

Product Characterization and In Vitro Testing for Establishing Equivalence of Complex Products

Xiaohui (Jeff) Jiang, PhD

Deputy Director
Division of Therapeutic Performance
Office of Research and Standards
Office of Generic Drugs
Center for Drug Evaluation and Research, FDA

SESSION 1: Equivalence of Complex Products
FY 2017 GDUFA Regulatory Science Initiatives Public Workshop

Complex Products

- Complex active ingredients
 - Complex mixtures of APIs, polymeric compounds, peptides
- Complex formulations
 - Liposomes, suspensions, emulsions, gels
- Complex routes of delivery
 - Locally acting such as dermatological and inhalational drugs
- Complex dosage forms
 - Long acting injectables and implantables, transdermals, MDIs
- Complex drug-device combinations

www.fda.gov

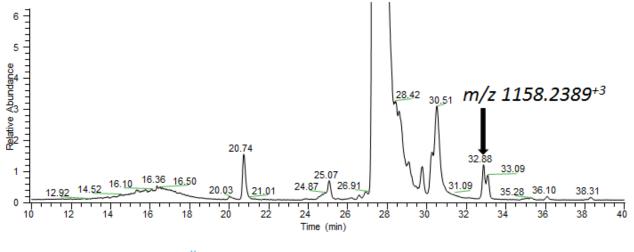
Scope of this Session

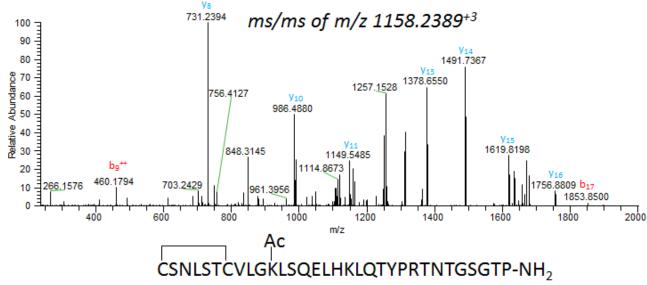
- Complex active ingredients
 - Complex mixtures of APIs, polymeric compounds, peptides
- Complex formulations
 - Liposomes, suspensions, emulsions, gels
- Complex routes of delivery
 - Locally acting such as dermatological and inhalational drugs
- Complex dosage forms
 - Long acting injectables and implantables, transdermals, MDIs
- Complex drug-device combinations

www.fda.gov

Complex Active Ingredients

Research activities

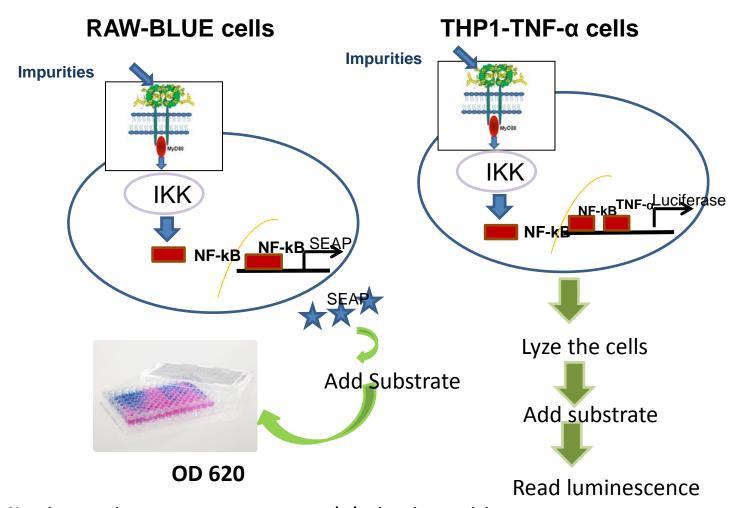

- External: grants/contracts on pentosan polysulfate sodium and crofelemer
- Internal: peptide related impurity analysis and immunogenicity evaluations, sucralfate, high dimensional/multivariate data comparison


Regulatory outcomes

- Product Specific Guidance: colesevelam, omega-3 carboxylic acids, glatiramer acetate, ethiodized oil
- Guidance agenda 2017: Submission of ANDAs for Certain Highly Purified Synthetic Peptide Drug Products That Reference Peptide Drug Products of rDNA Origin

