CI-1

5-Aminolevulinic Acid Hydrochloride (5-ALA HCI) for Oral Solution

Medical Imaging Drugs Advisory Committee Meeting

May 10, 2017

Introduction

Alan Ezrin, PhD

President & CEO NX Development Corporation

5-ALA is an imaging agent to facilitate the real time detection and visualization of malignant tissue during glioma surgery

Real-time Tumor Visualization of Glioma

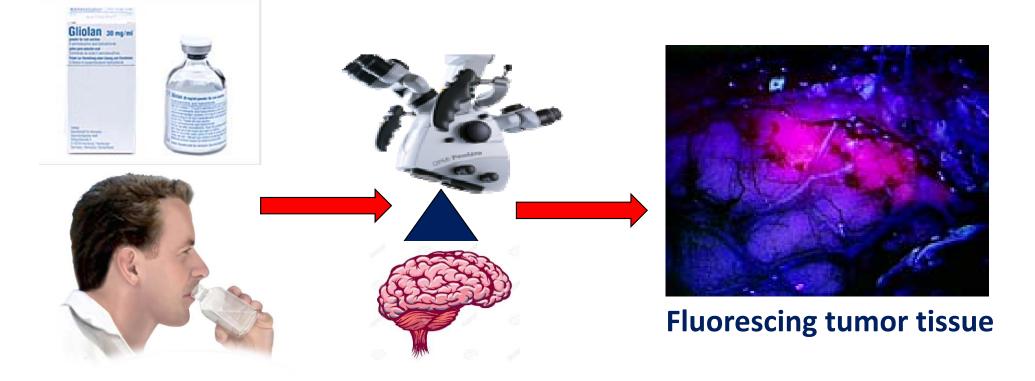
Problem

 Surgeon can only resect tumor that can be seen

Current Situation

 Visualization of gliomas is difficult under white light

5-ALA Solution


CI-4

 Real-time visualization of tumor with high predictive accuracy

5-ALA Features

- Orally administered 3 hours prior to surgery
- When illuminated under fluorescent light tumor appears intense red, while normal tissue appears blue

Regulatory and Marketing History of 5-ALA for Glioma Visualization

5-ALA developed by photonamic/medac GmbH

CI-6

- Clinical studies conducted in Germany
- Approved as Gliolan[®] in the EU (2007)
- Approved in 40 countries
- Over 58,000 patients received 5-ALA
- NX Development Corp holds US license
- NDA submitted in 2016

Agenda: 5-ALA Visualization of Glioma

Introduction	Alan Ezrin, PhD President & CEO NX Development Corporation
Visualization of Tumor During Glioma Surgery	Constantinos G. Hadjipanayis, MD, PhD Professor and Chair, Dept. of Neurosurgery, Director of Neurosurgical Oncology, Professor of Oncological Sciences, Mount Sinai
Clinical Efficacy	Walter Stummer, Prof Dr med Department of Neurosurgery, University of Münster
Safety Results	Walter Stummer, Prof Dr med
Benefit / Risk	Constantinos G. Hadjipanayis, MD, PhD
Conclusion	Alan Ezrin, PhD

CI-8

Agenda: 5-ALA Visualization of Glioma

Introduction	Alan Ezrin, PhD President & CEO NX Development Corporation
Visualization of Tumor During Glioma Surgery	Constantinos G. Hadjipanayis, MD, PhD Professor and Chair, Dept. of Neurosurgery, Director of Neurosurgical Oncology, Professor of Oncological Sciences, Mount Sinai
Clinical Efficacy	Walter Stummer, Prof Dr med Department of Neurosurgery, University of Münster
Safety Results	Walter Stummer, Prof Dr med
Benefit / Risk	Constantinos G. Hadjipanayis, MD, PhD
Conclusion	Alan Ezrin, PhD

Visualization of Tumor During Glioma Surgery

Constantinos G. Hadjipanayis, MD, PhD

Professor and Chairman of Neurosurgery, Mount Sinai Beth Israel Hospital Director of Neurosurgical Oncology Mount Sinai Health System New York, NY

Glioma Surgery Goals and Needs

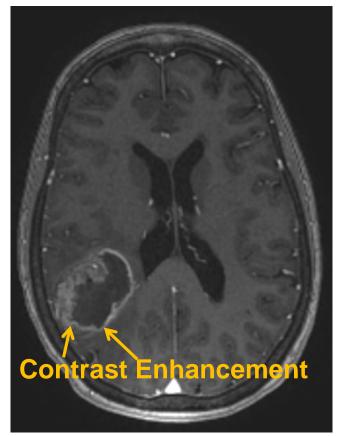
- Glioma incidence, prognosis, presentation, and treatment
- Goal of safe maximal extent of resection (EOR)
- Limitations of available tools for glioma surgery
- Current unmet need in glioma surgery
- 5-ALA fluorescence-guided surgery (FGS)

Gliomas: Background

- US Incidence: 14,000 30,000 gliomas/yr
- Majority malignant high grade (WHO grade III, IV)
 - Glioblastoma (GBM; WHO grade IV) most common

Universally lethal

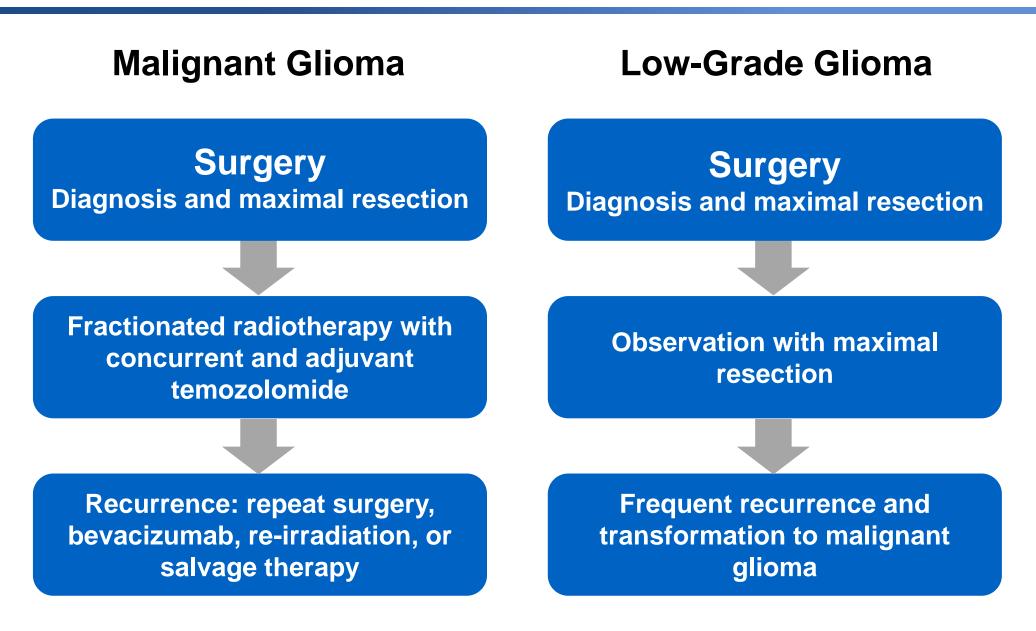
- Median survival for malignant gliomas ~15 36 months despite all therapies
- Metastases rare
- Local recurrence common


 Most low-grade gliomas (WHO grade II) transform to malignant gliomas

Glioma Patient Presentation

- Headaches, new onset seizure
- Motor, speech, or sensory (visual) function may be impaired by tumor location

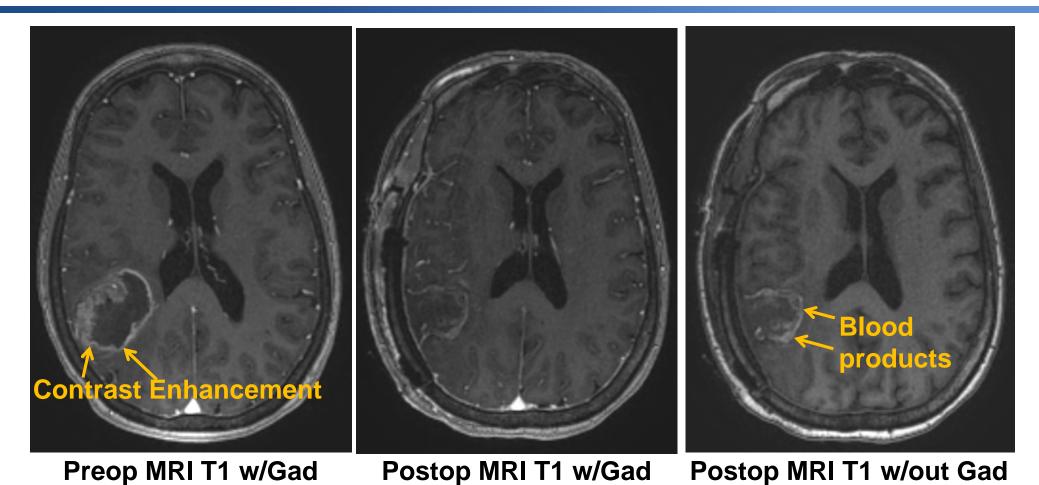
Evaluation of patient in ER


 MRI of malignant glioma reveals rim-enhancing lesion causing brain swelling

Preop MRI T1 w/Gad

CM-5

Glioma Standard of Care

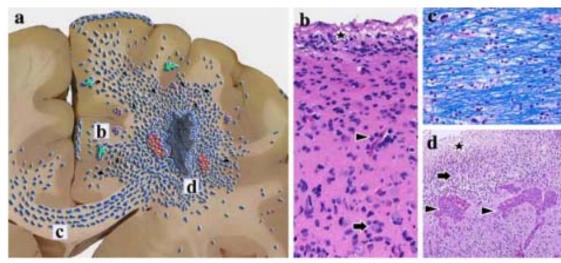

Consensus on Surgery: Maximal Safe Glioma Resection is Goal

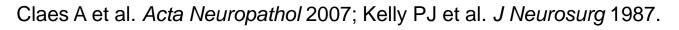
CM-6

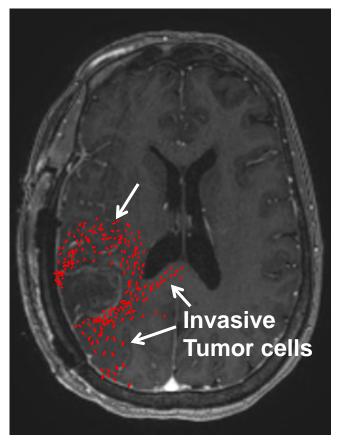
Global Standard of Care

- American Association of Neurological Surgeons (AANS)/ Congress of Neurological Surgeons (CNS) Section on Tumors 2008, 2014, and 2015
- National Institute for Health and Clinical Excellence (NICE) 2007
- National Cancer Institute (NCI), 2017
- European Society Medical Oncology (ESMO) 2014
- National Comprehensive Cancer Network (NCCN) 2016

Maximal Extent of Resection (EOR)




CM-7


Maximal Extent of Resection (EOR)= Complete Resection of the MRI Contrast-Enhancing Portion of a Malignant Glioma

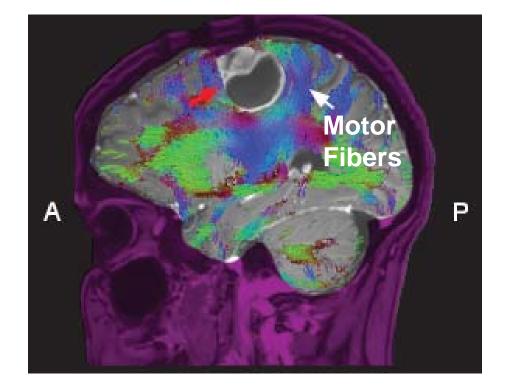
Impossible to Resect All Glioma Tumor Cells

- Invasive and infiltrative tumors
- Difficult to visualize tumor and perform maximal EOR
- Residual tumors cells outside of contrast enhancing margin
- Almost all recurrences local

Postop MRI T1 w/Gad

Extent of Resection (EOR) and Patient Benefit

- Greater EOR correlates with overall survival
- Greater EOR permits better efficacy of chemoradiation
- Majority of patients DO NOT have maximal EOR


Vuorinen V et al. *Acta Neurochir* 2003; Brown T. et al. *JAMA Oncology* 2016; Orringer D. et al. *J Neurosurg* 2012; McGirt M et al. *J Neurosurg* 2009; Lacroix M et al. *J Neurosurg* 2001; Sanai N et al. *J Neurosurg* 2011; Li YM et al. *J Neurosurg* 2016; Stummer W et al. *J Neuroonc* 2012.

