Non-Adherence
Definitions – Monitoring – Prevention/Maintenance

Rita R. Alloway, PharmD, FCCP
Research Professor of Medicine
Director, Transplant Clinical Research
University of Cincinnati
Disclosures

I have financial relationships within the last 12 months with:

Clinical Research Grants
- Novartis, Onyx, GSK, Prolong, Bristol-Myers Squibb, Genzyme-Sanofi, and FDA

Advisory Board
- Genzyme-Sanofi

Speakers Bureau
- Genzyme-Sanofi, Veloxis

This presentation does not include discussion of off-label or investigational use of any drugs
Objectives

• Differentiate medication non-adherence and compliance

• Describe measures to quantitate medication non-adherence

• Discuss efforts towards prevention and management of non-adherence
Non-Adherence

• Age Old Problem
 – “Keep watch also on the fault of patients which makes them lie about taking of things prescribed.”
 - Hippocrates, circa 500 B.C.
 – “Drugs don’t work if people don’t take them.”
 - C. Everett Koop, 1985

• Transplantation can no longer accept the status quo
 – “The first shot is our best shot” for transplant success
 – Despite millions in investment, a “magic” drug or procedure to render adherence irrelevant is not on the horizon
 – Are federal mandates necessary to properly resource adherence initiatives if adherence continues to be neglected?
Medication Adherence vs. Compliance

- **Medication Adherence**
 - The extent to which patients take medications as prescribed by health care providers.

- **Compliance**
 - Passive act of the patient to follow the providers orders

Medication Adherence

• A behavioral process that is influenced by many factors

• Assumes the patient has the knowledge, motivation, skills and resources to follow the health care providers prescription
Medication Non-Adherence

• Intentional medication non-adherence
 – “Active process whereby the patient chooses to deviate from the treatment regimen.”

• Unintentional medication non-adherence
 – “Passive process in which the patient may be careless or forgetful about adhering to treatment regimen.”

Five Dimensions of Adherence

- Health system/HCT-factors
- Social/economic factors
- Condition-related factors
- Therapy-related factors
- Patient-related factors
Transplant Specific Risk Factors for Nonadherence

Medication costs
- Poor access to medication
- Poor aftercare planning
- Poor physician-patient relationship
- Poor physician communication

High Symptom Distress
Development of NODAT
Increased time post transplant

Health system/HCT-factors

Social/economic factors

Condition-related factors

Therapy-related factors

Patient-related factors

History of non-adherence
- Adolescence
- Psychologic disorder (depression)
- Cognitive impairment
- Substance abuse
- Negative beliefs in medication

Younger Patient
- Male Gender
- Non Caucasian
- Non US resident
- Poor social support
- Poor transportation
- Literacy

Complex Medical Regimens
Higher Medication Toxicity
Lack of medication education
No pillbox/reminder system
Which Factors are MODIFIABLE??

- Medication costs
- Poor access to medication
- Poor aftercare planning
- Poor physician-patient relationship
- Poor physician communication

- Younger Patient
- Male Gender
- Non Caucasian
- Non US resident
- Poor social support
- Poor transportation
- Literacy

- Complex Medical Regimens
- Higher Medication Toxicity
- Lack of medication education
- No pillbox/reminder system

High Symptom Distress
Development of NODAT
Increased time post transplant

- History of non-adherence
- Adolescence
- Psychologic disorder (depression)
- Cognitive impairment
- Substance abuse
- Negative beliefs in medication

- Condition-related factors
- Therapy-related factors
- Patient-related factors

- Health system/HCT-factors
- Social/economic factors
Medication Adherence Measures

• Objective measures
 – Direct measures
 ▪ Provide evidence that medication has been consumed or taken (example: Direct observation, ie Belatacept)
 – Indirect measures
 ▪ Provide evidence suggesting that medication has been consumed or taken (example: Pill counts, tacrolimus drug levels, pharmacy refill records, medication possession ratio)

• Subjective measures
 – Provide testimony that medication has or has not been taken (example: Self report, assessment by others)
Direct Observation Options in Transplantation

- **Advantages**
 - Objective
 - Highly specific
 - Not invasive

- **Disadvantages**
 - Feasibility issues
 - Labor intensive (e.g., training observers)
 - Not practical
 - Expensive
 - Not an option for all transplant recipients