LC-MS and MS/MS of Salmon Calcitonin

FDA internal study 5

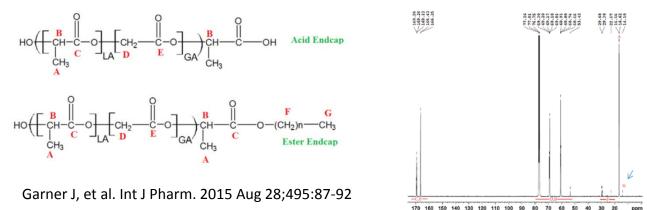

LC-HRMS vs USP LC-UV

- For the calcitonin RLD LC-HRMS identified 12 impurities for a total of 2.6% (Area%)
- The same sample analyzed by the USP HPLC-UV method observe 6 impurities with a 2.0% total
- Detection limits for the 2 identified peptide impurities were below 0.1% (Area %) by LC-HRMS

Cell Based Assays to Detect IIRMIs in Drug Products

IIRMIs: innate immune response modulating impurities Haile LA, Puig M, Kelley-Baker L, Verthelyi D (2015) PLoS ONE 10(4)

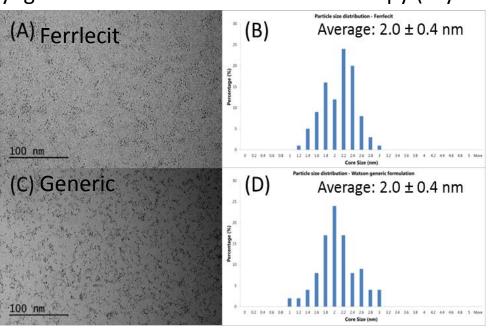
Complex Formulations



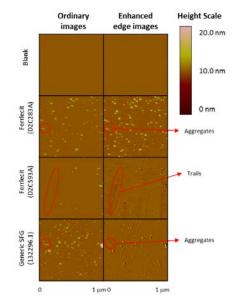
Characterizations of Complex Formulations

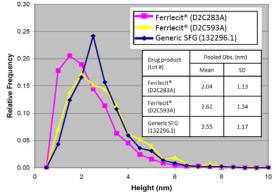
- Development of advanced analytical techniques
 - Characterize critical attributes for product equivalence, functional excipients, and bioanalytical methods for different forms of drugs in vivo

From product-specific guidance of risperidone injection


The proposed parenteral drug product should be qualitatively (Q1) and quantitatively (Q2) the same as the reference product for all strengths (12.5 mg/vial, 25 mg/vial, 37.5 mg/vial, and 50 mg/vial). Please provide characterization data on poly(lactide-coglycolide) (PLGA) for both the test and reference product including polymer composition (ratio between glycolic acid and lactic acid), molecular weight and weight distribution, and PLGA architecture (e.g., linear or star-branched PLGA). Additional data on PLGA characterization may be requested during the review of the ANDA.

Physiochemical Equivalence Assessment of Reference and Generic Sodium Ferric Gluconate Complex


Dynamic Light Scattering (DLS):


Drug product (Lot #)	Z-average diameter (nm)	Intensity-weighted diameter (nm)	Volume-weighted diameter (nm)	PDI Value
Ferrlecit® (D2C283A)	11.5	13.9	9.0	0.163
Ferrlecit® (D2C593A)	12.1	14.5	8.8	0.158
Generic SFG (132296.1)	10.5	12.1	8.1	0.123

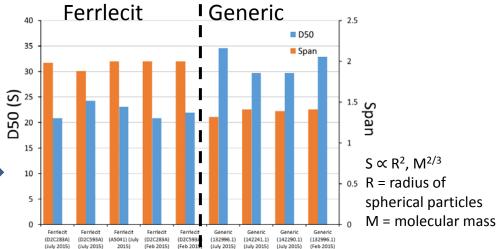
Cryogenic Transmission Electron Microscopy (Cryo-TEM):

Atomic Force Microscopy (AFM):

FDA internal study

Physiochemical Equivalence Assessment of Reference and Generic Sodium Ferric Gluconate Complex

Gel Permeation Chromatography (GPC):


Drug product (Lot #)	M _w (kDa)	
Ferrlecit (D2C283A)	384.7 ± 5.1	
Ferrlecit (D2C593A)	393.4 ± 1.9	
Ferrlecit (A5075)	467.7 ± 3.0	
Generic SFG (132996.1)	387.4 ± 2.1	
Generic SFG (142241.1)	365.9 ± 5.4	
Generic SFG (142290.1)	363.7 ± 1.9	