Need to Localize Tumor and Preserve Neurologic Function

Localization and visualization of tumor important

CM-10

- Understanding tumor relationship to surrounding critical tracts for speech, motor, sensory function
- Attempt to preserve neurologic function

Current Surgical Tools and Challenges

- Neuronavigation for localization
 - Does not account for brain shift during surgery
- Localization of neurologic function during surgery
 - Intraoperative electrophysiologic mapping
 - Awake brain surgery for speech mapping
- Intraoperative MRI (iMRI) and ultrasound

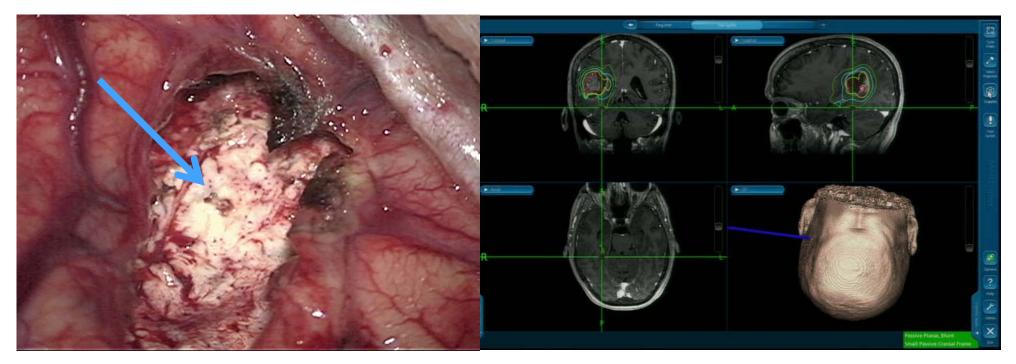
iMR

CM-11

Neuronavigation

Challenges of Glioma Surgical Resection

- Tumors difficult to visualize due to infiltrative biology
- Often present in or close to critical areas of brain
- No real-time tumor localization tools for surgery
- Brain shift renders neuronavigation unreliable
- Some technology not available at all centers

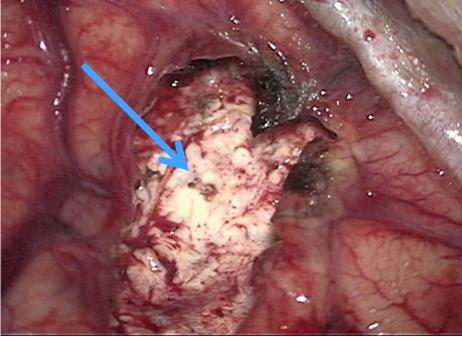

Unmet Need: What Surgeons Need for Glioma Resection

CM-13

- Visualize malignant tumor in real-time to guide surgery
- Delineate tumor from normal tissue
- Confidence that what is resected is tumor tissue
- Unambiguous, high resolution intraoperative imaging of tumor
- Solve complication of brain shift
- Achieve safe maximal extent of resection

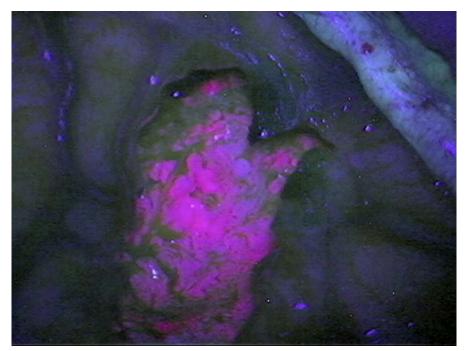
Intraoperative Glioma Visualization with Surgical Microscope

- Difficult to delineate infiltrating tumor at margin
- Maximal extent of resection appears complete


Microscope white light

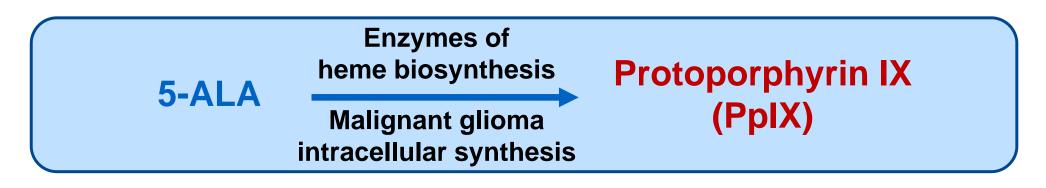
illumination of glioma resection cavity

Neuronavigation


5-ALA Fluorescence-Guided Surgery (FGS)

Fluorescent malignant tumor revealed

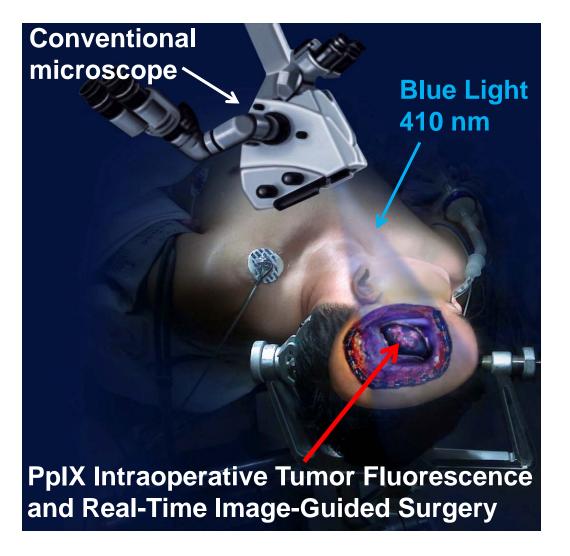
White light illumination


Normal appearing brain after maximal resection Hadjipanayis C. et al. *Neurosurgery* 2015.

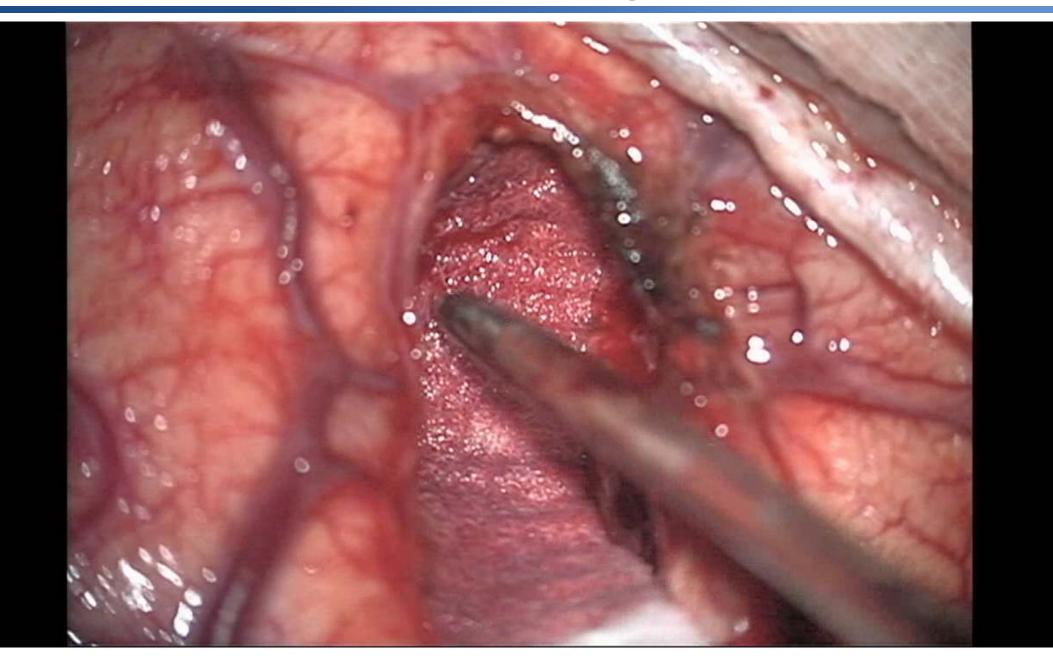
CM-15

Blue-violet illumination Tumor fluorescent

5-ALA Oral Dosing


- Dosing at 20 mg/kg
- Rapid uptake in the blood
- Given 3 hours before surgery
- Tumor tissue fluorescence
 >8 hours after
 administration

5-ALA Profile


- PpIX selectively accumulates in tumor cells
- Visualization after excitation by 400- 410 nm blue light

Essentially nontoxic

- Skin photosensitivity within 24 hours
- Liver metabolism (transient LFT elevation)

5-ALA FGS Real-Time Image Guidance

CM-18

5-ALA in Clinical Practice

- Convenient administered orally prior to surgery
- Appropriate for patients with presumed primary or known recurrent gliomas
- Compatible with existing operating microscopes
- Adjunct to standard surgery and operative tools
- Provides real time visualization of malignant tumor tissue previously unseen
- Flow of surgery not interrupted

Visualization of Tumor During Glioma Surgery: Summary

- Gliomas are universally lethal
- Maximal safe extent of resection is surgical goal
- Localization of tumor and important surrounding neurologic tracts essential
- Glioma tumor margins difficult to visualize under white light
- Current tools not continuous real time, may not provide full picture

CM-20

- Better visualization allows neurosurgeons to provide better surgical care for patients
- Improved surgery impacts downstream therapies

CM-21

Agenda: 5-ALA Visualization of Glioma

Introduction	Alan Ezrin, PhD President & CEO NX Development Corporation
Visualization of Tumor During Glioma Surgery	Constantinos G. Hadjipanayis, MD, PhD Professor and Chairman of Neurosurgery, Mount Sinai Beth Israel Hospital Director of Neurosurgical Oncology, Mount Sinai Health System, New York, NY
Clinical Efficacy	Walter Stummer, MD Department of Neurosurgery, University of Münster
Safety Results	Walter Stummer, MD
Benefit / Risk	Constantinos G. Hadjipanayis, MD, PhD
Conclusion	Alan Ezrin, PhD

