

Arjang Djamali, MD
Professor of Medicine and Surgery
Head, Nephrology Division

FDA WORKSHOP:
ANTIBODY MEDIATED REJECTION
IN KIDNEY TRANSPLANTATION
April 12-13, 2017

Disclosure

- Funding:
 - BMS- Investigator Initiated Trial
 - Takeda Millennium- Investigator Initiated Trial
 - NIDDK- R01
- Off label drug use
 - The of material in this presentation WILL include discussion of unapproved or investigational uses of products.

- Background
- Clinical Studies
- Outcomes
- Limitations
- Future Directions

Growing numbers: ~ **14,000** patients in 2015 **Modest** impact of new KAS on total rate of transplant

The Problem: IgG

- Background
- Clinical Studies
- Outcomes
- Limitations
- Future Directions

IVIG decreases sensitization

The NIH IG02 Trial

RCT of sensitized patients (n=98) to IVIG 2g/kg/m x 4 vs. placebo

Decline in **PRA** was significant but **transient** (6M)

IVIG associated with **better transplantation** rate

Mechanisms of action of IVIG

Rituximab and High Dose IVIG

Successful Desensitization

Rituximab and High Dose IVIG

Unsuccessful Desensitization for very high PRA

Pretransplant desensitization with IVIG and rituximab was not successful in highly sensitized kidney transplant candidates with cPRA > 90%

- Marfo, Akalin, et al, Transplantation 2012;94: 345-351
- Lobashevski et al, Transplantation 2013;96: 182-190
- Alachkar et al, Transplantation 2012;94: 165-171

Rituximab induction

Reduced incidence and magnitude of HLA antibody rebound

Rituximab reduced antibody strength and rebound

No difference in DSA elimination, AMR, and 5 year graft survival

PLEX and low-dose IVIG

in live donor Kidney Recipients

Proteasome Inhibitor-Based Desensitization

Was relatively successful in live and deceased donor Tx

Tabalumab (**BAFF inhibitor**)

had Minimal Effect in Highly Sensitized

Tabalumab (anti-BAFF), at doses of 240-mg subcutaneous (SC) at Week 0 followed by 120-mg SC monthly for 5 additional months (Baseline cPRA 94.4±9.1%, n=18 -> 3 transplanted)

Desensitization with **Eculizumab**

Short term success but limited outcome beyond 1 year

- Background
- Clinical Studies
- Outcomes
- Limitations
- Future Directions

Summary of clinical studies

Limited impact on PRA and transplant rates

	Pl	N	c/PRA	Regimen	Effect PRA	Transplant	Reference
1	Jordan	98	~70%	IVIG	~5%	35% v. 17%	J Am Soc Nephrol 2004
2	Vo	20	77%		(-) 33%	16 (80%)	N Engl J Med 2008
3	Lobashevski	31	65-100%	IVIG-Ritux	-	2 (6%)	Transplantation 2013
4	Marfo	13	>90%	IVIG-Rilux	-	2 (15%)	Transplantation 2012
5	Alachkar	27	100%		-	11 (41%)	Transplantation 2012
6	Stegall	26	N/A	Eculizumab	N/A	26 (100%)	Am J Transplant 2011
7	Woodle	52	91%	Bortez-Ritux-PLEX	25% responders	19 (37%)	Am J Transplant 2015
8	Mujtaba	18	94%	Tabalumab (BAFF)	±	3 (17%)	Am J Transplant 2016
9	Vo	10	74% (I) 93% (II)	IVIG-Tocilizumab (IL6-R)	(-) 15% (I) (-) 4% (II)	5 (50%)	Transplantation 2015
10	Naji	8	N/A	Belimumab (BAFF)	-	1 (13%)	NCT01025193
11	Redfield	24	N/A	IVIG-Obinutuzumab (CD20)	N/A	N/A	NCT02586051
12	Woodle	8	N/A	Carfilzomib (PI)	N/A	N/A	NCT02442648
13	Jordan	15	N/A	ldes (IgG endopeptidase)	N/A	N/A	NCT02790437

Quantifying the risk of incompatible kidney transplantation: a multicenter study

DSA Strength Associated with Poor Outcomes

Graft Loss

Patient Death

PCC, positive cytotoxic crossmatch; PFNC, positive flow, negative cytotoxic crossmatch; PLNF, positive Luminex, negative flow crossmatch

- Background
- Clinical Studies
- Outcomes
- Limitations
- Future Directions

Considering Non-HLA antigens

(1) High PRA associated with poor graft survival in HLA-identical sibling transplants

(4) Overview of non-HLA antibodies directed against endothelial targets

- 1. Opelz et al, Lancet 2005
- 2. Dragun et al, N Engl J Med 2005
- 3. Jackson et al, J Am Soc Nephrol 2015
- Dragun et al, Kidney International 2016

Targeting B cell Development

Targeting B cell Activation

BAFF, APRIL and their Receptors

Targeting Bone Marrow

Plasma Cells and their Survival Niche

	Naïve B cell	Plasmablast	Mature Plasma Cell
Lifespan	++	+	++++
Proliferation	-	++	-
CD (27, 38, 138), CXCR4	-	+	+++
CD (19, 20, 45), MHCII	+++	++	±
Location	L.O.	Blood, L.O.	Bone marrow
Isotype	IgM, IgD	All	IgG>>IgA>IgM
BLIMP1	-	+	++

Finding the right combination therapy

- Background
- Clinical Studies
- Outcomes
- Limitations
- Future Directions

Kidney Paired Donation (KPD)

Pham et al, Transplantation Reviews 2017

Summary and Future Directions

- Desensitization of highly sensitized possible but with limited and transient impact on antibody (PRA) levels
- Need to better understand the pathogenesis of sensitization
- Define combination therapies
 - KPD ± desensitization
 - Targeting up- and downstream pathways of B cell activation
- Determine efficacy endpoints for clinical trials
 - cPRA and def. of antibody strength for unacceptable Ag?
 - Transplantation?
 - Immunodominant antibody?
 - Non-HLA antibodies?

Thank you!