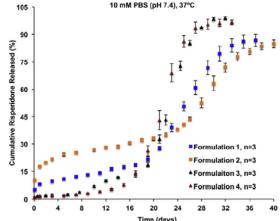
Asymmetric filed flow fractionation – multi-angle laser scattering (AFFF-MALS):

Drug product (Lot #)	Run	M _n [kDa]	M _w [kDa]	M _w /M _n
Ferrlecit® (D2C283A)	1	83.5 ± 2.3	316.7 ± 0.9	3.8
Ferrlecit® (D2C283A)	2	88.8 ± 2.6	317.8 ± 1.3	3.6
Ferrlecit® (D2C283A)	3	87.4 ± 2.1	319.1 ± 1.3	3.6
Ferrlecit® (D2C593A)	1	98.9 ± 1.5	329.1 ± 0.7	3.3
Ferrlecit® (D2C593A)	2	92.7 ± 2.4	329.9 ± 1.6	3.6
Ferrlecit® (D2C593A)	3	92.7 ± 2.5	330.7 ± 1.3	3.6
Generic SFG (132296.1)	1	218.4 ± 0.7	415.6 ± 1.2	1.9
Generic SFG (132296.1)	2	219.6 ± 0.7	418.3 ± 1.3	1.9
Generic SFG (132296.1)	3	222.2 ± 0.7	417.7 ± 1.3	1.9

Analytical Ultracentrifugation (AUC):

FDA internal study

Characterizations of Complex Formulations


 Study impact of manufacturing and formulation processes on the end product's critical quality

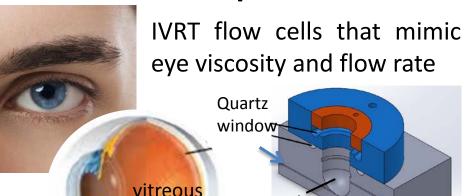
attributes

- Liposomes
- Microspheres
- Implants/inserts

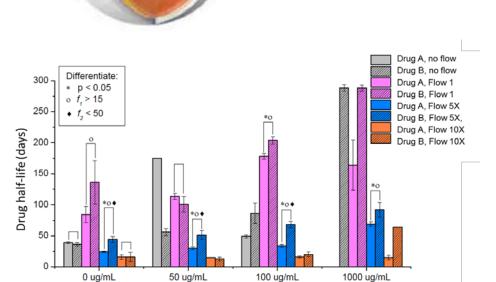
	Formulation 1	B Formulation 2 C
	.6333	30000
Risperdal® Consta® A	600000	
		SIMPLE SHOPE
0 000	Formulation 3	DC Formulation 4
. 500		
0 000- 000		0 000
NEW TOLK IN	U a O	
	0.000	0.000
		V188" -
		60
	0	

Sample	Solvent	Preparation method	Porosity (%)
Risperdal Consta			43.97 ± 4.60
F1	DCM	Homogenization & dry sieving	43.19 ± 4.60
F2	DCM	Homogenization & wet sieving	46.04 ± 42.90
F3	EA	Vortex & wet sieving	54.98 ± 1.25
F4	EA	Homogenization & wet sieving	61.75 ± 1.08

In Vitro Release Testing

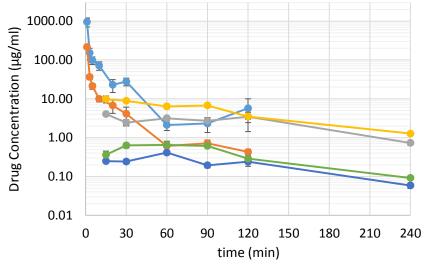


- Development of new methods for in vitro release testing
 - Quality control
 - In vitro in vivo correlation


- Various products: ophthalmic suspensions/ointments, periodontal inserts, parenteral suspensions, microspheres and implants, intrauterine systems...
- Different methodologies: pulsatile microdialysis (PMD),
 modified USP II, USP IV, macro-fabricated flow cells

