

MEDICAL CENTER

Seth P. Lerner, MD, FACS
Professor, Scott Department of Urology
Beth and Dave Swalm Chair in Urologic Oncology
Baylor College of Medicine

Disclosures

- Clinical trials
 - Endo, FKD, JBL, Roche/Genentech, Viventia
- Advisory Board
 - Ferring, Nucleix, OncoGeneX, Sitka, Taris
- Consultant
 - Biocancell, Telesta, Theracoat, Vaxiion

Overview

- Bladder cancer statistics
- Staging and grading NMIBC
- Risk stratification and treatment according to risk strata
- Outcomes: recurrence vs. progression
- Differences in population, disease management, US vs. Canada vs. Poland
- Current state of the art for peri-op chemo

Bladder Cancer: Incidence/Mortality 2016

- 76,960 new cases¹
- 16,390 deaths¹
 - 77.5% 5 year survival (2006-2012)
- 89% of U.S. patients ≥ 55 years old
- 4th most common cancer in men
 - Prostate, lung, colorectal more common
- 10th most common solid tumor cancer in women
- U.S. Prevalence 587,246 (SEER, 2013)
 - Lifetime risk 2.4%
- Cost per patient: Most expensive cancer from diagnosis to death

Are There Geographic Differences

Poland – follow EAU guidelines

Figure 6.5. The structure of registered cancer incidence, males, Poland 2013

Figure 6.6. The structure of registered cancer incidence, females, Poland 2013

Clinical and Pathologic Tumor Staging

Shariat, et al, J Urol 176:2414, 2006

Grading of Papillary Lesions

- WHO 1973
 - G1 well differentiated
 - G2 Moderately differentiated
 - G3 Poorly differentiated
- WHO/ISUP 1998
 - Low grade
 - High grade
- WHO 2004
 - Identical to WHO/ISUP 1998

Relationship of 1973 WHO to 2004 WHO/ISUP

WHO 1973	WHO 2004
Papilloma	 Papilloma
Grade 1	 PUNLMP
Grade 2	 Low grade
Grade 3	 High grade

WHO 1973 and 2004 WHO/ISUP Grade

Recurrence

Progression

Pathologic, Morphologic and Clinical Features

- Accurate determination of stage and grade
 - Surgical quality TURBT and bladder biopsies
 - Strongly recommend re-review and 2nd TUR for T1G3
- Variant histology: micropapillary
- Focality single vs. multiple
- Presence of CIS
- Status at 3 month follow-up
- Tumor size

Risk Stratification – EAU

- Low Ta low grade solitary, primary, ≤ 3cm 50% patients
- Intermediate Multifocal, recurrent Ta, low grade, ≤3cm - 35% patients
- High CIS, any high grade (Ta or T1); multifocal
 and recurrent and >3cm TaLG 15%
- Very high Multiple and/or large (>3 cm)
 T1HG, T1HG + CIS ± P urethra, micropapillary

Risk Stratification – AUA/SUO

- Low TaLG solitary, primary, ≤ 3cm; PUNLMP
- Intermediate TaLG > 3cm; Recurrence, 1
 year; multifocal, recurrent Ta, low grade,
 ≤3cm; High grade Ta HG ≤ 3cm; T1 LG
- High T1 HG; any recurrent TaHG; Ta HG >
 3cm or multifocal; CIS; any recurrence after
 BCG; any variant histology or LVI; any high
 grade cancer in prostatic urethra

Risk Stratification Recurrence and Progression Risk

	Recurre	ence(%)	Progres	Progression(%)	
Risk group	<u>1</u> yr	5yr	1yr	5yr	
Low	15	31	0.2	0.8	
Intermediate	24-38	46-62	1-5	6-17	
High	61	78	17	45	

NB. Based largely on randomized trials of intravesical chemotherapy

Risk Adapted Treatment

- Low peri-operative chemotherapy only
- Intermediate peri –op plus induction chemotherapy ± maintenance
- High peri-op plus induction BCG plus maintenance
 - Assess response with cysto, cytology, and biopsy (for CIS)
- Very high consider primary cystectomy

Intravesical Immunotherapy and Chemotherapy

mmun	omod	ulatory	ag	ents
	_			_

Bacillus Calmette-Guérin(BCG)

Approved for Ta, T1HG and CIS

Interferons

Chemotherapeutic Agents

Thiotepa

Approved for superficial papillary

Mitomycin C

Doxorubicin, epirubicin, valrubicin

Val approved for BCG refractory CIS

Gemcitabine

Mechanism of Action

Inflammatory host response;

release of cytokines

May be combined with interferons

Lymphocyte activation; cytokine release; phagocyte stimulation

Antiproliferative actions

Antiangiogenic

Alkylating agent; cross-links nucleic

acids

Antibiotic; inhibits DNA synthesis

Intercalating agents; inhibits DNA

synthesis

Deoxycytidine analog; inhibits DNA

synthesis

15

AUA Guidelines

Guidelines and Treatment of NMIBC

- Peri-operative single dose chemotherapy
 - TalG only (AUA, NCCN, EAU)
 - All patients with NMIBC (CUA, NICE)
- Induction intravesical chemotherapy +/- 1 year maint
 - Intermediate risk
 - Induction alone (AUA, NCCN, NICE)
 - Induction + maint (EAU, CUA)
- Induction BCG + maintenance 3 yr
 - All high risk patients
- Radical cystectomy
 - Option for highest risk patients and BCG unresponsive

