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Ophthalmic emulsions as complex dosage forms 
• Two marketed products (cyclosporine 0.05% and difluprednate 0.05%) 

 
• Ophthalmic emulsions are complex materials 

• Drug is distributed in several phases 
• Complex set of conditions governing release 
 

• Ophthalmic emulsions are subject to a complex route of delivery 
• The formulation and target region can affect each other 
• Special considerations for ocular delivery  
 

• Two special considerations must be taken into account 
• Short residence time in the ocular region 
• Administration leaves a thin film of formulation on the ocular surfaces (~50 micron)  

• Thin film does not act as a drug depot– % depletion per time is large  
• Formulation temperature goes to ~35 °C (ocular surface temp) in about 1 second 
• The film thickness is a critical factor affecting in vitro release testing 

 
• Cyclosporine property:  as formulation temperature increases from storage temp to 35 °C, 

cyclosporine solubility decreases in water but increases in globules  
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Cyclosporine ophthalmic emulsions  
• Microemulsion 

• Globule size ~ 100-200 nm, globules occupy ~2% of the formulation volume 
• Surface to surface separation ~250-500 nm  
• In 0.1 mL, 5-40 x 1011 globules with total surface area ~600-1200 cm2 

• In a 50 micron film, estimate about 1% of globules are within 500 nm of ocular surfaces  
 

• Structure likely affected by geometry and miscibility of Tween 80 and castor oil 
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If pure Tween-80, surfactant layer thickness 
would be 10-20 nm (~10-20 molecules)  

 
 
 
 
 
 
 
 
 
 
 

  
 

 
 
 

 
 

 
“Surfactant layer” may be more like a transition 
layer from oil to water due to miscibility 

 
 
 
 
 
 
 
 
 
 
 

  
 

 
 
 

 
 



Comparing ophthalmic emulsions  
• If two ophthalmic emulsion formulations are “equivalent”, they will perform in the same 

way when administered in vivo 
 

• One approach: two formulations will perform equivalently in vivo if they 
• Start out the same (same during storage– static measurements)  
• Respond in the same way to in vivo perturbations (kinetic processes)   
 

• Starting state reflects storage conditions, static parameter measurements 
 

• Response– process(es) induced by perturbations encountered in vivo 
• Rapid temperature change, redistribution and drug loss by absorption 
• Other possible factors (tearing related, for instance) 
• These perturbations are large and occur rapidly (thin film effects) 
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Factors affecting drug availability vs. time  
• Contact time in the ocular region 

• Globule size and surface area 
• Formulation viscosity  
• Surface interactions 
• Tearing (pH, osmolality) 
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• Drug availability to tissue vs. time (transfer) 
• Initial distribution 
• Release kinetics from globule phases 
• Tearing and dilution  

 

• Parameters to measure (static, initial conditions) 
• Globule size (contact area, surfactant distribution)  
• Viscosity, zeta potential, surface tension 
• Tearing (pH, osmolality) 
• Distribution of the drug in the formulation 
 

• Processes that follow a change in environment (kinetic response) 
• IVRT (in vitro release test) 
• Measure release of drug in the presence of a sudden temperature change 

 
• Data supports that all of the above are necessary– cannot theoretically relate the 

variables to reduce the measurement set 
 



Release of cyclosporine from ophthalmic emulsions  
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• Two Q1/Q2 formulations (Form-A and Form-B) produced by different processes 
• Looked at effect of temperature change, and effect of processing method 
• Release measured using pulsatile microdialysis (PMD) 

 
• See biphasic patterns. We think that  

• Drug in aqueous phase is immediately available to ocular tissues  
• Drug in globules takes longer to partition into ocular tissues  
• In vitro release data shows biphasic release patterns 

 
                    Form-A release into receivers at 20 and 35 °C           Form-A vs. Form-B release into receivers at 35 °C 

 
 
 
 
 
 
 
 
 
 
 

         Note: 100% release corresponds to ~2.85 µg/cm2 for all plots 
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Comments on comparative in vitro release tests 
An ideal in vitro release test accounts for factors relevant to the in vivo conditions 
 

• The ocular residence time is short 
• Release test should obtain data in a timeframe similar to the ocular residence time  
• Should avoid extrapolation of data from long times to short times 
 

• Test should expose the formulation to perturbations from the stored state that are similar in 
magnitude and timescale to in vivo perturbations 
• Formulation increases temperature from 20 to 35 °C (nominally) nearly instantly  
• In the ocular region, large fraction of drug lost per time– affects diffusion and redistribution 

 
Observation: Typical in vitro release rate tests (example, Franz cells) are far from ideal 
 

• Release data are typically obtained over hours and require extrapolation to early times 
• Data typically obtained from 30 minutes to hours, so must extrapolate close to time = 0 
• Extrapolation requires a model with intercept = 0 (M vs. t, M vs. t0.5, or ???) 
• If uncertainties in the intercept are not small compared to the differences in formulations, 

extrapolation cannot discriminate at the early (relevant) times   
 

• Release experiment reflects a much more gentle and slow perturbation than occurs in vivo  
• Cannot raise temperature instantly, so perform constant temperature experiment  
• Fraction released per time is slow because of depot effect (formulation layer >> 50 microns)  
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Summary 
• Ophthalmic emulsions are complex 

• Complex form of matter 
• Complex interactions with the ocular environment when administered in vivo 
• Cyclosporine is particularly difficult due to solubility properties 
 

• The complexity makes it difficult (if possible at all) to model drug delivery 
 

• We like the “same starting state” and “same response” approach 
 

• Starting state:  Static parameters to measure before administering the drug 
• Response:  release kinetics induced by changes reflective of those incurred in vivo  

 
• All of the above are candidates for further research 

• Mechanistic studies of what affects release are feasible 
• Mechanistic studies of how formulation process affects the final product are more difficult 
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Thank you.  
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