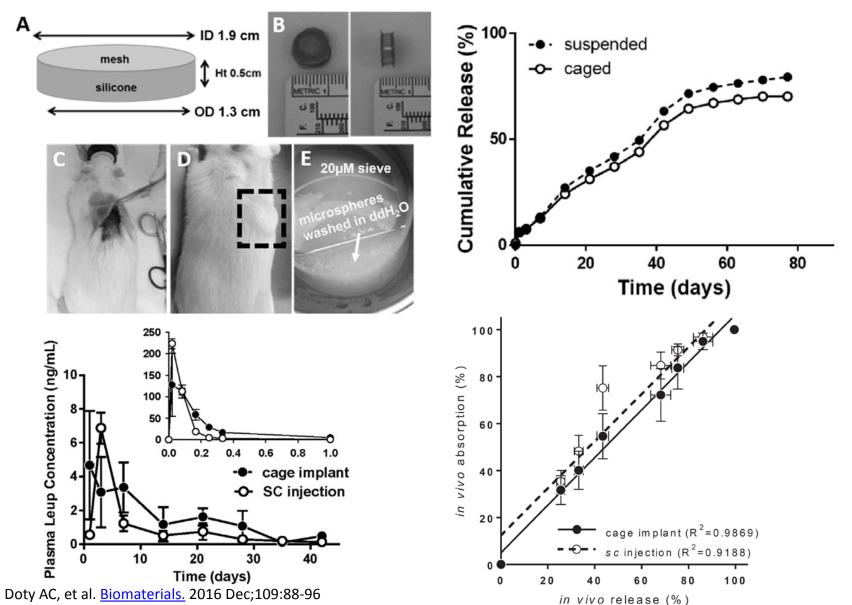
Critical Attributes and In Vitro Tests for Ophthalmic Drug Products

Sample volume

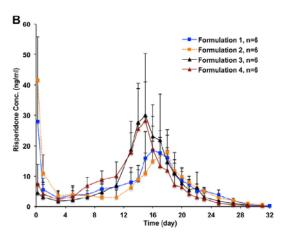


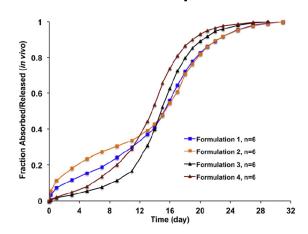
Urtti A, et al. AAPS 2016; Grant 1U01FD005180-01 Sailor MJ, et al. CRS 2016; Grant 1U01FD005173-01

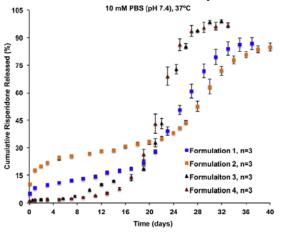
Concentration of viscosity modifier

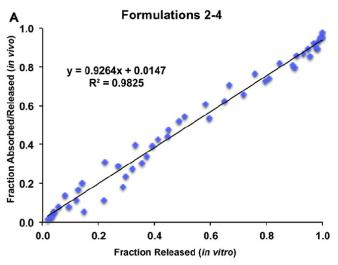

In vivo animal tests to measure how formulation properties affect local pharmacokinetics

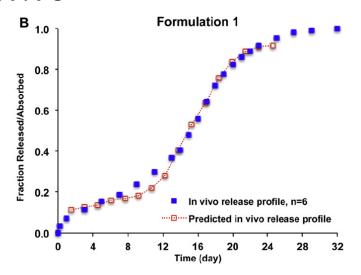
Cage model to assess in vivo release of microspheres




IVIVC of Risperidone Microspheres


In vivo PK profiles


Deconvoluted profiles:



In vitro release profiles

Level A IVIVC

16

Summary

- Access to complex generics is accelerated by analytical advances that:
 - Ensure equivalence of critical attributes
 - Enable alternatives to in vivo BE studies
- Two categories of advances
 - Characterization
 - New technology and new characteristics
 - New analysis methods for complex data
 - In vitro performance testing
 - Biological tests to ensure equivalence of proposed generic products
 - Release tests under similar physiological conditions

Priorities for the Panel

- New advanced analytics for characterization of chemical compositions, molecular structures and distributions in complex active ingredients
- Predictive in silico, in vitro and animal studies to evaluate immunogenicity risk of formulation or impurity differences in generic products
- Particle size, shape and surface characterization based bioequivalence for suspended and colloidal drug products
- Predictive in vitro BE methods for long-acting injectables

