targeted: 0.01%

PREDICTING DRUG RESISTANCE

- Targeted amplicon sequencing such as the Single Molecule Overlapping Read (SMOR) assay can reduce the sequencing error rate from 1% to 0.01%
- Potential to identify populations of resistant bacteria with sensitivity that exceeds current gold standard methods

		AMK	DST	SMOR
Sample Date	Resistance	Phenotypic	Genotypic	rrs SNP (% R Allele)
10/1/2008	MDR	S	S	none
11/19/2008	MDR	S	S	none
10/15/2009	unclassified	S	S	none
1/19/2010	MDR	S	S	none
7/20/2011	MDR	S	S	1401G (0.94%)
9/27/2011	pre-XDR	S	S	none
4/30/2012	pre-XDR	S	S	1401G (3.4%)
12/21/2012	XDR	R	R	1401G (29.6%)

CAN NGS BE USED TO ASSESS HOST PHARMACOGENOMICS?

OPEN CACCESS Freely available online

O PLOS ONE

to make A CM and

Pharmacogenetic Study of Drug-Metabolising Enzyme Polymorphisms on the Risk of Anti-Tuberculosis Drug-Induced Liver Injury: A Meta-Analysis

Yu Cai¹⁹, JiaYong Yi²⁹, ChaoHui Zhou^{1*}, XiZhong Shen¹

1Department of Gastroenterology, Zhongshan Hospital, Fudan Unversity, Shanghai, People's Republic of China, 2Departments of Orthopedics, Zhongshan Hospital, Fudan Unversity, Shanghai, People's Republic of China

Abstract

Background: Three first-line antituberculosis drugs, isoniazid, rifampicin and pyrazinamide, may induce liver injury, especially isoniazid. This antituberculosis drug-induced liver injury (ATLI) ranges from a mild to severe form, and the associated mortality cases are not rare. In the past decade, many investigations have focused the association between drugmetabolising enzyme (DME) gene polymorphisms and risk for ATLI; however, these studies have yielded contradictory results.

Methods: PubMed, EMBASE, ISI web of science and the Chinese National Knowledge Infrastructure databases were systematically searched to identify relevant studies. A meta-analysis was performed to examine the association between polymorphisms from 4 DME genes (NAT2, CYP2E1, GSTM1 and GSTT1) and susceptibility to ATLL Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Heterogeneity among articles and their publication bias were also tested.

Results: 38 studies involving 2,225 patients and 4,906 controls were included. Overall, significantly increased ATLI risk was associated with slow NAT2 genotype and GSTM1 null genotype when all studies were pooled into the meta-analysis. Significantly increased risk was also found for CYP2E1*1A in East Asians when stratified by ethnicity. However, no significant results were observed for GSTT1.

Conclusions: Our results demonstrated that slow NAT2 genotype, CYP2E1*1A and GSTM1 null have a modest effect on genetic susceptibility to ATLL

...our meta-analysis indicates that CYP2E1, NAT2 and GSTM1 genetic variation is significantly associated with anti-tuberculosis drug-induced liver injury. (PLoS One. 2012; 7(10): e47769.) *N*-Acetyltransferase Genotypes and the Pharmacokinetics and Tolerability of *para*-Aminosalicylic Acid in Patients with Drug-Resistant Pulmonary Tuberculosis

Sherwin K. B. Sy, ^{a+} Lizanne de Kock,^b Andreas H. Diacon,^{c,d} Cedric J. Werely,^o Huiming Xia,^f Bernd Rosenkranz,^b Lize van der Merwe,^{e,g} Peter R. Donald^h

Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, USA*; Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa*, MAC Centre for Tuberciologis Research, DST-NMF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa*, MAC Centre for Tuberciologis Research, DST-NMF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa*, Departments of Ophthalmology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA*, Department of Statistics, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa*, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa*, Date Town, South Africa*, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa*, Date Town, South Africa*, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa*, South Africa*, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa*, South Africa*, Department of Statistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa*, South Africa*, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa*, South Africa*, Stellenbosch University, Cape Town, South Afric

