

Design Controls

FDA Small Business Regulatory Education for Industry (REdI) Silver Spring, Maryland September 30, 2015

Stanley Liu

Consumer Safety Officer Office of Communication and Education Center for Devices and Radiological Health U.S. Food and Drug Administration

Learning Objectives

- Understand the *context* of Design Controls within the Quality Systems
- Understand how effective use can contribute to quality and safety, thereby reducing cost
- Understand the *mechanisms* and continual role of Design Controls in device development (both Premarket and Postmarket)

Design Controls – What are they?

- A set/framework of quality practices and procedures incorporated into the design and development process.
- Control the design process Premarket and Postmarket - to assure that device specifications meet user needs and intended use(s).
- They set medical device Quality Systems apart from Good Manufacturing Practices.
 cGMPs → QSRs

Design Controls – Scope

- Design controls apply to:
 - <u>All</u> Class II and III, and the following Class I devices:
 - 1. Devices automated with computer software
 - 2. Tracheobronchial suction catheters
 - 3. Surgeon's gloves
 - 4. Protective restraints
 - 5. Manual radionuclide applicator system
 - 6. Radionuclide teletherapy source
- When do Design Controls Apply?
 - Premarket
 - *After* Feasibility/"Proof of Concept"/Prototyping
 - Point where you are designing the *final* product
 - Prior to commencement of any Clinical Investigation (21 CFR 812)
 - Mechanism of *change*/revision during any Clinical Investigation (21 CFR 812)

Risk Management and Human Factors

- **Risk Management/Analysis** is the systematic application of management policies, procedures, practices, insight/judgment, and experience to the *identification*, *analysis/evaluation*, *monitoring*, and subsequent *control/mitigation* of risk.
 - Risk Management and Analysis are integrated into the Design Control process, and are a key component and central requirement.

(see also recognized consensus standards, AAMI/ANSI/ISO 14971 and IEC TR80002)

• Human Factors is the study of the interactions between *humans* and *product* (i.e., *interface* and *machine*) and the subsequent design of the machine-human interface. It plays an important *symbiotic* role with Risk Management in Design Control.

General Requirements 21CFR 820.30(a)

- <u>Establish</u> procedures to control device design:
 - Define
 - Document
 - Implement
- <u>Maintain</u> procedures to control device design:
 - Review
 - Approve
 - Update

Design and Development Planning 21CFR 820.30(b)

- Procedures are established, maintained, and documented to:
 - Describe or reference design and development *activities*.
 - Identify, describe, and define *interfaces*,
 responsibilities, and *activities* impacting device design.
 - Review, document, approve, and update as developments and changes *evolve*.

Design Input 21CFR 820.30(c)

- Design inputs are the physical and performance characteristics of a device that are used as the basis for device design. Procedures are established and maintained to:
 - Ensure *requirements* are *appropriate* by addressing <u>user needs</u> and <u>intended use(s)</u> in terms that are measurable.
 - Address incomplete, ambiguous, or conflicting requirements.
 - Document, review, and approve input requirements.

Design Output 21CFR 820.30(d)

- Design outputs are the results of a design effort final or otherwise. Procedures are established and maintained to:
 - Define and document design output to allow adequate evaluation of conformance to design input. (i.e., input = output)
 - Reference definable/measurable acceptance criteria.
 - Identify design outputs essential for proper function.
 - Review, approve, and document design output before release.
- Design Outputs are included in premarket submissions as **Device** Specifications.
- The *finished* design output is the basis for the Device Master Record (DMR). The *total finished* design output consists of the device, its packaging, labeling, <u>and</u> the Device Master Record (DMR).

Design Review 21CFR 820.30(e)

- **Design Review** is a documented, comprehensive, systematic examination to:
 - Evaluate *adequacy* of the design requirements.
 - Evaluate *capability* of the design to meet requirements.
 - Identify any problems.
- Establish and maintain procedures, plan and conduct formal documented *Design Reviews* of design results at appropriate stages, including at each design review:
 - Representatives of all functions concerned and specialists as needed.
 - Individual(s) without direct responsibility for the stage being reviewed.
- Document results of design review in **Design History File (DHF)**, including identification of design, date, and individuals performing review.

