Product Characterization and In Vitro Testing for Establishing Equivalence of Complex Products

Xiaohui (Jeff) Jiang, PhD
Deputy Director
Division of Therapeutic Performance
Office of Research and Standards
Office of Generic Drugs
Center for Drug Evaluation and Research, FDA

SESSION 1: Equivalence of Complex Products
FY 2017 GDUFA Regulatory Science Initiatives Public Workshop
Complex Products

• Complex active ingredients
 – Complex mixtures of APIs, polymeric compounds, peptides

• Complex formulations
 – Liposomes, suspensions, emulsions, gels

• Complex routes of delivery
 – Locally acting such as dermatological and inhalational drugs

• Complex dosage forms
 – Long acting injectables and implantables, transdermals, MDIs

• Complex drug-device combinations
Scope of this Session

• Complex active ingredients
 – Complex mixtures of APIs, polymeric compounds, peptides

• Complex formulations
 – Liposomes, suspensions, emulsions, gels

• Complex routes of delivery
 – Locally acting such as dermatological and inhalational drugs

• Complex dosage forms
 – Long acting injectables and implantables, transdermals, MDIs

• Complex drug-device combinations
Complex Active Ingredients

• Research activities
 – External: grants/contracts on pentosan polysulfate sodium and crofelemer
 – Internal: peptide related impurity analysis and immunogenicity evaluations, sucralfate, high dimensional/multivariate data comparison

• Regulatory outcomes
 – Product Specific Guidance: colesevelam, omega-3 carboxylic acids, glatiramer acetate, ethiodized oil
LC-MS and MS/MS of Salmon Calcitonin

\[m/z \ 1158.2389^{+3} \]

\[ms/ms \ of \ m/z \ 1158.2389^{+3} \]

CSNLSTCVLGKLSQELHKLQTPRNTGSGTP-NH₂
LC-HRMS vs USP LC-UV

- For the calcitonin RLD LC-HRMS identified 12 impurities for a total of 2.6% (Area%)
- The same sample analyzed by the USP HPLC-UV method observe 6 impurities with a 2.0% total
- Detection limits for the 2 identified peptide impurities were below 0.1% (Area %) by LC-HRMS
Cell Based Assays to Detect IIRMIIs in Drug Products

RAW-BLUE cells

- Impurities
- IKK
- NF-κB
- SEAP
- OD 620

THP1-TNF-α cells

- Impurities
- IKK
- NF-κB
- TNF-α
- NF-κB TNF-α Luciferase
- Add Substrate
- Lyze the cells
- Read luminescence

IIRMIIs: innate immune response modulating impurities

Complex Formulations
Characterizations of Complex Formulations

• Development of advanced analytical techniques
 – Characterize critical attributes for product equivalence, functional excipients, and bioanalytical methods for different forms of drugs in vivo

From product-specific guidance of risperidone injection

The proposed parenteral drug product should be qualitatively (Q1) and quantitatively (Q2) the same as the reference product for all strengths (12.5 mg/vial, 25 mg/vial, 37.5 mg/vial, and 50 mg/vial). Please provide characterization data on poly(lactide-co-glycolide) (PLGA) for both the test and reference product including polymer composition (ratio between glycolic acid and lactic acid), molecular weight and weight distribution, and PLGA architecture (e.g., linear or star-branched PLGA). Additional data on PLGA characterization may be requested during the review of the ANDA.
Physiochemical Equivalence Assessment of Reference and Generic Sodium Ferric Gluconate Complex

<table>
<thead>
<tr>
<th>Drug product (Lot #)</th>
<th>Z-average diameter (nm)</th>
<th>Intensity-weighted diameter (nm)</th>
<th>Volume-weighted diameter (nm)</th>
<th>PDI Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrlecit® (D2C283A)</td>
<td>11.5</td>
<td>13.9</td>
<td>9.0</td>
<td>0.163</td>
</tr>
<tr>
<td>Ferrlecit® (D2C593A)</td>
<td>12.1</td>
<td>14.5</td>
<td>8.8</td>
<td>0.158</td>
</tr>
<tr>
<td>Generic SFG (132296.1)</td>
<td>10.5</td>
<td>12.1</td>
<td>8.1</td>
<td>0.123</td>
</tr>
</tbody>
</table>

Dynamic Light Scattering (DLS):

Cryogenic Transmission Electron Microscopy (Cryo-TEM):

Atomic Force Microscopy (AFM):

FDA internal study
Physiochemical Equivalence Assessment of Reference and Generic Sodium Ferric Gluconate Complex

Gel Permeation Chromatography (GPC):

<table>
<thead>
<tr>
<th>Drug product (Lot #)</th>
<th>M_w (kDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrlecit (D2C283A)</td>
<td>384.7 ± 5.1</td>
</tr>
<tr>
<td>Ferrlecit (D2C593A)</td>
<td>393.4 ± 1.9</td>
</tr>
<tr>
<td>Ferrlecit (A5075)</td>
<td>467.7 ± 3.0</td>
</tr>
<tr>
<td>Generic SFG (132996.1)</td>
<td>387.4 ± 2.1</td>
</tr>
<tr>
<td>Generic SFG (142241.1)</td>
<td>365.9 ± 5.4</td>
</tr>
<tr>
<td>Generic SFG (142290.1)</td>
<td>363.7 ± 1.9</td>
</tr>
</tbody>
</table>