The aim of this study was to examine the relationships between N-acetyltransferase genotypes, pharmacokinetics, and tolerability of granular slow-release para-aminosalicylic acid (GSR-PAS) in tuberculosis patients. The study was a randomized, two-period, open-label, crossover design wherein each patient received 4 g GSR-PAS twice daily or 8 g once daily alternately. The PAS concentration-time profiles were modeled by a one-compartment disposition model with three transit compartments in series to describe its absorption. Patients' *NAT1* and *NAT2* genotypes were determined by sequencing and restriction enzyme analysis, respectively. The number of daily ownits was modeled by a Poisson probability mass function. Comparisons of other tolerability measures by regimens, gender, and genotypes were evaluated by a linear mixed-effects model. The covariate effects associated with efavirenz, gender, and *NAT1*3*, *NAT1*14*, and *NAT2*5* alleles corresponded to 25, 37, -17, -48, and -27% changes, respectively, in oral clearance of PAS. The *NAT1*10* allele did not influence drug clearance. The time above the MIC of 1 mg/liter was significantly different between the two regimens but not influenced by the *NAT1 or NAT2* genotypes. The occurrence and intensity of intolerance differed little between regimens. Four gramas of GSR-PAS twice daily but not 8 g once daily ensured concentrations exceeding the MIC (1 mg/liter) throughout the dosing interval; PAS intolerance was not related to maximum PAS concentrations over the doses studied and was not more frequent after once-daily dosing. We confirm that the slow phenotype conferred by the *NAT1*3* alleles resulted in higher PAS exposure but found no evidence of increased activity of the *NAT1*3* alleles.

We observed the slow phenotype of NAT1*14 and NAT1*3 alleles was associated with greater PAS exposure. (Antimicrob Agents Chemother. 2015; 59(7): 4129-38)

Drug	Adverse Drug Reaction	Gene	Gene class	# SNPs *
RIF	Thrombocytopenia	GPIX	Receptor	2
INH	Hepatotoxicity	NAT2	DME-1	11
		CYP2E1	DME-1	10
		GSTM1	DME-2	3
		GSTT1	DME-2	2
PZA	Hepatotoxicity	XDH	DME	8
	Nephrotoxicity	SLC22A12	Transporter	10
EMB	Optic neuritis	OPA1	GTPase	12
AG	Nephrotoxicity	LRP2	Receptor	12
	Ototoxicity	MYO7a	Transporter	5

* SNP frequencies are population dependent

- If levels increase -> approach MTD and accumulation of **toxic** metabolites
- If levels decrease -> reduce treatment efficacy
 - Incomplete eradication of bacilli -> prolonged treatment and relapse
 - Increase chance of developing DR

Adapted from Sahu et al. 2015. Curr Drug Metabol. 16(7): 538-52

CONCLUSIONS

- Culture remains challenging in high burden countries
- Poor uptake of new tools such as GeneXpert due to cost and political will
- Programmatic challenges of discordant results among diagnostic assays
- Optimization of sequencing tools in centralized labs can help address drug resistance crisis (PHE sequence-based DST; WHO and CDC surveillance)

Sequencing assays currently available for scientific research and clinical trials

- Culture-free drug resistance assay (Pathogen DNA)
 - Hetero-resistance and resistance prediction
- Pharmacogenomic assay (Host DNA)
 - Predicting adverse events

Future biomarker assay tools in development

- Triage test to rule out TB at point-of-care
 - Systematic screening for active case finding (e.g. C-reactive protein)
- Rapid non-sputum instrument-free biomarker test for identifying TB disease
 - Special populations and EPTB (e.g. Nanodisk: blood-based TB test)
- Incipient assay
 - Biomarker(s) that predict disease progression (e.g. RNA signature assay)
- Treatment monitoring assay
 - Predict cure versus relapse (e.g. LAM biomarker)

ACKNOWLEDGEMENTS

ReSeqTB (CPTR)

Critical Path Institute

- Debra Hanna
- Rick Liwski
- Amanda Borens
- Matthew Ezewudo

FIND Diagnostics

- Tim Rodwell
- David Dolinger
- Becky Colman

World Health Organization

Matteo Zignol

New Diagnostics WG (StopTB partnership)

- Daniella Cirillo
- Paolo Miotto

DTBE, CDC

- Angela Starks
- Jamie Posey

Translational Genomics Institute (TGen)

- Dave Engelthaler
- Bill & Melinda Gates Foundation
 - Jim Gallarda

ReSeqTB expert members

Stefan Niemann (Chair)

CRITICAL PATH

BILL& MELINDA GATES foundation

Thank you