CE-1

Clinical Efficacy of 5-ALA HCI

Professor Dr. Walter Stummer

University of Münster Department of Neurosurgery

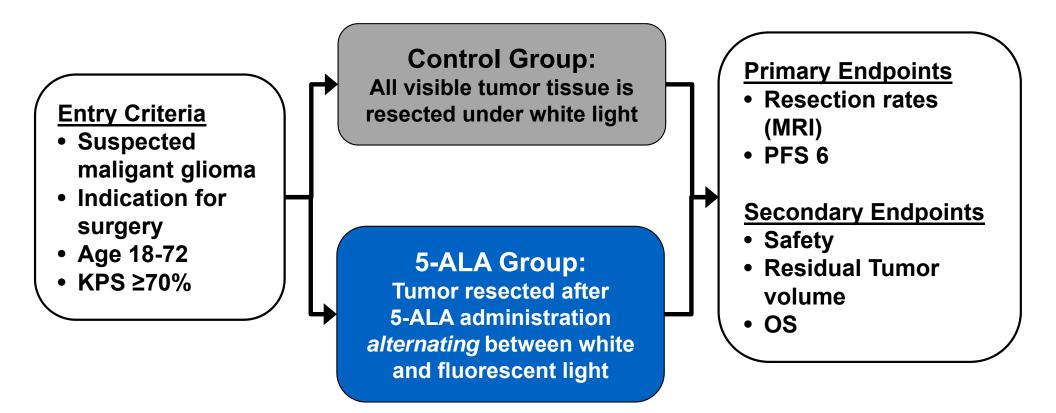
Contents of Clinical Presentation

Presentation of Clinical Studies and Endpoints

- Study 3
- Study 28
- Study 30
- Summary of Key Clinical Study Finding
- Summary of Visualization Endpoints
- Discussion of Imaging Endpoints
- Utility of Predictive Accuracy and Clinical Usefulness

Summary

Clinical Data: Totality of Evidence


- Clinical trial data
- Publications
- Post-marketing experience

	Numbers of Patients			
	Clinical	Scientific	Global Post-	
	Trials	Literature	Marketing	
Efficacy	418	377	—	
Safety	527	≃2,000	≃58,000	

			20 mg/kg 5-ALA		
Study #	Phase/Type	Population	N Enrolled	N Efficacy	N Safety
Study 20	Phase 1 Bioavailability	Healthy males	21		21
Study 8	Phase 1/2 Safety	1° Malignant Glioma	21		7
			415		
Study 3 S	Phase 3	1° Malignant		176 5-ALA	201
	Safety/Efficacy	Glioma	207 5-ALA 173 208 control	173 control	201
Study 28	Phase 2 Safety/Efficacy	1° Malignant Glioma	39	33	36
Study 30	Phase 2 Safety/ <mark>Efficacy</mark>	Recurrent Glioma	40	36	40
Study 32	Phase 3 Safety	1° Malignant Glioma	245		243

Study 3 Design

 Randomized, group-sequential, rater-blinded, balanced parallel-group, controlled multicenter phase III study of a method for tumor visualization

Statistical Methods:

- 415 patients randomized 1:1, stratified by:
 - Age
 - Karnofsky Performance Score (KPS)
 - Eloquent location
 - Site

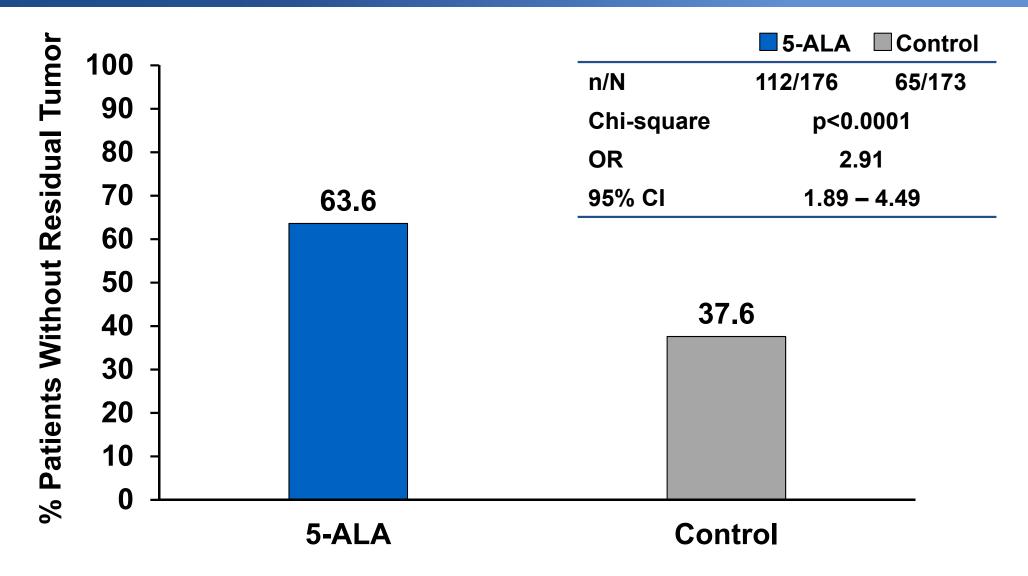
Sample size

- 80% power, experiment-wise type I error rate of 0.05
- Primary endpoints tested in an a priori defined hierachical order
- Prespecified interim analysis at 270 patients

Appropriate adjustments for

- Multiple endpoints
- Interim analysis

Study 3: Patient Disposition


	5-ALA	Control	Total
Patients enrolled based on imaging	207	208	415
Patients Excluded from FAS	31	35	66
Histopathological diagnosis not met	21	20	41
Radiological diagnosis not met	5	10	15
Withdrawal of consent before surgery	2	3	5
No tumor resection	2	1	3
Other	1	1	2
Patients Discontinued	0	3	3
Lost to follow up	0	1	1
Withdrawal of consent after surgery	0	2	2
Full Analysis Set (pre-specified)	176	173	349

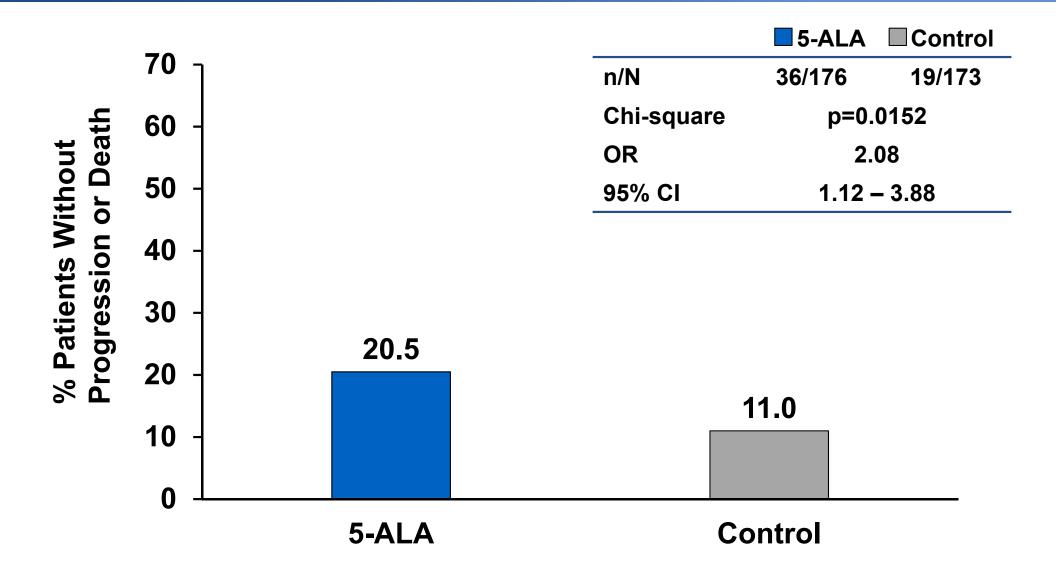
CE-8

Demographics Study 3: Full Analysis Set (FAS)

		5-ALA N=176	Control N=173	
Prognostic Variables		n (%)	n (%)	
	≤55 years	55 (31)	52 (30)	
Age	>55 years	121 (69)	121 (70)	
	Median years	61	60	
KPS	Low	37 (21)	41 (24)	
rf3	High	139 (79)	132 (76)	
Eleguent	Νο	81 (46)	72 (42)	
Eloquent	Yes	95 (54)	101 (58)	
Histology	WHO º III	5 (3)	5 (4)	
Histology	WHO ° IV	171 (97)	126 (96)	

Study 3: % of Patients w/o Residual Enhancing Tumor (FAS)

CE-9

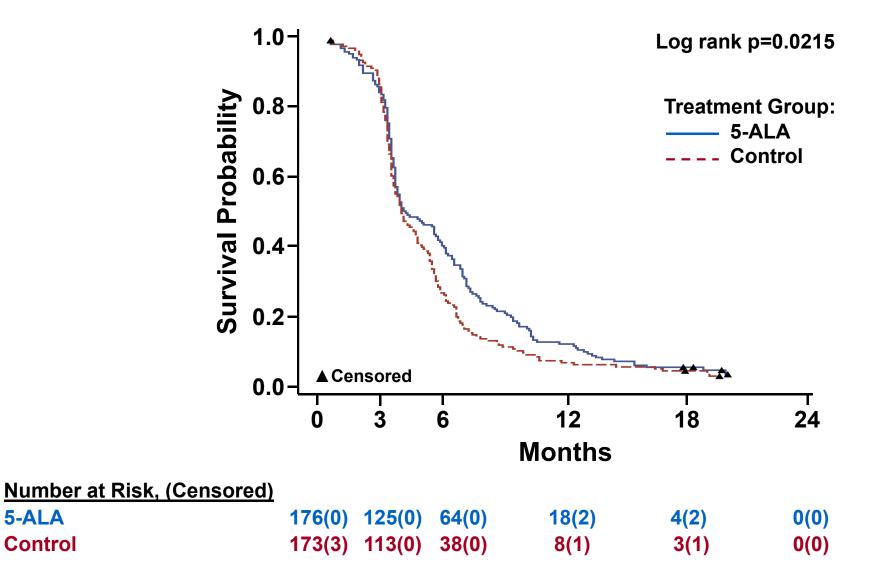

5 patient(s) (2 in 5-ALA and 3 in Control arm) with not evaluable/missing early postoperative MRI data were/was included as patient(s) with residual tumor.

CE-10 Early Postoperative MRI Resection Status: Valid for All Groups (FAS)

		n/ N	
Subgroup	5-ALA	Control	OR (95% CI)
Overall	112/176	65/173	2.91 (1.88, 4.49)
Age (p=0.8472*)			
≤55 yrs	41/55	25/52	3.16 (1.40, 7.14)
>55 yrs	71/121	40/121	2.88 (1.70, 4.86)
Baseline KPS (p=0.7569*)			
≤80%	19/37	12/41	2.55 (1.00, 6.48)
>80%	93/139	53/132	3.01 (1.84, 4.95)
Eloquent (p=0.5665*)			1
Yes	56/95	31/101	3.24 (1.80, 5.84)
Νο	56/81	34/72	2.50 (1.29, 4.85)
			0 5 10 15 20
	-	Control Better	r 5-ALA Better
		Odds	Ratio (OR)

n=number with complete resection on early postoperative MRI; N=number in treatment group. *p-value for Breslow-Day test for homogeneity of the odds ratio.

