Clinical Applications of CMV Viral Load Assays in Transplantation

Ajit P. Limaye, MD
Professor of Medicine & Laboratory Medicine
University of Washington
Seattle, WA
Email: limaye@uw.edu
Potential Impact of Reclassification of CMV VL assays: Assumptions & Concerns

• Reduced barrier to FDA-approved assays
 – more commercial assays available (particularly if LDT’s are limited)
 – greater variability [Preiksaitis Clin Infect Dis 2016]

• Potential for increased negative impact of CMV transplantation (unless appropriate special controls in place)

• Current situation:
 – multiple LDT’s in widespread use
 – variably evaluated
CMV in Transplantation: BACKGROUND

• CMV has a major negative impact on transplantation
 – Direct morbidity & mortality (closely linked to viral load)
 • HCT: end-organ disease (GI, hepatitis, pneumonia, retinitis, etc.)
 • SOT: CMV syndrome, CMV end-organ disease (GI, hepatitis, pneumonia, retinitis, etc.)
 – Cellular biological effects (less well-established link to viral load)

• Risk factors for CMV disease generally well-defined
 – HCT: R+ > D+R-, stem cell source (haplo, cord), donor type (mismatched, unrelated > other), intensity of immunosuppression
 – SOT: donor/recipient CMV serostatus pre-transplant (D+R- > R+ > D-R-), type of organ transplant (lung/heart > other), intensity of immunosuppression (lymphocyte-depletion therapy)
CMV VL Assays in Clinical Transplantation

• Widely used
• Incorporated into major transplant guidelines [KDIGO, AST ID COP, CMV International Consensus]
• Indications are expanding (site-specific testing: BAL, CSF, biopsies, etc.)
• A few built-in safeguards:
 – Used in conjunction with other clinical/lab data
 – Serial testing (trends)
Principles Underlying Use of CMV VL Assays in Transplantation

• Absolute viral load in blood predicts disease risk (static)
• Rate of increase in blood viral load predicts disease risk (dynamic/kinetic)
• Threshold concept of CMV pathogenesis
 [Griffiths & Emery Clinical Virology: Cytomegalovirus, 2002]

Reviewed in Razonable & Hayden Clin Microbiol Rev 2013
Major Indications for CMV Viral Load Testing in Transplantation

1. Diagnosis of CMV syndrome (unique to SOTx)
2. Adjunct to diagnosis of end-organ disease (de-emphasized in recent guidelines [Ljungman Clin Infect Dis 2016])
3. Marker to guide preemptive therapy (PET)
4. Monitoring response to therapy
What aspects of CMV VL assays matter to clinicians?

- Sensitivity/Lower limit of detection
- Ability to assess a “true change” in viral load across a broad range of viral loads
- Clinically significant VL threshold
Diagnosis of CMV Syndrome

Current definitions [Ljungman Clin Infect Dis 2016]

– Proven—NOT DEFINED (impossible to exclude other causes)
– Possible: NOT DEFINED
– Probable: CMV in blood + clinical and/or lab abnormalities
– Issues/Challenges:
 • no specific viral load threshold for “clinical significance” (probably varies by specific patient population)
 • significant variability in sensitivity among assays
 • do all assays measure the same thing (intact virions, “free” DNA fragments, etc.)
 • multiple viral etiologies for “CMV syndrome”
Adjunct to Diagnosis of End-organ CMV Disease

• Detection of CMV in blood is no longer part of definition for end organ disease of any type [Ljungman CID 2016]

• Definition:
 – Proven/Probable: clinical symptoms AND demonstration of CMV in biopsy specimen (viral culture, histopathology)
 – Possible category: qPCR on biopsy (and other clinical criteria)
Adjunct to Diagnosis of End-organ CMV Disease (2)

Limitations/issues:

• Biologic:
 – “compartmentalization”/local reactivation not reflected in blood VL (GI disease, retinitis, CNS disease, CMV pneumonia in lung transplant)
 – lack of specific threshold with 100% sensitivity or specificity for all CMV disease in all populations

• Non-Biologic (assay-related--Cook)
 – Inter-assay variability
 – Specimen type (WB vs Plasma vs PBMC)
 – Inability to directly compare VL across labs/assays:
 • Individual patient care (transplant center vs local lab)
 • Interpretation of data across centers
Marker to guide Preemptive Therapy (PET)

- 2 major strategies for CMV prevention:
 - Prophylaxis
 - PET
- Both strategies are recommended for most transplant settings
Importance of Specific Assay Characteristics for Guiding PET

Initiation of preemptive therapy in HCT recipients based on:

- Absolute VL thresholds based on patient risk strata (sensitivity)
- Viral kinetics

Boeckh & Ljungman *Blood* 2009
Monitoring response to therapy

• Expected response to therapy [Asberg Am J Transplant 2007]
 – Clinical—improvement/resolution of symptoms by 2 weeks
 – Virologic—reduction in VL within 2 weeks
 • Resistance predicted by virologic failure (trigger for resistance testing)

• Viremia at end of treatment is independently associated with risk for recurrence [Razonable Clin Microbiol Rev 2013]
 – Differences in assay sensitivity ➔ impact therapy duration [Lisboa Transplantation 2011]
cont. Monitoring response to therapy

- Ganciclovir resistance is an important concern
- Alternatives to ganciclovir are highly toxic
- Limitations of current assays (direct detection of genotypic resistance):
 - Slow TAT
 - Variable interpretation/reporting [Limaye ICAAC 2012]
 - Relatively expensive
- Accurate changes in VL ➔ important to guide:
 - Need for CMV resistance testing
 - Risk/benefit of empiric change to more toxic therapy [Avery Transplantation 2016]
Emerging uses of CMV VL assays: Blood & Beyond

• Site-specific testing:
 – CSF—CNS disease (encephalitis, ventriculitis)
 – BAL—pneumonia
 – GI or other biopsy specimens

• Yet an additional variable & layer of complexity...
CMV VL Assays in Transplantation: Current Status

• Major issues with across lab assay comparisons:
 – Generally known among transplant physicians
 – Complicates post-transplant care (decentralized care)
 – Approach: try to have all assays performed at same lab (difficult)

• Clinicians have little input into laboratory assays
 – “quality” of assay is presumed
 – little or no data to end-users:
 • assay performance
 • clinical correlation
Potential outcomes of reclassification of CMV VL Assays—The Good

• barriers to commercialization decreased ➔ more available assays ➔ less expensive?
• greater availability for local/on-site testing ➔ shorter TAT
• might facilitate greater use of PET (access to frequent testing with short TAT required)
Potential outcomes of reclassification of CMV VL Assays: Concerns

- more assays \rightarrow greater variability \rightarrow greater difficulty in interpretation

- “lower quality” assays \rightarrow negative clinical impact
 - inadequate/variable sensitivity:
 - breakthrough disease when using PET
 - inadequate duration of therapy (higher risk of recurrence)
 - inadequate quantitation:
 - over or under-diagnosis of resistance
 - inappropriate duration of antiviral therapy