Drug Concentration Monitoring

Advantages
- Objective
- May be part of standard care
- Direct assessment of whether patient has taken medication

Disadvantages
- Snapshot of behavior
- Affected by factors other than medication adherence (e.g., metabolism, drug-drug/drug-food interactions, poor absorption)
- Cost
- Invasive

Tacrolimus Intrapatient Variability (IPV) Impact on Graft Loss and DSA development

Study Design
- 310 renal transplants receiving tacrolimus
- Tacrolimus IPV analyzed from 4-12 months post transplant and categorized as < or > 30% IPV
 - >30% IPV = 37.4%
 - <30% IPV = 62.6%
- DSA testing was performed at 1, 3, and 5 yrs
- 53 (17.1%) lost their graft
- 39 (12.6%) developed dnDSA
- Primary outcomes
 - Death censored graft survival
 - dnDSA development

Right graph showing cumulative survival and dnDSA development over years post transplantation.
Tacrolimus Intrapatient Variability (IPV) Impact on Late Outcomes

Composite endpoint

Graft failure, late biopsy-proven acute rejection and transplant glomerulopathy or doubling of serum creatinine censored for death.

<table>
<thead>
<tr>
<th>Hazard ratio (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipient age at transplantation (year)</td>
<td>0.980 (0.970–0.991)</td>
</tr>
<tr>
<td>eGFR at 6 months (mL/min)</td>
<td>0.985 (0.976–0.995)</td>
</tr>
<tr>
<td>Tac IPV% (high)</td>
<td>1.420 (1.059–1.903)</td>
</tr>
<tr>
<td>Transplant number (>1)</td>
<td>1.505 (1.066–2.125)</td>
</tr>
<tr>
<td>Mean Tac concentration (ng/mL)</td>
<td>0.913 (0.839–0.994)</td>
</tr>
<tr>
<td>HLA mismatch (none)</td>
<td>1.087 (0.989–1.194)</td>
</tr>
<tr>
<td>DGF</td>
<td>0.736 (0.473–1.146)</td>
</tr>
<tr>
<td>Donor type (deceased)</td>
<td>0.791 (0.555–1.127)</td>
</tr>
</tbody>
</table>

Transplant International 2016;29:1158-1167
Tacrolimus Intrapatient Variability (IPV) Impact on Chronic Histologic Lesions

Study Design
- 220 renal transplants receiving tacrolimus
- Tacrolimus IPV analyzed from 6-12 months post transplant
 - Lowest IPV tertile – 9.8 ± 3.3
 - Middle IPV tertile – 18.3 ± 2.4
 - Highest IPV tertile – 31.1 ± 7.8
- Protocol biopsies at 3 mos and 2 year were utilized to calculate a change in chronicity score
- Recipients with the highest IPV had an increased risk of moderate to severe fibrosis and tubular atrophy at 2 years compared with the low IPV
Electronic Monitoring

• Advantages
 – Objective
 – Indicate time/date of bottle opening (real-time tracking; detects poor adherence to dosing schedule, pill box versions now available)
 – Detects pill dumping when used in correlation with pill counts
 – Not invasive

• Disadvantages
 – Cost
 – Not effective with liquid medications
 – Can malfunction, lose data
 – Device may be bulky/inconvenient
 – May cause distress to patient (being monitored)
 – Assumes medication removed from bottle/box is taken

Strategies to Impact Non-Adherence

- Electronic Medication Monitors (MEMS) predict patterns of early medication adherence
 - Tested with MMF, sirolimus and azathioprine in 195 kidney transplant recipients
 - Adherence between month 1-2 predicted adherence for 6mo and 12mo
 - Non-adherent patients more frequent, earlier AR and death censored graft loss
 - During month 1-3 – Adherence QID 84%, BID 91%, and QD 94%
Refill Records

• Advantages
 – Objective
 – Standardized data
 – Identify patients who fail to refill medication
 – Not invasive
 – Inexpensive

• Disadvantages
 – Possible misinterpretation of use when changes made to dosage
 – Assumes filled prescriptions are taken
 – Assumes all sources of medication are captured
 – Only useful for long-term medication
 – Increased complexity when using records from multiple pharmacies

Medication Possession Ratio (MPR) and Proportion of Days Covered (PDC) are the two most common formulas used to estimate patients’ adherence to chronic medications. Both formulas use prescription fill data to calculate the percentage of days for which the patient has medication on-hand to take for their chronic conditions.