FDA/AUA/SUO Guidance

Special Report

Urology 83:262, 2014

Clinical Trial Design for the Development of **New Therapies for Nonmuscle-invasive** Bladder Cancer: Report of a Food and Drug Administration and American Urological Association Public Workshop

Jonathan P. Jarow, Seth P. Lerner, Paul G. Kl. DOI 10.3233/BLC-159002 Dean Bajorin, Sam Chang, Colin P. N. Dinnev. Michael O'Donnell, Diane Zipursky Quale, Mai Bhadrasain Vikram

Bladder Cancer 1 (2015) 29–30

Short Communication

3/30/2015

10/26/2015

Clarification of Bladder Cancer Disease States Following Treatment of Patients with Intravesical BCG

Bl Cancer. 2015; 1(2): 133-136.

Published online 2015 Oct 26. doi: 10.3233/BLC-150016

PMCID: PMC4832566 NIHMSID: NIHMS776513

Development of Systemic and Topical Drugs to Treat Non-muscle Invasive Bladder Cancer

Case

- PECKER PROGRAM
 - Baylor
 College of
 Medicine

- 60 -year-old woman
- Gross painless hematuria x 6 months
- Multiple courses of antibiotics

Solitary LG Ta tumor Low risk disease

Post-TUR Drug Options

Options:

Mitomycin C 30-40 mg in 20-50cc

Doxorubicin 40-50 mg in 50cc

Epirubicin 80 mg in 50cc

Gemcitabine 2gms in 100cc (SWOG 0337

report due 2016)

- Retain x 1-2 hours
- Options:
 - Treat in OR or PAR
 - Ideal to treat within first 6-24 hours post-TUR
- DO NOT DO in face of possible perforation
- NEVER use BCG post-TUR

Post-TUR Epirubicin

214 patients epirubicin vs. no instillation Most helpful for lowest risk tumors:

Rare Toxicities

Dystrophic calcification of the bladder following Mitomycin C

Ulcer in buccal mucosa following cutaneous Gemcitabine absorption

Post-TUR Chemotherapy – Systematic Review

38% relative risk reduction

Previous meta analysis –11% absolute risk reduction for recurrence (Sylvester, R et al, J Urol 171:2186, 2004) Perlis, et al Eur Urol 64:421, 2013

Post-TUR Chemotherapy - Meta-analysis

- Individual patient data 11 of 13 trials
- N = 2278
- Relative risk reduction for recurrence 35%
 HR 0.65 (0.58-0.74; p < 0.001)
- 5-year recurrence probability reduced from 58.8% to 44.8%
- No benefit in patients with > 1 recurrence/year or EORTC risk score ≥ 5
- No benefit for risk of progression or death

Post-TUR Chemotherapy - Meta-analysis

• Est 2-yr RR in control arm 60%

 Powered to detect 45% RR in Gem arm S0337 Schema • HR 1.53 TURBT+ Gemcitabine R Instillation A (Blinded) Ν \Box Bladder Cancer Follow 0 Grade 1 or 2, 4 years М Ta or T1 TCC I Z E TURBT+ Saline Instillation (Blinded)

Primary objective: Determine efficacy after transurethral bladder resection (TURBT) of single intravesical gemcitabine instillation versus saline instillation in preventing recurrence of completely resected Grade 1 or 2,Ta or T1 transitional cell cancer (TCC) of the bladder at two years 25

Utilization and Judicious Use - US

- Survey of 259 US urologists¹
 - 61% participated
 - 1010 eligible patients
 - 17% received peri-op instillation
 - 66% of urologists never used
- Judicious use ²
 - Prospective quality improvement collaborative
 - 2794 patients over 22 months/5 practice sites
 - Ideal use 38% to 35% after intervention
 - Judicious use 83 to 86% (appropriate use and nonuse) ¹Cookson, et al J Urol 187:1571, 2012

Utilization Peri-op CTX in Europe

- 324 urologists surveyed (France, Germany, Italy, Spain, UK)
 - 55% participated
 - 954 TURBT in 771 patients
 - 43% received peri-op CTx
 - Factors associated with utilization
 - Country (UK highest, France lowest), fellowship trained, higher risk for recurrence, lower risk of progression, higher volume NMIBC treated

Utilization Peri-op CTX in Canada

- Similar issues regarding low utilization as US
- Cost MMC 6 x Epirubicin so come centers using Epi preferentially
- Logistic constraints in high throughput operating room and managing cytotoxic ctx
- Small TaLG tumors often managed with office fulgeration
- Most care provided by community urologists
 - Centralized care to academic center only in one region in Quebec

Summary – Peri-operative CTx

- Low and intermediate risk most appropriate
 - Solitary and multifocal and/or recurrent TaLG
 - Small volume TaHG
 - Safety proven but rare severe toxicities with MMC
- Utilization varies but increased from early reports
- Geographic variation in utilization within US,
 Canada and Europe
- But, guidelines consistent in recommending use