Case Studies in Pharmacogenetics

Mike Pacanowski, PharmD, MPH
Office of Clinical Pharmacology
Center for Drug Evaluation and Research

Pediatric Advisory Committee
March 2017
Agenda

• Case studies

• Review considerations
Case Studies

<table>
<thead>
<tr>
<th>Drug</th>
<th>Gene</th>
<th>Key Issue</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efavirenz</td>
<td>CYP2B6</td>
<td>Safety</td>
<td>Post-approval*</td>
</tr>
<tr>
<td>Atomoxetine</td>
<td>CYP2D6</td>
<td>Safety</td>
<td>Pre-approval</td>
</tr>
<tr>
<td>Valproate (VPA)</td>
<td>POLG</td>
<td>Safety</td>
<td>Post-approval</td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>CYP2C19</td>
<td>Efficacy</td>
<td>Post-approval†</td>
</tr>
</tbody>
</table>

* After adult approval but before pediatric approval
† No approved uses in children
Efavirenz-CYP2B6 Interaction

- **Indication(s):** Combination with other antiretroviral agents for the treatment of HIV type 1 infection in adults and in pediatric patients at least 3 months old and weighing at least 3.5 kg

- **Mechanism(s):** Non-nucleoside reverse transcriptase inhibitor

- **Major warnings:** Hypersensitivity, DDI, QT prolongation, neuro-psychiatric events (including convulsion), hepatotoxicity, rash
Efavirenz-CYP2B6 Interaction

• CYP3A and CYP2B6 are the major isozymes responsible for efavirenz metabolism; evidence for auto-induction

• Common reduced or loss-of-function alleles include Q172H/K262R (*6), I328T (*18); about 6-12% of white, 14-38% of black/AA, and 1-4% of Asian individuals are poor metabolizers

• Relative to normal metabolizers, CYP2B6 poor metabolism has been shown to result in:
 – Higher concentrations (~2-fold higher AUC)
 – Higher virologic suppression and immunologic response, lower rates of failure (not consistently)
 – Marginally higher rates of hepatic and CNS adverse events
Efavirenz-CYP2B6 Interaction

Key Issues and Challenges

• Uncertain effect of genotype on clinical benefits and adult adverse events; CNS-related toxicities appear to resolve with continued dosing

• Balance between reducing adverse event risk and maintaining antiviral efficacy through dose adjustments, including the low barrier to resistance

• Guidelines recommend that for children above 3 years of age the dose should be weight-based, and for selected children under 3 years of age who require treatment with efavirenz, CYP2B6 genotype should be assessed and doses adjusted to prevent toxicity
Efavirenz-CYP2B6 Interaction

Labeling

- Clinical Pharmacology
 - The mean Cmax of efavirenz in subjects with CYP2B6 *6/*6 genotype...was 2.25-fold the mean Cmax observed in subjects with CYP2B6 *1/*1 genotype
 - A positive relationship between efavirenz concentration and QTc prolongation was observed
Valproate-POLG Interaction

• **Indication(s):** Complex partial seizures (10 years and above), simple and complex absence seizures (above 10 kg); migraine prophylaxis, manic episodes in bipolar disorder

• **Mechanism(s):** Mechanism not established, may be related to increased brain concentrations of GABA

• **Major warnings:** Hepatotoxicity, birth defects, pancreatitis, suicidal behavior/ideation, bleeding/hematopoietic disorders, hyperammonemia/hyperammonemic encephalopathy, hypothermia, multiorgan hypersensitivity/drug reaction with eosinophilic and systemic symptoms, somnolence

 – Valproate-induced liver failure (VILF) is a severe, potentially fatal adverse event; 1/10,000 in general population, 1/500 under 2 years of age

Includes valproic acid products such as divalproex
Valproate-POLG Interaction

• POLG replicates mtDNA; mutations result in a range of disorders from fatal encephalopathy to organ-specific disorders in adults (e.g., migraine)
 – Frequently manifests as treatment-refractory epilepsy in infants; sometimes associated with hepatic dysfunction

• FDA reviewed published literature and FAERS reports for VILF, natural history of POLG and other mitochondrial disorders
 – VPA resulted in liver failure in 61 of 65 patients with POLG-related disorder; estimated 20-40% develop hepatopathy in the absence of VPA
 – VPA resulted in hepatotoxicity in 3 of 26 patients with non-POLG disorders (e.g., MELAS, MERRF)

• Over 200 POLG mutations have been reported
 – 2/3 of cases with VILF have at least one copy of either A467T or W748S
 – Carriage of POLG mutations otherwise present in <1% of the population
Valproate-POLG Interaction