Examples of adherence measures for diabetes and cardiovascular medications can be obtained from the Pharmacy Quality Alliance (PQA) at: www.PQAalliance.org

Optimal MPR for any immunosuppressant is not known.
Self Reports

• Advantages
 – Simple
 – Quick
 – Inexpensive
 – May provide information that explains variability in pharmacoadherence patterns and/or clinical response to medication

• Disadvantages
 – Overestimate pharmacoadherence
 – Patients may provide socially acceptable responses
 – Limited patient recall (impact of time)
 – Diaries may be burdensome/not returned/not completed
 – Tend to be done at time of clinic visit when pharmacoadherence generally increases (bias)

Clinician Reports

• Advantages
 – Simple
 – Quick
 – Inexpensive

• Disadvantages
 – May be influenced by interactions with patients and by patient therapeutic outcomes
 – Tends to underestimate non-adherence

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation</td>
<td>• Accurate</td>
<td>• Patient able to alter data (e.g., pill checking)</td>
</tr>
<tr>
<td>Measurement (i.e., blood, urine) of drug, metabolite, or biological marker</td>
<td>• Objective</td>
<td>• Routine use in clinical practice is impractical</td>
</tr>
<tr>
<td>Ingestible Sensor System</td>
<td>• Objective</td>
<td>• Increased costs</td>
</tr>
<tr>
<td></td>
<td>• Accurate</td>
<td>• Patient factors may impact results (e.g., metabolism)</td>
</tr>
<tr>
<td></td>
<td>• Confirms medication ingestion</td>
<td>• System usability requires mobile telephone service</td>
</tr>
<tr>
<td></td>
<td>• Able to track ingestion of multiple medications taken at the same time</td>
<td>• Need for sensor applied to the skin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Potential for skin reactions</td>
</tr>
<tr>
<td>Patient questionnaires, interviews, self-reports</td>
<td>• Easy to use</td>
<td>• Subjective</td>
</tr>
<tr>
<td></td>
<td>• Low costs</td>
<td>• Relies on patient recall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Patient able to alter data</td>
</tr>
<tr>
<td>Patient diaries</td>
<td>• Simple</td>
<td>• Subjective</td>
</tr>
<tr>
<td></td>
<td>• Inexpensive</td>
<td>• Relies on patient recall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Patient able to alter data</td>
</tr>
<tr>
<td>Pill counts</td>
<td>• Objective</td>
<td>• Does not confirm medication ingestion</td>
</tr>
<tr>
<td></td>
<td>• Easy to perform</td>
<td>• Patient able to alter data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Does not provide information on dose, timing, or drug holidays</td>
</tr>
<tr>
<td>Rate of prescription refills</td>
<td>• Objective</td>
<td>• Refill rate does not necessarily equal ingestion rate</td>
</tr>
<tr>
<td></td>
<td>• Easy to obtain data</td>
<td>• Difficult to perform when patient uses multiple pharmacies</td>
</tr>
<tr>
<td>Electronic monitoring</td>
<td>• Objective</td>
<td>• Increased costs</td>
</tr>
<tr>
<td></td>
<td>• Precise</td>
<td>• Data download required</td>
</tr>
<tr>
<td></td>
<td>• Effective in controlled research setting</td>
<td>• Does not confirm medication ingestion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Interventions in real time unlikely</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Selection bias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Routine use in clinical practice is impractical</td>
</tr>
</tbody>
</table>

Adapted from Kaiser T and Alloway R. Clinical Transplants 2015, Chapter 27 p275-284
Interventions to Promote Adherence: When, Where, and How

What is the optimal intervention time to promote adherence?