Asymmetric field flow fractionation – multi-angle laser scattering (AFFF-MALS):

<table>
<thead>
<tr>
<th>Drug product (Lot #)</th>
<th>Run</th>
<th>M_n [kDa]</th>
<th>M_w [kDa]</th>
<th>M_w/M_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrlecit® (D2C283A)</td>
<td>1</td>
<td>83.5 ± 2.3</td>
<td>316.7 ± 0.9</td>
<td>3.8</td>
</tr>
<tr>
<td>Ferrlecit® (D2C283A)</td>
<td>2</td>
<td>88.8 ± 2.6</td>
<td>317.8 ± 1.3</td>
<td>3.6</td>
</tr>
<tr>
<td>Ferrlecit® (D2C283A)</td>
<td>3</td>
<td>87.4 ± 2.1</td>
<td>319.1 ± 1.3</td>
<td>3.6</td>
</tr>
<tr>
<td>Ferrlecit® (D2C593A)</td>
<td>1</td>
<td>98.9 ± 1.5</td>
<td>329.1 ± 0.7</td>
<td>3.3</td>
</tr>
<tr>
<td>Ferrlecit® (D2C593A)</td>
<td>2</td>
<td>92.7 ± 2.4</td>
<td>329.9 ± 1.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Ferrlecit® (D2C593A)</td>
<td>3</td>
<td>92.7 ± 2.5</td>
<td>330.7 ± 1.3</td>
<td>3.6</td>
</tr>
<tr>
<td>Generic SFG (132296.1)</td>
<td>1</td>
<td>218.4 ± 0.7</td>
<td>415.6 ± 1.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Generic SFG (132296.1)</td>
<td>2</td>
<td>219.6 ± 0.7</td>
<td>418.3 ± 1.3</td>
<td>1.9</td>
</tr>
<tr>
<td>Generic SFG (132296.1)</td>
<td>3</td>
<td>222.2 ± 0.7</td>
<td>417.7 ± 1.3</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Analytical Ultracentrifugation (AUC):

\[S \propto R^2, \quad M^{2/3} \]

R = radius of spherical particles
M = molecular mass

FDA internal study
Characterizations of Complex Formulations

• Study impact of manufacturing and formulation processes on the end product’s critical quality attributes
 – Liposomes
 – Microspheres
 – Implants/inserts

<table>
<thead>
<tr>
<th>Sample</th>
<th>Solvent</th>
<th>Preparation method</th>
<th>Porosity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risperdal Consta</td>
<td>--</td>
<td>--</td>
<td>43.97 ± 4.60</td>
</tr>
<tr>
<td>F1</td>
<td>DCM</td>
<td>Homogenization & dry sieving</td>
<td>43.19 ± 4.60</td>
</tr>
<tr>
<td>F2</td>
<td>DCM</td>
<td>Homogenization & wet sieving</td>
<td>46.04 ± 42.90</td>
</tr>
<tr>
<td>F3</td>
<td>EA</td>
<td>Vortex & wet sieving</td>
<td>54.98 ± 1.25</td>
</tr>
<tr>
<td>F4</td>
<td>EA</td>
<td>Homogenization & wet sieving</td>
<td>61.75 ± 1.08</td>
</tr>
</tbody>
</table>

In Vitro Release Testing

• Development of new methods for *in vitro* release testing
 ➢ Quality control
 ➢ In vitro in vivo correlation

– Various products: ophthalmic suspensions/ointments, periodontal inserts, parenteral suspensions, microspheres and implants, intrauterine systems...
– Different methodologies: pulsatile microdialysis (PMD), modified USP II, USP IV, macro-fabricated flow cells
Critical Attributes and In Vitro Tests for Ophthalmic Drug Products

IVRT flow cells that mimic eye viscosity and flow rate

In vivo animal tests to measure how formulation properties affect local pharmacokinetics

Urtti A, et al. AAPS 2016; Grant 1U01FD005180-01
Sailor MJ, et al. CRS 2016; Grant 1U01FD005173-01
Cage model to assess in vivo release of microspheres

IVIVC of Risperidone Microspheres

In vivo PK profiles

Deconvoluted profiles:

In vitro release profiles

Level A IVIVC

Summary

- Access to complex generics is accelerated by analytical advances that:
 - Ensure equivalence of critical attributes
 - Enable alternatives to in vivo BE studies

- Two categories of advances
 - Characterization
 - New technology and new characteristics
 - New analysis methods for complex data
 - In vitro performance testing
 - Biological tests to ensure equivalence of proposed generic products
 - Release tests under similar physiological conditions
Priorities for the Panel

• New advanced analytics for characterization of chemical compositions, molecular structures and distributions in complex active ingredients

• Predictive in silico, in vitro and animal studies to evaluate immunogenicity risk of formulation or impurity differences in generic products

• Particle size, shape and surface characterization based bioequivalence for suspended and colloidal drug products

• Predictive in vitro BE methods for long-acting injectables