Study 3: % of Patients Progression Free at 6 Months (FAS)

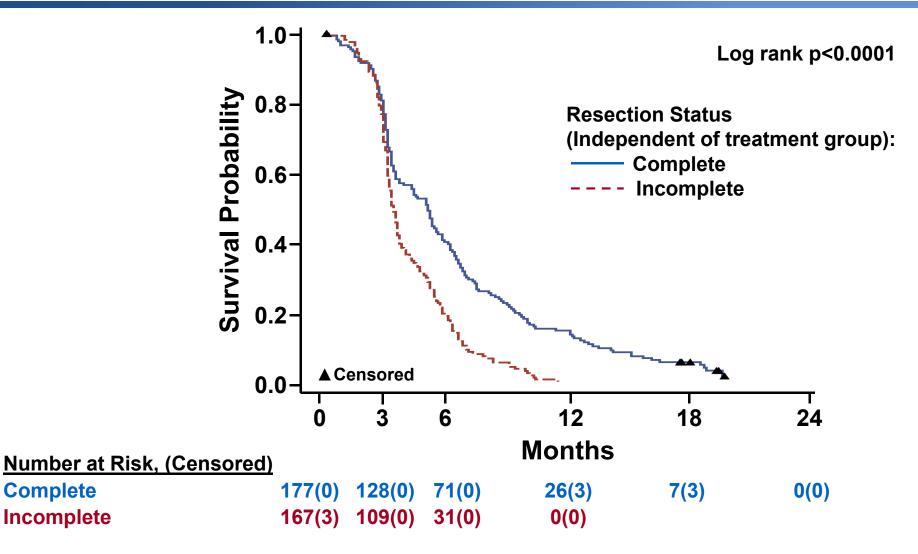


Progression Free Survival at 6 Months: Valid for All Groups (FAS)

		n/N		
Subgroup	5-ALA	Control		OR (95% CI)
Overall	36/176	19/173		2.08 (1.14, 3.80)
Age (p=0.8956*)				
≤55 yrs	14/55	7/52	· 	2.20 (0.81, 5.97)
>55 yrs	22/121	12/121	┟╌┓┓	2.02 (0.95, 4.29)
Baseline KPS (p=0.4900*)			I I	
≤80%	6/37	5/41		1.39 (0.39, 5.01)
>80%	30/139	14/132		2.32 (1.17, 4.61)
Eloquent (p=0.1128*)				
Yes	14/95	12/101		1.28 (0.56, 2.93)
Νο	22/81	7/72		 3.46 (1.38, 8.96)
			0 5	10
	~	Control B	etter 5-ALA Better	►
		Odd	s Ratio (OR)	

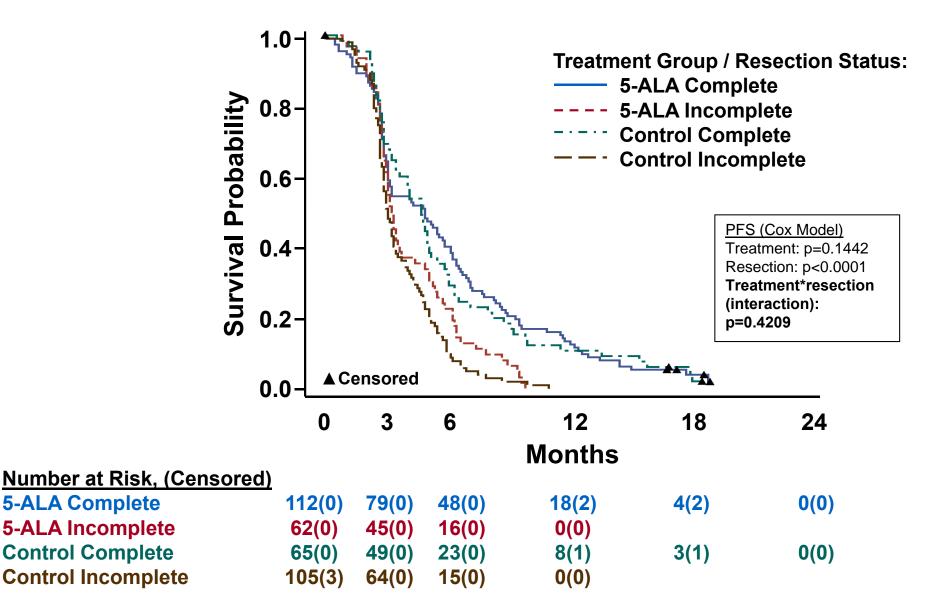
n=numbers alive without progression at 6 months.; N=number in group. *p-value for Breslow-Day test for homogeneity of the odds ratio.; **Exact confidence interval for odds ratio.

Study 3: Progression Free Survival by Treatment Group (FAS)

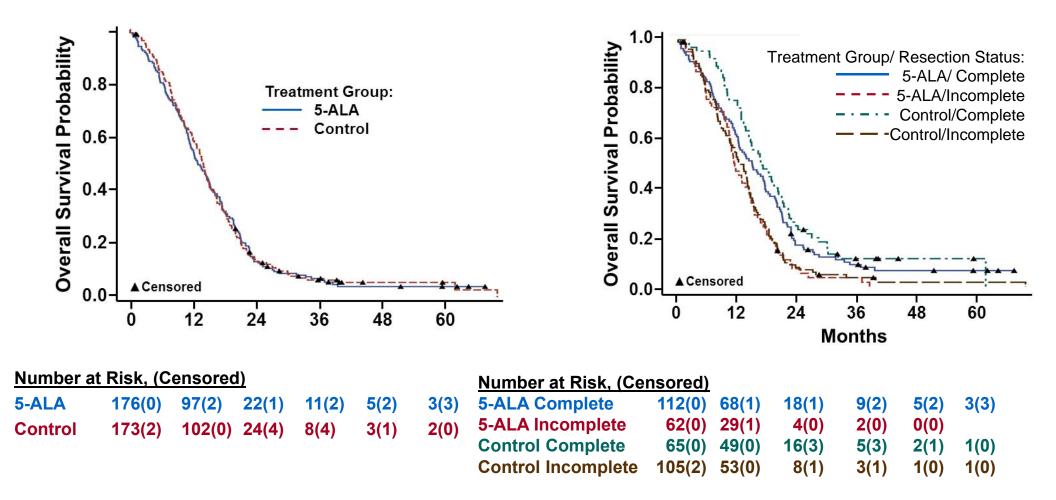


CE-13

Progression free survival (PFS) is time from surgery date to date of first progressive disease or death, patients alive without progressive disease at end of study are censored at last contact date.

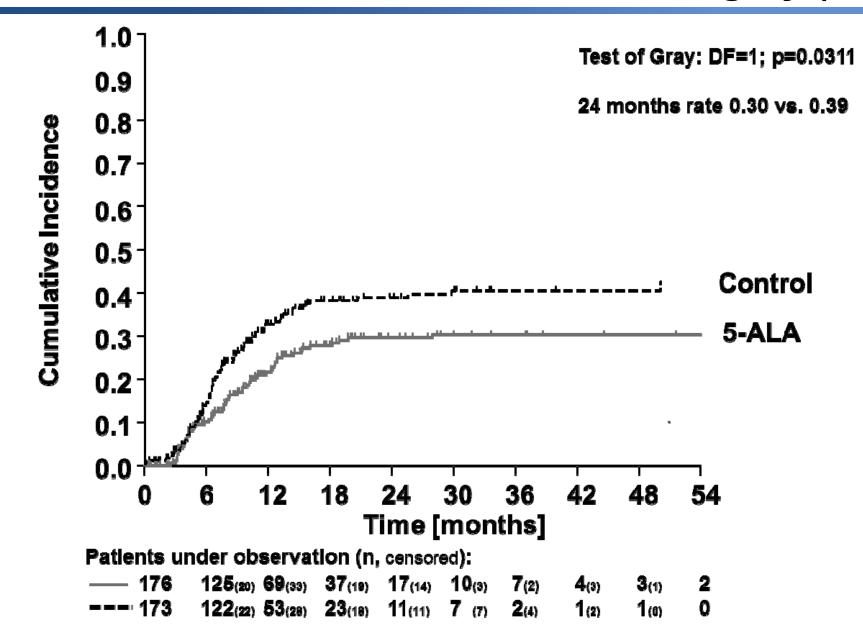

Study 3: Progression Free Survival by Completeness of Resection (Pooled Treatment Groups, FAS)

CE-14



Patients with not evaluable/missing early postoperative MRI data are excluded from analysis Progression free survival (PFS) is time from surgery date to date of first progressive disease or death, patients alive without progressive disease at end of study are censored at last contact date.

Study 3: Progression Free Survival by Completeness of Resection (FAS)



CE-16 Study 3: Overall Survival by Treatment Group (FAS)

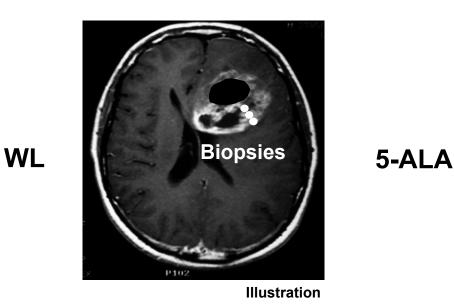
Patients with not evaluable/missing early postoperative MRI data are excluded from analysis.

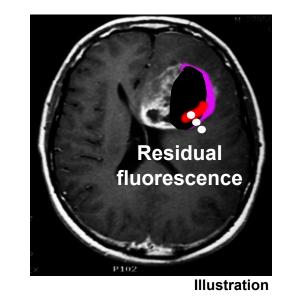
Study 3: 5-ALA Reduces Incidence of Second Surgery (FAS)

NDA Endpoints for Visualization and Clinical Usefulness

Is tissue highlighted by fluorescence truly tumor?
 – PPV

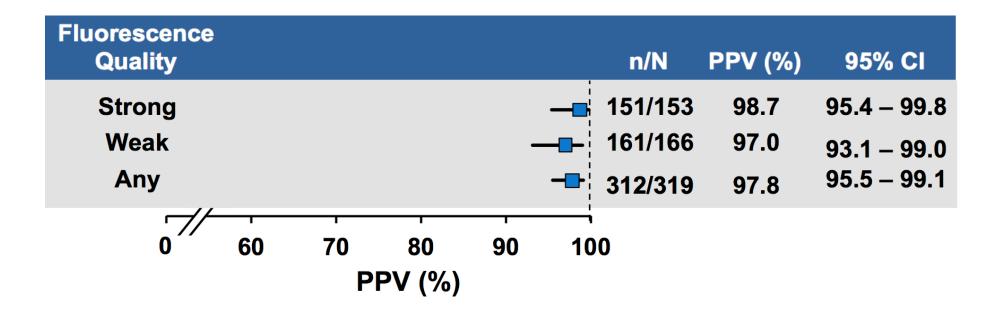
CF-18


- Studies 3, 28, 30
- What cell densities can be visualized?
 - Study 28
- Can the surgeon see more with fluorescence than under white light?
- How does the fluorescence signal relate to MR contrast enhancement?