- Prompt and intolerable side effects
- Delayed Side Effects
- Fear of Longterm Side Effects
- Limited motivation
 - No immediate consequence of non-adherence

- Complex and Confusing Regimen
- Limited Attention Span
- Logistical Barriers
- Poor Communication
- Poor habit reinforcement

Long-term adherence to regimen
Interventions to Promote Adherence: When, Where, and How

Modes of Interventions
- Face to Face
- Telephone
- Smartphone Apps
- Computer

Types of Interventions
- Educational - multidisciplinary
- Behavioral (ex. Contracting, mentor/support groups, problem solving therapy)
- Psychosocial/Affective
- Technology-based
- Simplified regimens (ex. Once daily tacrolimus)
- Multicomponent
Intervention Randomized Controlled Trials

- Automated reminders and physician notification to promote IS adherence among Kidney Transplant Recipients: A Randomized Trial. Am J Kidney Dis 2017;69(3): 400-409

- Telemedically supported case management of living-donor renal transplant recipients to optimize routine evidence based aftercare: A single center randomized controlled trial. AJT 2017 doi: 10.1111/ajt.14138

- A pilot randomized controlled trial to promote immunosuppressant adherence in adult kidney transplant recipients. Nephron 2017;135:6-14 (cognitive behavioral program)

- Randomized controlled trial of a computer based education program in the home for solid organ transplant recipients: Impact on medication knowledge, satisfaction, and adherence. Transplantation 2016; 00:1-8

- Improving outcomes of renal transplant recipients with behavioral adherence contracts: A randomized controlled trial. AJT 2013;13: 2364-2373 (pharmacy refill records)

- Improved adherence to tacrolimus once daily formulation in renal recipients: A randomized controlled trial using electronic monitoring. Transplantation Vol 95, No. 2, January 27, 2013 (Helping Hand)
FACTS

- The scientific rigor of adherence intervention testing has increased with RCT
- Types of interventions tested are heterogeneous
- Multicomponent interventions appear most effective
- Intervention effectiveness appears to be increased by tailoring (e.g., based on patient needs and dynamic information on patient adherence over time)
- Degree of intervention impact is variable and often trials did not evaluate clinical outcomes
- Whether interventions improve longterm clinical outcomes remain unclear
Study of Non adherence
New Paradigm

• Quantitative Measurements

• **Qualitative Measurements**
 • Provide insight into patients values, knowledge, beliefs that influence behaviors and choices in transplantation self management.

 • Self Management – the tasks that individuals must undertake to live with chronic conditions, having confidence to deal with medical management, role management and emotional management of chronic conditions

Self Management in Kidney Transplantation

Strengthening self-management capacity

Empowerment through autonomy
- Achieving mastery
- Tracking against tangible targets
- Developing bodily intuition
- Routinizing and problem-solving
- Adaptive coping

Social accountability and motivation
- Peer learning
- Demonstrating gratitude towards the medical team
- Indebtedness to donor

Prevailing fear of consequences
- Inescapable rejection anxiety
- Aversion to dialysis
- Minimizing future morbidity
- Trivialisation and denial
- Defining acceptable risks

Over-medicalizing life
- Dominating focus
- Evading patienthood
- Succumbing to burnout

Burdensome treatment and responsibilities
- Frustrating ambiguities
- Inadvertent forgetfulness
- Intrusive side-effects
- Reversing ingrained behaviours
- Financial hardship

Diminishing self-management capacity

Self Management in Kidney Transplantation

- Monitoring for rejection
- Taking immunosuppressant
- Keeping appointments
- Symptom management
- Fluid intake
- Sun protection
- Dietary intake
- Exercise

- Empowerment through autonomy
 - Achieving mastery
 - Tracking against tangible targets
 - Developing bodily intuition
 - Routinizing and problem-solving
 - Adaptive coping

- Prevaling fear of consequences
 - Inescapable rejection anxiety
 - Aversion to dialysis
 - Minimising future morbidity
 - Trivialization and denial
 - Defining acceptable risks

- Burdensome responsibilities
 - Frustrating ambiguities
 - Inadvertent forgetfulness
 - Intrusive side-effects
 - Reversing ingrained behaviors
 - Financial strain

- Medicalizing life
 - Dominating focus
 - Evading the patient identity
 - Burnout and complacency

- Social accountability
 - Indebtedness to donor
 - Peer learning
 - Demonstrating gratitude towards medical team

Self Management in Kidney Transplantation

Transplant Precision
Adherence

THANK YOU