Key Issues and Challenges

• Evidence derived from published and reported case reports or case series without systematic capture of drug exposure or hepatic pathology

• POLG mutations result in a wide spectrum of mitochondrial disorders that are of variable penetrance and age-dependent

• Detecting clinically-suspected mitochondrial disease to permit genotype screening is based on a constellation of clinical factors

• Screening certain alleles captures most but not all at-risk individuals

• Unclear impact of more common variations (i.e., E1143G, Q1236H) and predictive utility in older children and adults
Valproate-POLG Interaction

Labeling

- **Boxed Warning**
 - Life-threatening adverse reactions...Hepatotoxicity...Children under the age of two years and patients with mitochondrial disorders are at higher risk

- **Contraindications**
 - Known mitochondrial disorders caused by mutations in mitochondrial DNA Polymerase γ (POLG)
 - Suspected POLG-related disorder in children under 2 years of age

- **Warnings and Precautions**
 - Reports of severe hepatotoxicity in children and adolescents
 - Characteristics of clinical presentation of POLG-related disorders
 - Screen per clinical practice; common culprits are A467T and W748S
 - Closely monitor liver function in children over 2 years of age
Atomoxetine-CYP2D6 Interaction

• **Indication(s):** Treatment of Attention-Deficit/Hyperactivity Disorder

• **Mechanism(s):** Selective norepinephrine reuptake inhibitor

• **Major warnings:** Suicidal ideation, liver injury, cardiovascular events, hemodynamic effects, psychosis/mania, bipolar disorder, aggressive behavior/hostility, allergic reactions, urinary hesitancy/retention, priapism, CYP2D6 drug- and gene-interaction
Atomoxetine-CYP2D6 Interaction

- Primary route of atomoxetine elimination is CYP2D6 metabolism
- Numerous alleles result reduce or abolish function, duplications can increase metabolic capacity; about 5-10% of white, 2-5% of black/AA, and <1% of Asian individuals are poor metabolizers
- Relative to normal metabolizers, CYP2D6 poor metabolism has been shown to result in:
 - Higher concentrations (10-fold higher AUC, 5-fold higher C_{max}, ~5-fold increase in $t_{1/2}$)
 - Higher rates of adverse events (insomnia 11% vs. 6%, weight loss 7% vs. 4%, constipation 7% vs. 4%, depression 7% vs. 4%, tremor 5% vs. 1%)
Atomoxetine-CYP2D6 Interaction

Key Issues and Challenges

• Evidence from pre-market clinical trial experience identified substantial differences in PK and consistently higher rates of adverse events in CYP2D6 poor metabolizers

• Multiple strengths are available and drug is titrated to a target dose; escalation from lowest starting dose in known PMs depends on persistence of symptoms and tolerability

• Prescribing recommendations for genotype are analogous to drug-drug interactions with CYP2D6 inhibitors

• PK and safety findings stratified by CYP2D6 phenotype throughout labeling
Atomoxetine-CYP2D6 Interaction

Labeling

• Dosage and Administration
 – Dosing adjustment for use with a strong CYP2D6 inhibitor or in patients who are known to be CYP2D6 poor metabolizers

• Warnings and Precautions
 – Effects on blood pressure, heart rate, PK by CYP2D6 metabolizer status
 – Ethnic distribution of poor metabolizer phenotype
 – Laboratory tests are available to identify CYP2D6 poor metabolizers; dosage adjustment may be necessary

• Adverse Reactions
 – All AE rates stratified by metabolic status

• Use in Specific Populations
 – Notes no ethnic differences, but PMs are more common in Caucasians

• Clinical Pharmacology
 – All PK particulars stratified by CYP2D6 metabolizer status
Clopidogrel-CYP2C19 Interaction

• **Indication(s):** Acute coronary syndrome; recent MI, recent stroke, established peripheral artery disease

• **Mechanism(s):** P2Y12 inhibition of platelet aggregation

• **Major warnings:** Impaired CYP2C19 function, bleeding, increased risk of CV events with temporary discontinuation, thrombotic thrombocytopenic purpura, hypersensitivity (cross-reactivity)
Clopidogrel-CYP2C19 Interaction

- Clopidogrel is a prodrug activated by multiple CYP450 enzymes, including CYP2C19; esterases eliminate most of the parent.
- Common loss-of-function alleles include I331V (*2) and W212X (*3); about 2% of white, 4% of black/AA, and 15% of (Southeast) Asian individuals are poor metabolizers.
- Relative to normal metabolizers, CYP2C19 poor metabolism has been shown to result in:
 - Lower active metabolite C_{max} (~60% lower)
 - Lower antiplatelet activity (variable difference across assays)
 - Higher rates of cardiovascular events (~3-fold higher for stent thrombosis [among intermediate and poor vs. normal])
Clopidogrel-CYP2C19 Interaction