Clinical Studies: Efficacy Endpoints NDA

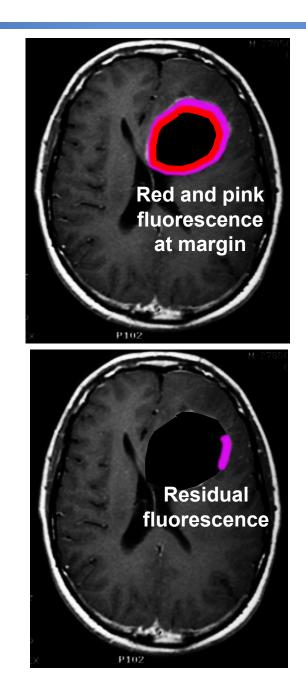
	Study 3 Randomized 5-ALA vs Control	Study 28 Single-arm; all 5-ALA	Study 30 Single-arm; all 5-ALA
Primary	PPV: Biopsy-based	PPV: Biopsy-based	PPV: Biopsy-based
		 Clinical usefulness (qualitative) 	 Clinical usefulness (qualitative)
Methods	 Biopsy location, timing not defined 	 Biopsies correlated with imaging 	 Biopsies after white light resection
Supportive	PPV: Pt-based	PPV: Pt-based	PPV: Pt-based
	NPV: Biopsy based	NPV: Biopsy based	NPV: Biopsy based
	NPV: Pt-based	NPV: Pt-based	NPV: Pt-based

Study 3: Biopsy-based PPV


- One biopsy each from solid tumor, tumor margin, normal tissue
 - 3 biopsies per patient
- Both under white light and blue light in the fluorescence arm
- Biopsies not supervised nor correlated with location (e.g. by neuronavigation)
- No prespecification of whether biopsy sites were identified under fluorescence or under white light

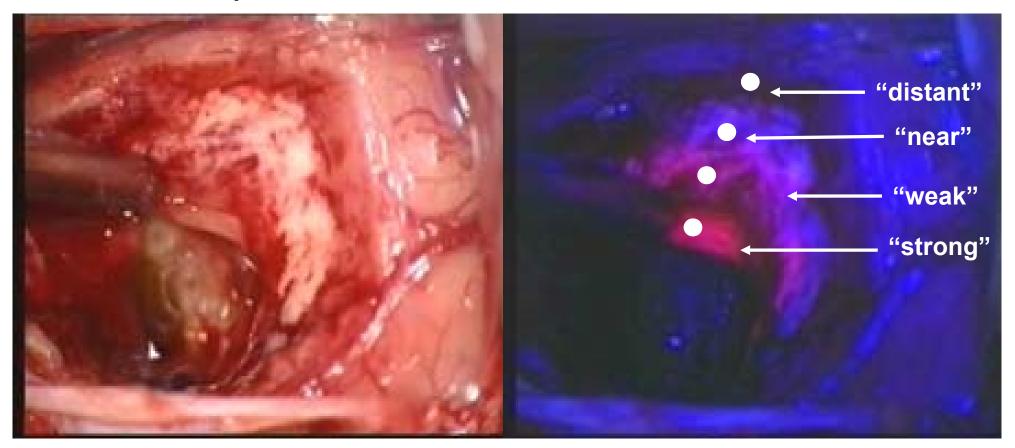
Study 3: Biopsy-based PPV

- One biopsy each from solid tumor, tumor margin, normal tissue
 - 3 biopsies per patient
- Both under white light and blue light in the fluorescence arm
- Biopsies not supervised nor correlated with location (e.g. by neuronavigation)
- No prespecification of whether biopsy sites were identified under fluorescence or under white light

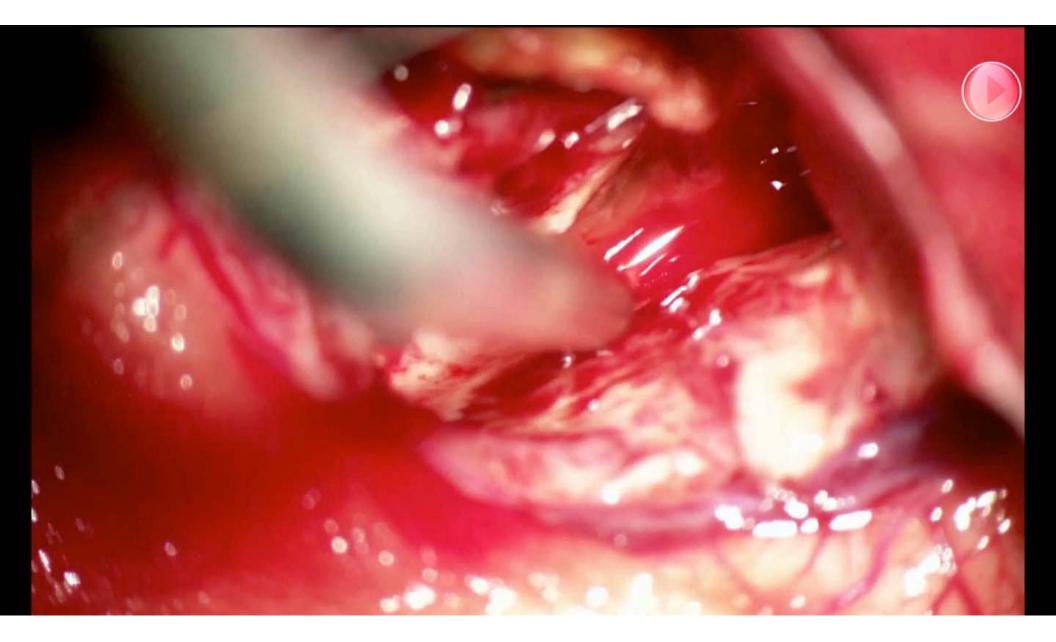


Study 28: Methods

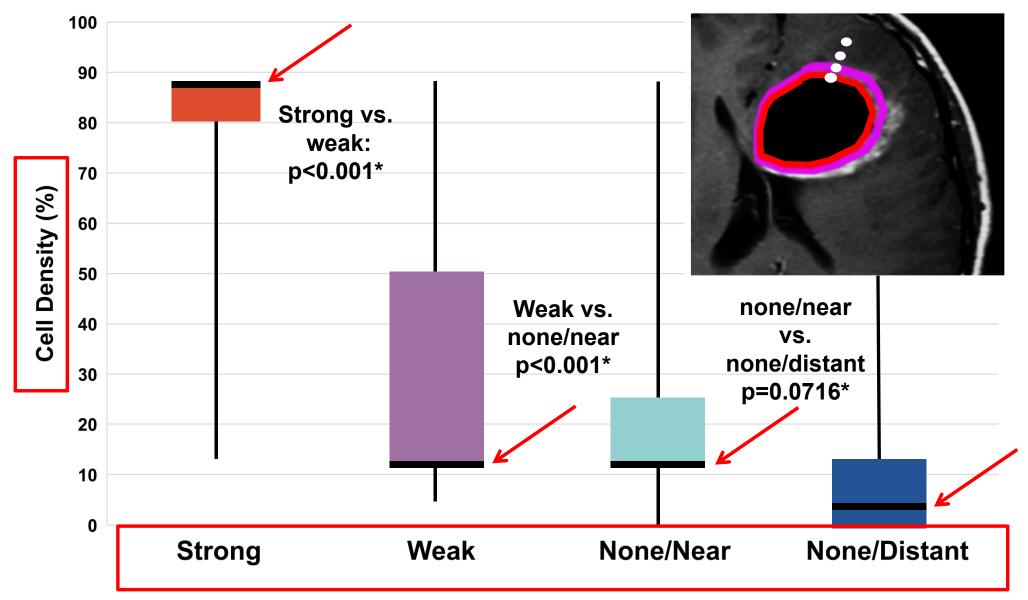
- Multicentric, prospective
 - n=33
 - Median age 61 (range 21-72)
 - Median KPS 90 (range 70-100)
 - Histology: 4 AA, 29 GBM


Designed to

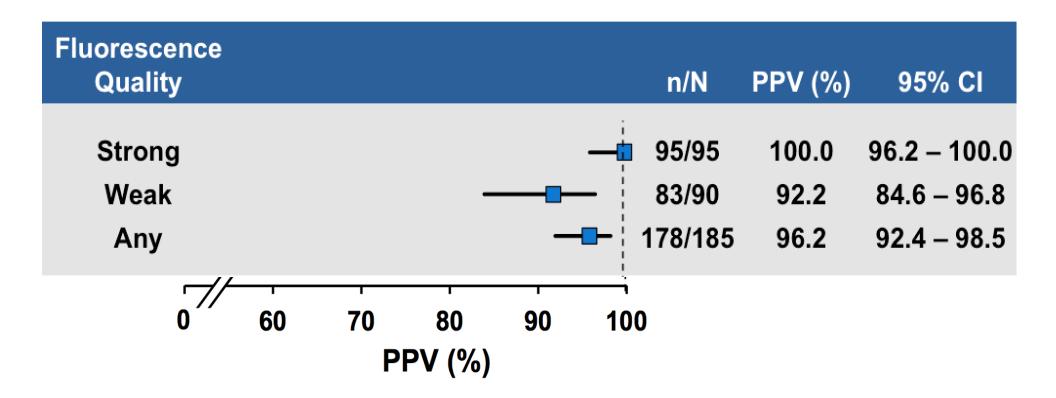
- Establish the significance of strong and weak fluorescence at margin
- Correlate residual fluorescence with tumor cell density
- Correlate residual fluorescence with post-OP MRI by neuronavigation



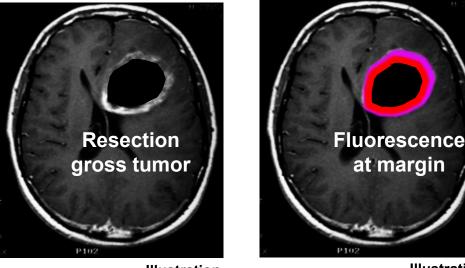
Study 28: Methods


- **Resect** to tumor margins
- Perform biopsies in areas with strong and weak fluorescence, from nonfluorescing tissue near and distant to cavity for blinded histology
- Locate residual fluoresence using neuronavigation for radiological correlation to post-OP MRI

Resolution of Fluorescence



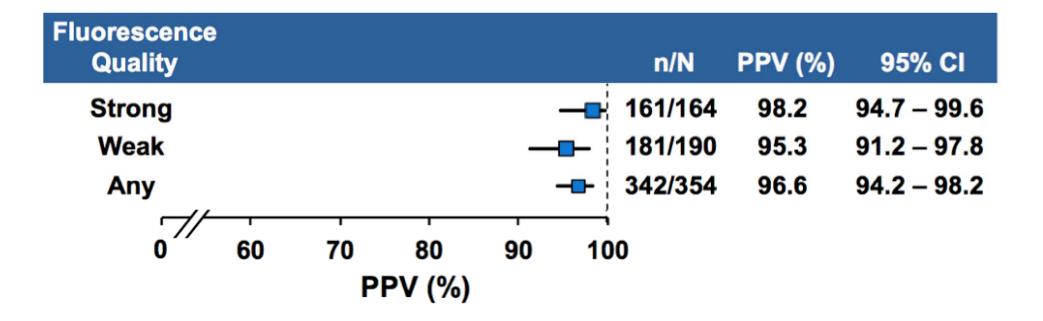
Study 28: Fluorescence Reflects Cell Density