Design Verification 21CFR 820.30(f)

- Verification is confirmation by examination and provision of objective evidence that output meets input requirements (i.e., Input = Output).
- Procedures are established and maintained to:
 - Confirm through measurable means (e.g., test reports, etc.).
 - Review, approve and document in Design History File (DHF).
- Many test reports associated with Design Verification are included in premarket submissions, including Premarket Notification [510(k)s], *de novos*, Premarket Approval Applications (PMAs), and Investigational Device Exemptions (IDEs)

Design Validation 21CFR 820.30(g)

- **Design Validation** is the establishment by objective evidence that specifications(specified requirements) conform with user needs and intended use(s).
- Procedures are established and maintained:
 - Under defined operating conditions.
 - On initial production units, lots, or batches (or their equivalents).
 - Under actual or simulated use conditions.
- Perform software validation and <u>risk analysis</u>, where appropriate.
- Review, approve, and document in Design History File.
- The results of Design Validation are typically submitted in Premarket Submissions (e.g., animal/cadaver/clinical study protocols/reports).

Verification vs. Validation

Design Verification

- Output meets Input
- "Did I make the product <u>correctly</u>?"

Design Validation

- Specifications meet user needs and intended use(s)
- "Did I make the <u>correct</u> product?"

Example - Infusion Pump

User Need

Pump must function in an operating room environment.

Design Input

Pump must function uninterrupted when used with other products that generate an electromagnetic field.

Design Output

- •PCB with filtering circuit
- •Pump EMI shield
- •Software signal filtering code and error handling code

Design Review

Design Verification

- •Simulated EMI testing on hardware and software
- •Dimensional verification of shield
- •Verification of system error handling due to EMI

Design Validation

- •EMC testing to industry standards
- •Simulated EMI testing in high EMI environment
- •Risk Analysis concerning EMI
- •Software validation for filtering code

Design Transfer 21CFR 812.30(h)

- Procedures are established and maintained to ensure correct and accurate *Design Transfer* into production specifications.
- Although *Design Transfer* happens throughout, there frequently is a *final stage* of development intended to ensure all outputs are adequately transferred.

Design Changes 21CFR 820.30(i)

- Procedures are established and maintained for the identification, documentation, validation and verification, review, and approval of *Design Changes <u>before</u>* their implementation.
- Is there a system in place to enact *future* changes?
- Often overlooked, but of critical importance.
- How can you improve your product if you have no system for change?
- Depending on the scope and impact of the change, the change may require a new Premarket Submission, Supplement, or Study.
- Changes must be communicated to FDA if the device is under premarket review or IDE review.

Design History File 21CFR 820.30(j)

- **Design History File (DHF)** is a compilation of records which describes the design history of a finished device.
- It is a *summation* record of all Design actions, from *start* to *transfer*, including *changes*.
- A Design History File must be established and maintained for each type of device.
- Include in the DHF, or reference records information necessary to demonstrate that the design was developed in accordance with the **Design Plan** and Quality Systems requirements.

Design Controls - Summary

- Like the Quality Systems regulations themselves, Design Control should be viewed and understood as a *subsystem* – a subsystem within the <u>main</u> Quality System.
- **Processes** –A set of quality practices and procedures incorporated into the design and development process.
- **Goal** Control the design process to assure that device specifications meet user needs and intended use(s).

QS Regulation and Guidance

- Quality System Regulation and Preamble
 <u>http://www.fda.gov/MedicalDevices/DeviceRegulationan</u>
 dGuidance/PostmarketRequirements/QualitySystemsRe
 gulations/ucm230127.htm
- Guidance: Design Control For Medical Device Manufacturers http://www.fda.gov/MedicalDevices/DeviceRegulationan dGuidance/Guidance/GuidanceDocuments/ucm070627.htm
- General Principles of Software Validation
 <u>http://www.fda.gov/MedicalDevices/DeviceRegulationan</u>
 <u>dGuidance/GuidanceDocuments/ucm085281.htm</u>

Providing Industry Education Three Resources

1. CDRH Learn – Multi-Media Industry Education

- over 80 modules
- videos, audio recordings, power point presentations, software-based "how to" modules
- mobile-friendly: access CDRH Learn on your portable devices <u>http://www.fda.gov/Training/CDRHLearn</u>

2. Device Advice – Text-Based Education

 comprehensive regulatory information on premarket and postmarket topics <u>http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance</u>

3. Division of Industry and Consumer Education (DICE)

- Contact DICE if you have a question
- Email: DICE@fda.hhs.gov
- Phone: 1(800) 638-2014 or (301) 796-7100 (Live Agents 9am 4:30 pm EST)
- Web: <u>http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/ContactUs--</u> <u>DivisionofIndustryandConsumerEducation/default.htm</u>

www.fda.gov

U.S. Food and Drug Administration Protecting and Promoting Public Health

Questions?

Please complete the session survey: <u>surveymonkey.com/r/DEV-D2S3</u>