Key Issues and Challenges

- Evidence from published and sponsor-conducted PK/PD studies demonstrated a gene-drug interaction across multiple measures of exposure and response.
- Outcomes data from published studies (retrospective observational cohorts and clinical trial substudies) supported presence of interaction.
- Active metabolite is difficult to measure and was not well-characterized; pharmacodynamic measures have unclear relationship with clinical outcomes and are variable.
- Altered dosing does not appear to compensate for reduced exposure; alternative treatment options became available.
- Treatment context is often acute (in adults) making test turnaround important; many approaches to implement testing.
Clopidogrel-CYP2C19 Interaction

• Boxed Warning
 – Diminished antiplatelet effect in patients with two loss of function alleles of the CYP2C19 gene
 – Less of the active metabolite and so reduced effect on platelet activity in patients who are homozygous for nonfunctional alleles of CYP2C19
 – Tests are available; consider use of another platelet P2Y12 inhibitor in patients identified as CYP2C19 poor metabolizers.

• Warnings and Precautions
 – Diminished antiplatelet activity in patients with impaired CYP2C19 function; metabolism of clopidogrel to its active metabolite can be impaired by genetic variations in CYP2C19; drug interactions analogous

• Clinical Pharmacology
 – Pharmacogenomics: Ethnic distribution, tests are available, PK/PD trial results
Review Considerations
Signals Prompting Investigation of Gene-Drug Interactions

High variability
Multimodal distribution
Race effects
Outliers

Clinical PK
Polymorphic metabolism/activation/transport

Exposure/response

Efficacy
Morbid disease
Genetic disease
Polymorphic drug target

Idiosyncrasy

Safety
Serious AEs
Poor tolerability
Experience to Date with Labeling Gene-Drug Interactions

- Data emerge mostly in post-marketing setting, often external to sponsor’s clinical trials

- Clinical events are usually severe and gene-drug interaction is highly replicated with significant increase in relative risk

- Many gene-drug interactions are extensions of known clinical pharmacology (e.g., drug interactions)

- Prospective validation trials are exceptional; totality of evidence must be considered (PK-PD-outcome)
Considerations for Establishing the Clinical Validity of a Gene-Drug Interaction

• Sources
 – Sponsor-conducted trials
 – Published literature

• Types of evidence
 – Case reports/series (suitable for severe toxicity, outliers)
 – Retrospective case-control studies (suitable for severe toxicity, outliers)
 – Pro/retrospective cohort studies (suitable for efficacy, safety, PK)
 – Enriched/stratified experimental studies (suitable for PK, efficacy, safety)

• Causal inference
 – Mechanistic information/biological plausibility
 – Consistency across studies, populations, designs
 – Gene-dose response, concentration-response (e.g., for PK-related issues)
 – Magnitude of interaction and statistical significance
Factors Guiding the Strength of Prescribing Recommendations

• Points of uncertainty
 – Effectiveness of genotyping to optimize benefit/risk (utility)
 – Quality of studies to establish validity (design, assay, statistics)
 – Gaps in empirical evidence (e.g., inference from PK-outcome relationship vs. direct subgroup analysis of outcomes)
 – Generalizability to diverse racial/ethnic populations

• Considerations
 – Severity of the outcome
 – Treatment context (benefit/risk of alternative treatments, clinical monitoring tools, dosage forms)
 – Clinical performance attributes in the context of event rate
 – Test accessibility and feasibility, likelihood of prescriber uptake
Approaches to Incorporate Genetic Testing Recommendations

• Labeling is often silent on testing recommendations
 – Reference to ‘known status’ and ‘consider’ accommodates clinical judgment, uncertainty
 – Implicit that testing is essential when included in Indications and Usage or Contraindications

• When recommended, various approaches have been used
 – Test everyone (eliglustat, abacavir)
 – Test a targeted, at-risk subset (carbamazepine, valproic acid)
 – Test above a certain dose threshold (pimozide, tetrabenazine)

• Other considerations
 – Specific alleles are generally referenced except for CYP2D6 and NAT
 – Population prevalence is not uniformly described
Summary

• Goal is to improve health by identifying patients at risk for outcomes that skew benefit/risk through diagnostic testing

• Case examples illustrate that:
 – proactively characterizing and managing gene-drug interaction liabilities is feasible for outcomes and genetic factors that are common
 – rare events may have a clear genetic etiology, but rarity complicates assessment of validity and utility

• Prescribing recommendations balance uncertainty with the information that is needed to inform prescribers