Stummer et al. Neurosurgery 2014; Friedman p<0.001, *post hoc ANOVA

Study 28: Results PPV

Study 30

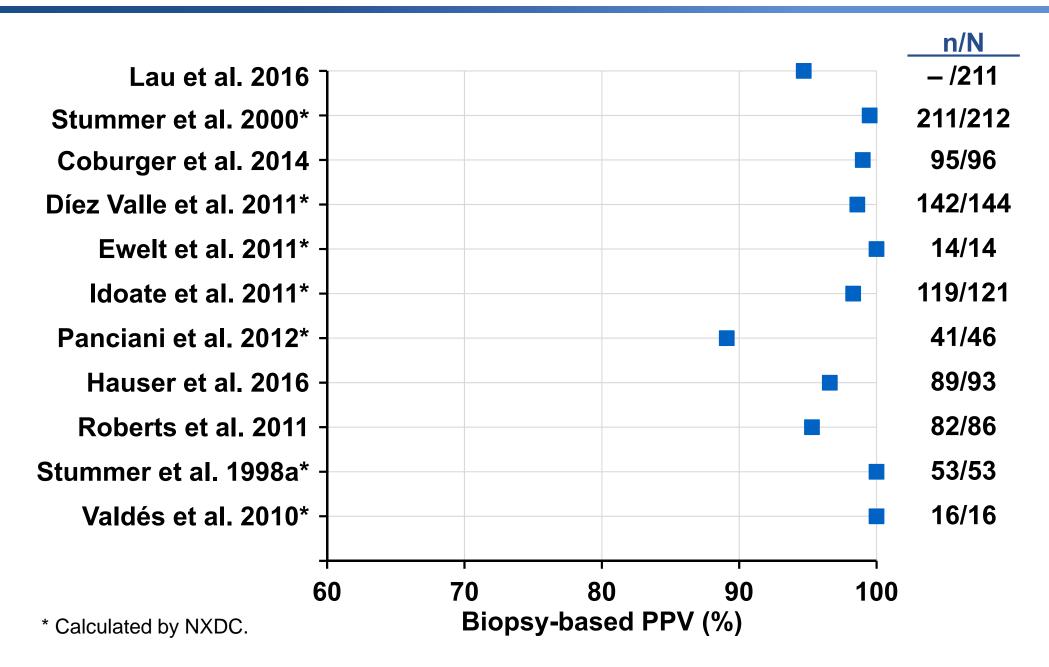
- Designed to determine the PPV in recurrent malignant glioma
- n=40, multicenteric, prospective; <u>recurrent</u> malignant glioma
- Biopsy regimen:
 - 1. Tumor resection under white light followed by blue light
 - 2. Biopsies collected from pathological and normal areas (WL impression) if they fluoresced

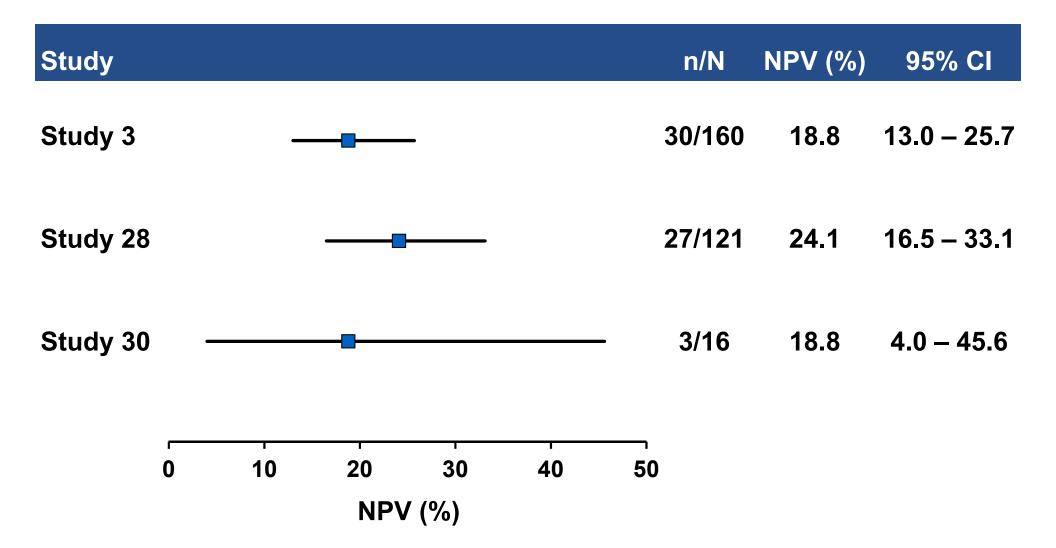


Illustration

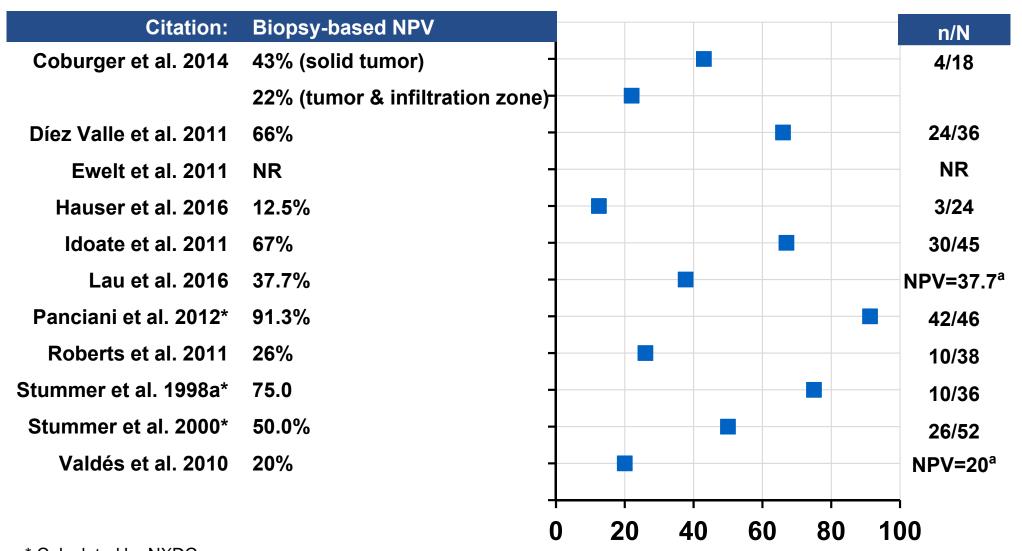
Illustration

Study 30: Results PPV


 PPV in recurrent malignant glioma similar to newly diagnosed malignant glioma

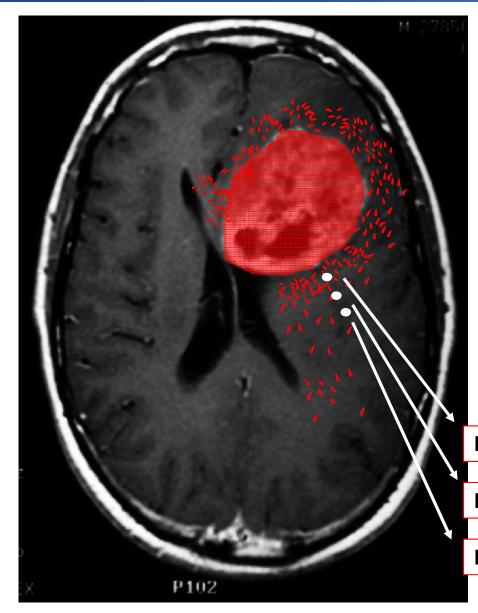

Predictive Accuracy of 5-ALA: Biopsy-based PPV

Study	Fluorescence Quality			n/N	PPV (%)	95% CI
	Strong			151/153	98.7	95.4 – 99.8
Study 3	Weak			161/166	97.0	93.1 – 99.0
	Any			312/319	97.8	95.5 – 99.1
	Strong			95/95	100.0	96.2 – 100.0
Study 28	Weak	-		83/90	92.2	84.6 – 96.8
	Any			178/185	96.2	92.4 – 98.5
	Strong			161/164	98.2	94.7 – 99.6
Study 30	Weak		-	181/190	95.3	91.2 – 97.8
	Any			342/354	96.6	94.2 - 98.2
	0 60	70 80 PPV (%)	90 10	0		


Biopsy-based PPV from Peer-Reviewed Literature

Biopsy-based Estimates of NPV

Summary of Biopsy-based NPV from Peer-Reviewed Literature



Biopsy-based NPV (%)

* Calculated by NXDC.

a. Raw data not reported.

NPV and Distance from Tumor

- Tumor cells spread diffusely to brain outside the enhancing tumor
- NPV is based on any histologically detectable tumor cells
- Residual infiltrating cells will lead to non-fluorescing biopsies with positive histology (false negative)
- The likelihood for false negatives depends on distance, affecting NPV, sensitivity and specificity

False negative fluorescence common, NPV low

False negatives fluorescence less likely, NPV medium

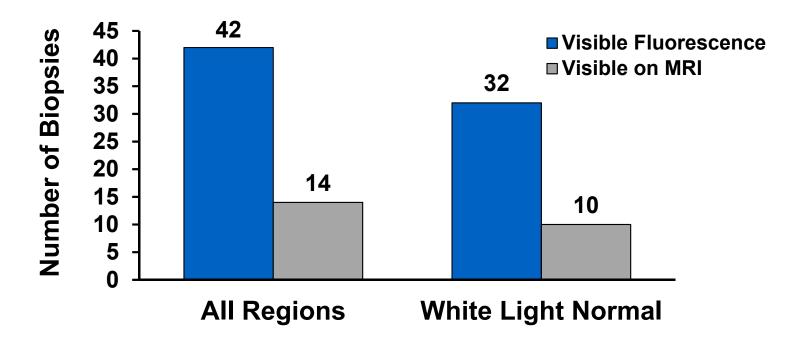
False negative fluorescence rare, NPV high

Pivotal Studies: Biopsy-Based Diagnostic Measures

Measure	Study 3 (Primary)	Study 28 (Primary)	Study 30 (Recurrent)
PPV	97.8	96.2	96.6
NPV	18.8	24.1	18.8
Sensitivity	70.6	67.7	96.3
Specificity	81.1	79.4	20.0

Literature Visualization Performance Parameters (FDA Briefing Document)

Study	No. Patients	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
Stummer et al (2000)	52	89	96	99	50
Roberts et al (2011)	11	75	71	95	26
Panciani et al (2012)	41	91	89	89	91
Coburger et al (2014)	34	91	80	99	22
Yamada et al (2015)	97	95	53	92	69
Hauser et al (2016)	12	81	43	96	12.5
Stummer et al	9	85	100		
Diez Valle et al (2011)	36	91	89	100 (S) 97 (W)	66
Hefti et al (2008)	57	100 (S) 76 (W)	98(S) 85(W)		
Zhao et al (2015)	Meta- analysis	87	89		

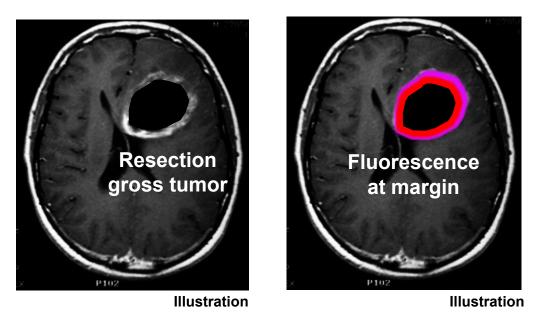

S=strongly fluorescent; W=weakly florescent

Clinical Usefulness

- Demonstrated use of 5-ALA for enhancing delineation of tumor: PPV
- Ability to aid surgeons in identification of malignant tumor under fluorescent light that may otherwise be overlooked during conventional microsurgical resection?

Study 28: 5-ALA Fluorescence Identifies Tumor Beyond MRI Contrast Enhancement

- After maximal safe resection areas with residual fluorescence were mapped using neuronavigation
- Unresectable Residual Tumor Adjacent to Eloquent Structures


Comparison to post-OP MRI by blinded raters. Stummer et al. *Neurosurgery* 2014.

Study 30: 5-ALA Identifies Tumor in Normal-looking Brain Tissue

- **1.** White light resection of gross tumor
- 2. White light resection to "normal tissue" at tumor margin

CE-38

- 3. Switch to blue light
- 4. Biopsies from regions with different fluorescence qualities
- 5. Rater blinded assessment

Nabavi et al. *Neurosurgery* 2009.

Study 30: 5-ALA Identifies Tumor in Normal-looking Brain Tissue

- **1.** White light resection of gross tumor
- 2. White light resection to "normal tissue" at tumor margin
- 3. Switch to blue light
- 4. Biopsies from regions with different fluorescence qualities
- 5. Rater blinded assessment

White Light Appearance and Fluorescence Quality	Biopsies N	True-Positive Biopsies N	Predictive Value %	95% CI
"Normal tissue"				
Strong	64	62	96.9	89.2 – 99.6
Weak	93	84	90.3	82.4 – 95.5
Any	157	146	93.0	87.8 – 96.5

CE-39

Nabavi et al. Neurosurgery 2009.

Summary of Efficacy

Predictive accuracy

- Fluorescence highly predictive of malignant tumor (PPV ~95%)

Clinical usefulness

Additional malignant tumor visualized with 5-ALA FGS

Clinical significance

- Significantly more patients with maximal EOR (63.6 vs 37.6%)
- Significant improvement in PFS 6 months (imaging and MacDonalds)
- Post hoc analysis suggests reduced need for subsequent surgeries

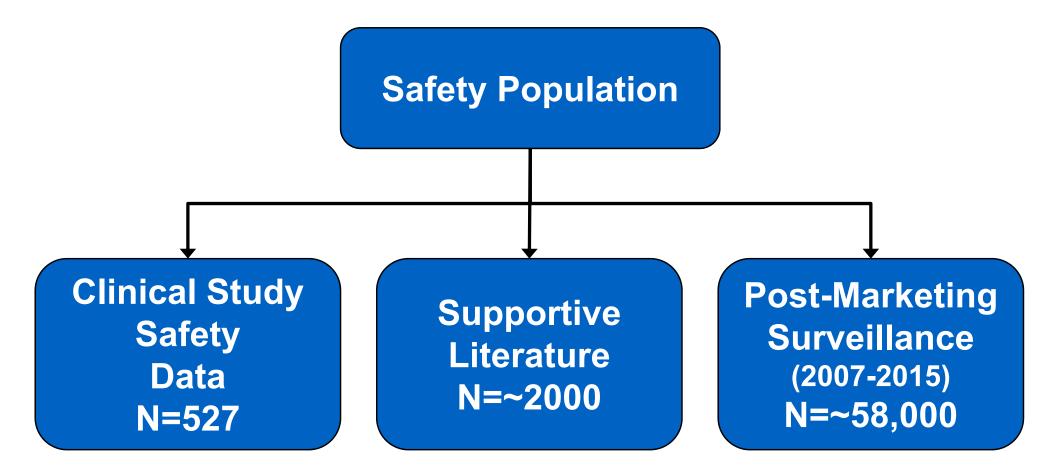
Data from literature consistent with pivotal studies

CS-1

Safety Results

Walter Stummer, Prof Dr med

Safety


- Clinical Study Safety Data
- Supportive Literature
- Post-marketing Surveillance Data
- Safety Summary

Safety Considerations for FGS with 5-ALA

Related to:

- 5-ALA
- Surgery
 - Patient factors
 - Individual surgical technique and experience
- Extending resections based on information from additional visualization
 - Structural information (Navigation, MRI, fluorescence) only one aspect
 - Knowledge of anatomy/function paramount

Safety Population

Clinical Study Safety Data

Study Number	Phase	Patients, n 20 mg/kg bw
Full Safety Population		527
Study 8	1/2	7
Study 28	2	36
Study 30	2	40
Study 3	3	201
Study 32	3	243

Definition and Collection of Adverse Events

TEAEs = AEs that start or worsen during or after 5-ALA administration

- Reported as mild, moderate, severe, life-threatening, or fatal
- Categorized as:
 - Short term = within 1 week of surgery
 - Mid term = >1 week but within 6 weeks of surgery
 - Long term = >6 weeks after surgery

Any event with a relationship of certain, probable, or possible were considered drug related

 An unknown relationship to 5-ALA was reported as drug related

Underlying Disease/Resection Surgery

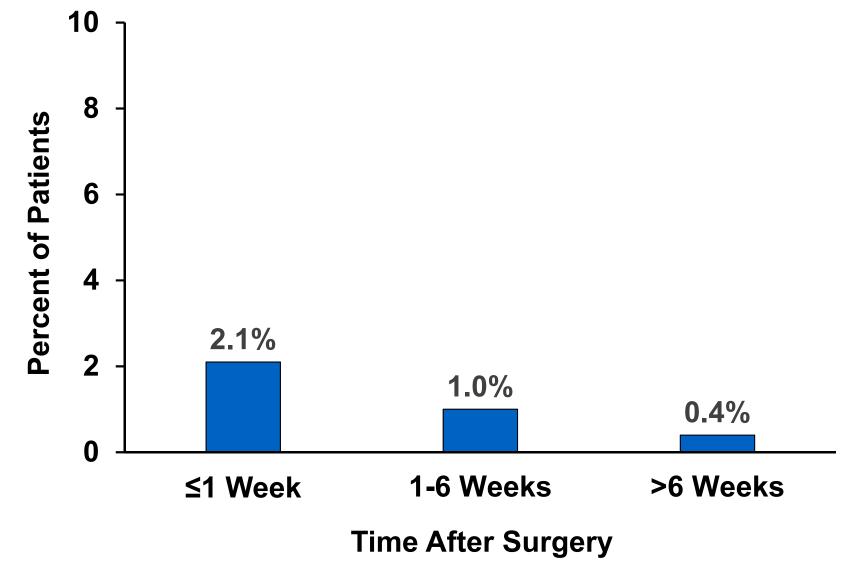
CS-7

- Glioma patients are a seriously ill population
 - Include a number of underlying comorbidities
 - Death is an outcome due to underlying disease
- Surgery itself is associated with risks and AEs
- AEs collected during mid and long term might be influenced by tumor progression or side effects of surgery/therapy

Summary of AEs

- Of the 527 patients:
 - 317 patients (60.2%) experienced a total of 802 TEAEs
 - 23 TEAEs were drug-related
 - 130 patients (24.7%) experienced an SAE
 - 25 patients (4.7%) experienced TEAEs that resulted in death
- TEAE rates for 5-ALA comparable to those in Study 3 control group

Most Frequently Reported TEAEs


Nervous System Disorders

- Reported in 29.4% of patients
- Most within 1 week of surgery
- Neurological events within 1-6 weeks of surgery indistinguishable from Study 3 control group
- Neurological TEAEs likely due to disease and/or surgery

CS-10 Most Frequently Reported Nervous System Disorder TEAEs

System Organ Class Preferred Term	N (%) N=527
Nervous system disorders	155 (29.4)
Aphasia	42 (8.0)
Hemiparesis	41 (7.8)
Hemianopia	17 (3.2)
Headache	14 (2.7)
Seizure	10 (1.9)
Hemiplegia	10 (1.9)
Monoparesis	7 (1.3)
Hypoaesthesia	6 (1.1)

Low Incidence of Drug Related TEAEs

Pooled Safety Set, N=527

Drug-related TEAEs Within First 6 Weeks After Surgery

	N=527
Preferred Term	n (%)
Brain edema	1 (0.2)
Hemianopia	1 (0.2)
Hypoaesthesia	1 (0.2)
Pyrexia	2 (0.4)
Chills	1 (0.2)
Photosensitivity reaction	2 (0.4)
Solar dermatitis	1 (0.2)
Hypotension	1 (0.2)
Abnormal LFT	1 (0.2)
Diarrhea	1 (0.2)
Venous thrombosis	1 (0.2)

Serious Adverse Events

SAEs occurred in 130 patients (24.7%)

- 13.1% within 1 week after surgery
- Most common: Nervous System Disorders (9.3%)
- 10.0% >1 week but within 6 weeks of surgery
- -7.3% > 6 weeks after surgery

SAEs within 1 Week of Surgery

System Organ Class Preferred Term	Pooled Studies N=527 n (%)
Nervous system disorders	49 (9.3)
Hemiparesis	23 (4.4)
Seizure	5 (0.9)
Aphasia	10 (1.9)
Hemiplegia	7 (1.3)
Cerebral infarction	4 (0.8)
Partial seizures	2 (0.4)
Monoparesis	2 (0.4)

Study 3: Neurological AEs

	Patients, %		
Parameter	5-ALA	Control	
All Non-serious Neurological AEs*	42.8	44.5	
CTCAE Grade III/IV*	7.0	5.2	
All neurological SAEs	12.4	11.6	

Risks of 5-ALA Use: NIH-SS Increased by ≥1 Point

Parameter	5-ALA	Control	p-value	Absolute Risk
NIH-SS deteriorated				
48 hours after surgery	26.2%	14.5%	0.02	11.7%
7 days after surgery	20.5%	10.7%	0.09	9.8%
6 weeks after surgery	17.1%	11.3%	0.29	5.8%
3 months after surgery	19.6%	18.6%	0.77	1.0%

Risks of 5-ALAUse: KPS

Parameter	5-ALA	Control	p-value	Absolute Risk
KPS deteriorated				
6 weeks after surgery	32.9%	28.8%	1.0	4.1%
3 months after surgery	36.2%	37.9%	0.94	-1.7%
6 months after surgery	35.7%	49.1%	0.12	-13.4%

Mortality

- 284 deaths occurred over 18 months
- ◆ 25 patients died as a result of a TEAE
- No deaths considered related to 5-ALA

Other Safety Parameters

- No clinically significant patterns of change in laboratory parameters that could be associated with the study treatment
- Predominantly mild/moderate and transient increase in transaminases and gamma-GT
- No QT prolongation or arrhythmogenic effect

Liver Function Tests

		5-ALA, n (%)	Control, n (%)
		N=201	N=173
		CTCAE Grade III/IV	CTCAE Grade III/IV
	Baseline	0	0
AST/GOT	24 hours	3 (1.5)	0
	7 days	1 (0.5)	1 (0.6)
	Baseline	2 (1.0)	1 (0.6)
ALT/GPT	24 hours	7 (3.5)	4 (2.3)
	7 days	15 (7.5)	9 (5.3)
	Baseline	1 (0.5)	0
GGT	24 hours	4 (2.0)	2 (1.2)
	7 days	21 (10.6)	10 (5.8)

Clinical Studies Summary

- Few TEAEs considered drug related
- Most frequent TEAEs and SAEs nervous system disorders
 - Likely due to disease and/or surgery
- Few TEAEs led to death
- No clinically significant patterns of change in laboratory values or QT measures

Supportive Literature

- NXDC conducted systematic literature review
 - January 1, 1995 to June 9, 2016
- 29 studies identified
- ~2,000 patients
- No new AE patterns revealed vs clinical trials

Post-Marketing Surveillance Data

European Union PSUR

- 2007-2015
- -~58,000 patients

Safety profile seen post-marketing consistent with clinical trials

Safety Summary: 5-ALA Well Tolerated

Extensive safety database

- Clinical studies (N=527)
- Literature (N=~2000)
- Post-marketing experience (N=~58,000)

Well established safety profile

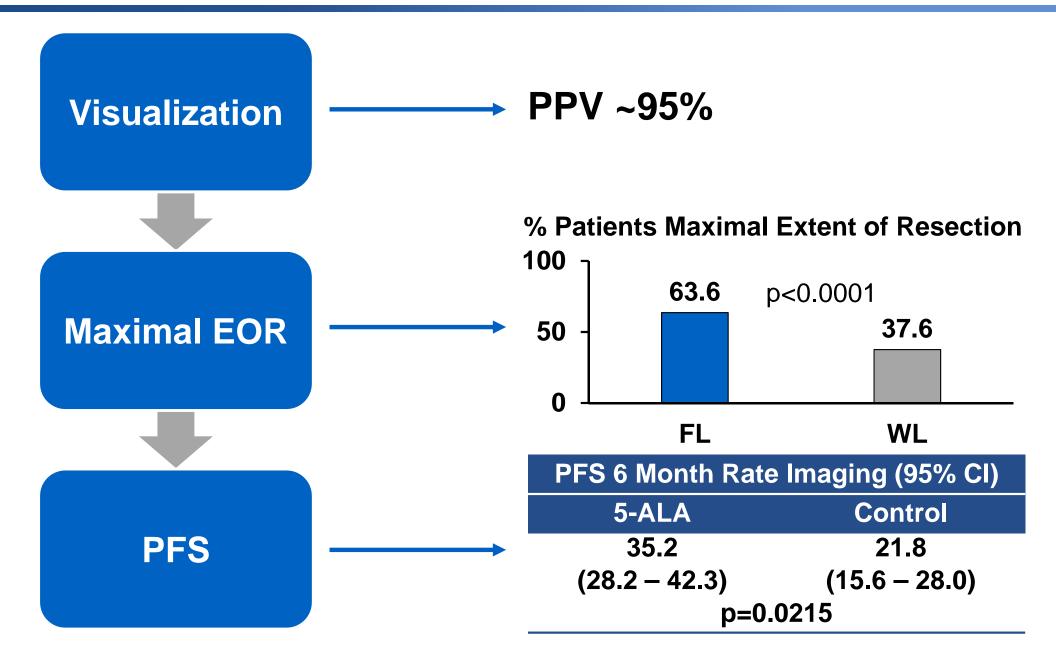
- AEs predominantly result of procedure, underlying disease
- Neurological AEs consistent with and correlate to surgical procedure

Agenda: 5-ALA Visualization of Glioma

Conclusion	Alan Ezrin, PhD
Benefit / Risk	Constantinos G. Hadjipanayis, MD, PhD
Safety Results	Walter Stummer, Prof Dr med
Clinical Efficacy	Walter Stummer, Prof Dr med Department of Neurosurgery, University of Münster
Visualization of Tumor During Glioma Surgery	Constantinos G. Hadjipanayis, MD, PhD <i>Professor and Chair, Dept. of Neurosurgery,</i> <i>Director of Neurosurgical Oncology, Professor of</i> <i>Oncological Sciences, Mount Sinai</i>
Introduction	Alan Ezrin, PhD President & CEO NX Development Corporation

Benefit/Risk of 5-ALA for the Visualization of Glioma During Resection Surgery

Constantinos G. Hadjipanayis, MD, PhD


Professor and Chairman of Neurosurgery, Mount Sinai Beth Israel Hospital Director of Neurosurgical Oncology Mount Sinai Health System New York, NY

Need for Better Visualization of Malignant Tumor Tissue

- Goal of surgery is safe maximal extent of resection
- Maximal resection is associated with better patient outcomes
- Gliomas are difficult to identify at the margin and infiltrate the normal brain
- Accurate tumor delineation not in real time

Visualization to Clinical Benefit From Phase 3 Study

CR-3

Benefits of 5-ALA

- Well tolerated and safe
- High resolution intraoperative visualization tool
- Unambiguous delineation
- Compatible with standard surgical microscope
- Oral administration
- Does not disrupt flow of surgery
- Accuracy not affected by brain shift
- 5-ALA provides greater maximal EOR, PFS-6, and fewer repeat surgeries

Risks

- Visualization and resection of additional malignant tumor not seen with white light
 - Neurosurgeon still decides if tumor tissue can be safely resected
 - Transient neurologic deficits
- Temporary skin photosensitivity
- Transient LFT elevation

5-ALA Medicines Management Program

Program will

1. Instruct surgeons in 5-ALA FGS and proper use

CR-6

- 2. Limit use to neurosurgeons certified (and recertified every two years) after instruction
- 3. Ensure 5-ALA dispensed from hospital pharmacies only to surgeons certified

5-ALA Benefit/Risk Summary

- Improved visualization of malignant glioma tissue during surgical resection
- Real time visualization of malignant tumor tissue guiding surgery
- Structural delineation of tumor from normal brain
- Confidence that what is removed is tumor tissue
- Patient benefit with better PFS, maximal EOR, and fewer repeat surgeries
- Well understood safety profile

Agenda: 5-ALA Visualization of Glioma

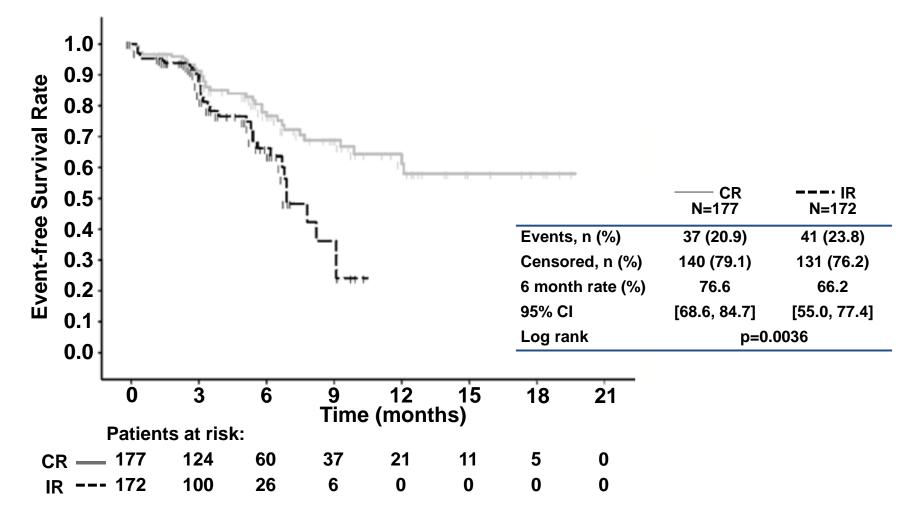
CR-8

Introduction	Alan Ezrin, PhD President & CEO NX Development Corporation
Visualization of Tumor During Glioma Surgery	Constantinos G. Hadjipanayis, MD, PhD Professor and Chairman of Neurosurgery, Mount Sinai Beth Israel Hospital Director of Neurosurgical Oncology, Mount Sinai Health System, New York, NY
Clinical Efficacy	Walter Stummer, MD Department of Neurosurgery, University of Münster
Safety Results	Walter Stummer, MD
Benefit / Risk	Constantinos G. Hadjipanayis, MD, PhD
Conclusion	Alan Ezrin, PhD

CC-1

Conclusion

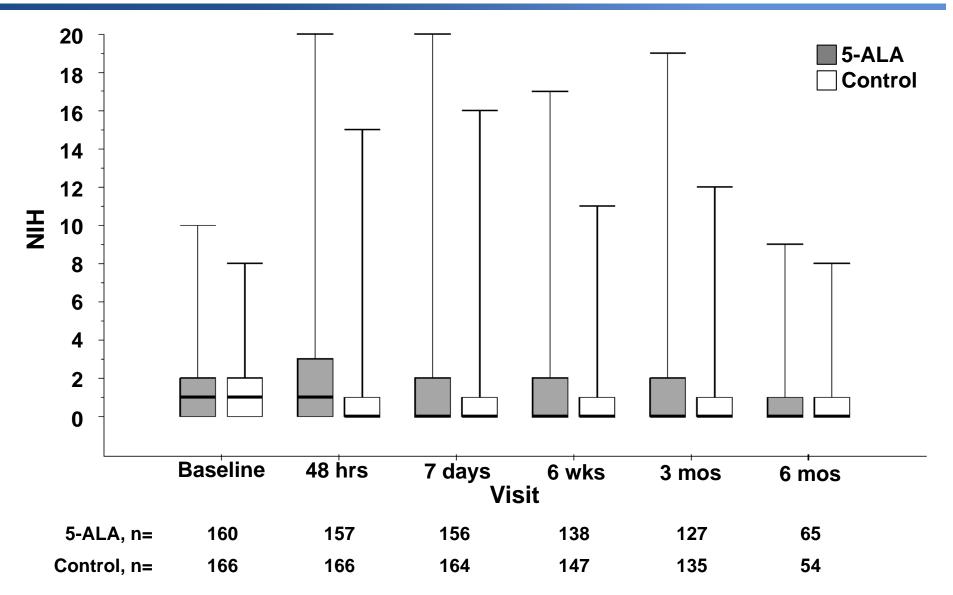
Alan Ezrin, PhD


President & CEO NX Development Corporation

CC-2

5-ALA is an imaging agent to facilitate the real time detection and visualization of malignant tissue during glioma surgery

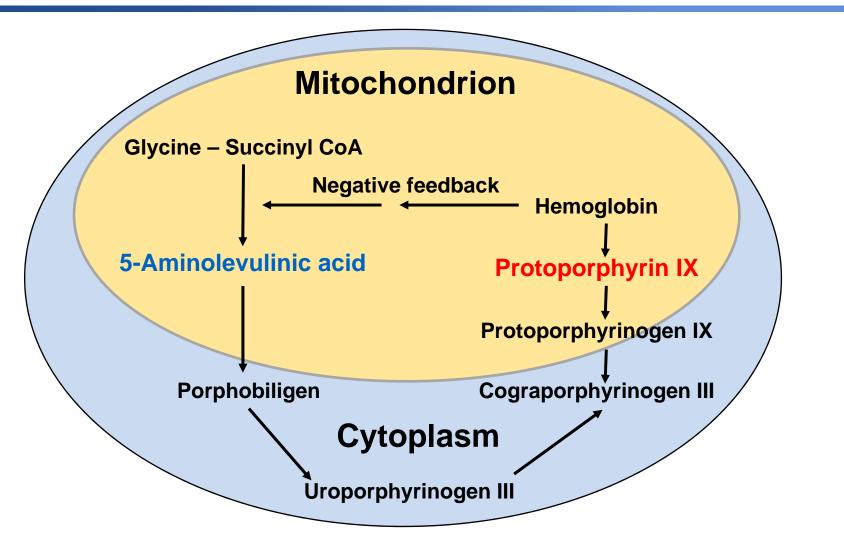
Supporting Slides


Extent of Resection and Event Free Survival

Time from randomization to NIH-SS deterioration (\geq 1 point) with stable/increased use of steroids – event-free survival – Kaplan-Meier estimates (death/radiological progression censored). CR=complete resection; IR=incomplete resection.

Stummer et al. Journal of Neurosurgery, 2008

Study 3: Summary of NIHSS



Study 3: Deterioration from Baseline in NIHSS by ≥1 Point Stratified by Baseline NIHSS (Full Analysis Set)

			n (%)		
Time	Baseline NIH-SS	Deteriorated	5-ALA N=172	Control N=172	P value*
Total 48 hours 0 	Total	Νο	127 (73.8)	147 (85.5)	0.0106
	TOLAI	Yes	45 (26.2)	25 (14.5)	0.0106
	0	Νο	51 (79.7)	56 (81.2)	4 000
	U	Yes	13 (20.3)	13 (18.8)	1.000
	>0	Νο	76 (70.4)	91 (88.3)	0.0020
		Yes	32 (29.6)	12 (11.7)	0.0020

* P value based on Fisher's exact test.

5-ALA Metabolism

Hadjipanayis C et al. Semin Oncol 2011.