

Lurbinectedin (PM01183) for the Treatment of Ewing Sarcoma and Neuroblastoma

Pediatric Oncology Subcommittee of the Oncology Drug Advisory Committee (ODAC)

Arturo Soto Head of Clinical Development 21 JUNE 2017

Agenda

- Mechanism of Action
- Regulatory History
- Preclinical data supporting clinical studies
- Clinical trials experience in adults
- Clinical trials with relevance to pediatrics, adolescents and young adults
- Proposed pediatric development plan
- Potential challenges for clinical development of lurbinectedin in pediatric indications

Lurbinectedin Mechanism of Action

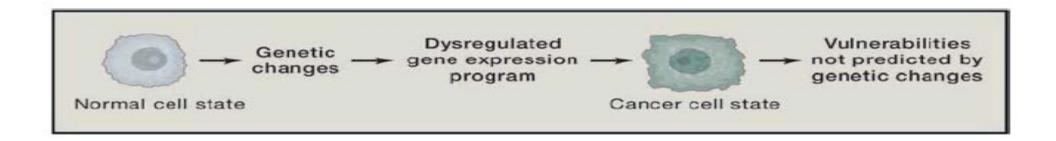
Lurbinectedin: a transcription inhibitor

Mol Cancer Ther; 15(10); 2399-412. ©2016 AACR.

Small Molecule Therapeutics

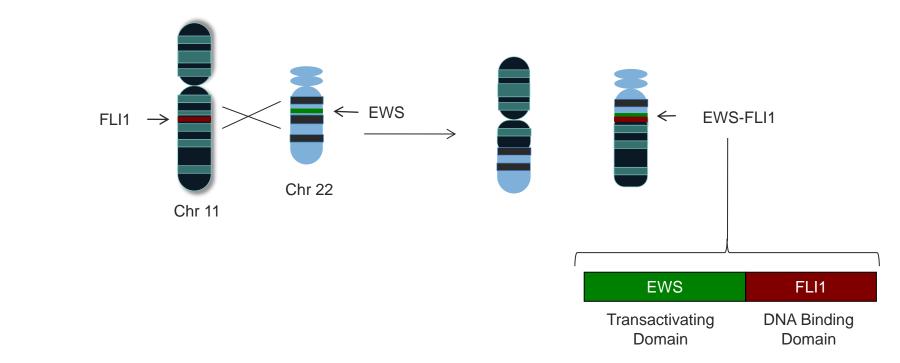
Molecular Cancer Therapeutics

Lurbinectedin Specifically Triggers the Degradation of Phosphorylated RNA Polymerase II and the Formation of DNA Breaks in Cancer Cells 12


Gema Santamaría Nuñez¹, Carlos Mario Genes Robles², Christophe Giraudon², Juan Fernando Martínez-Leal¹, Emmanuel Compe², Frédéric Coin², Pablo Aviles¹, Carlos María Galmarini¹, and Jean-Marc Egly²

- Stalling of elongating RNA Pol II and degradation by the ubiquitin/proteasome machinery
- Recruitment of XPF/ERCC1 and generation of DNA breaks
- Induction of apoptosis

Transcriptional Addiction in Cancer


James E. Bradner,¹ Denes Hnisz,² and Richard A. Young^{2,3,*}

¹Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA ²Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA ³Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA *Correspondence: young@wi.mit.edu http://dx.doi.org/10.1016/j.cell.2016.12.013

- Cancer cells aberrantly deregulate specific gene expression programs with critical functions in cell differentiation, proliferation, and death
- These altered gene programs in cancer cells have a striking dependence on continuous active transcription (transcription addiction)

Transcription Dependency in Ewing Sarcoma

- EWS-FLI1 is a constitutively active transcription factor that is the hallmark of Ewing sarcoma
- EWS-FLI1 alters the expression of approximately 1000 genes Mediate malignant transformation Increased metastatic potential Decreases thrombospondins to facilitate angiogenesis Evasion of senescence Directly or indirectly is anti-apoptosis

Fuchs FEBS Letters (2003); 104 Potikyan Cancer Res (2007) 67; 6675 Matsunobu Cancer Res (2006) 66: 803 Riggi Cancer Lett (2007) 254(10):1 Delattre (1992) Nature 359:1625

Transcription as a Valid Target in Oncology

Leading Edge Previews

No Driver behind the Wheel? Targeting Transcription in Cancer

Hector L. Franco1 and W. Lee Kraus1.*

¹Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA

*Correspondence: lee.kraus@utsouthwestern.edu http://dx.doi.org/10.1016/j.cell.2015.09.013

Cancer Cell Article

Targeting Transcriptional Addictions in Small Cell Lung Cancer with a Covalent CDK7 Inhibitor

Camilla L. Christensen,¹ Nicholas Kwiatkowski,² Brian J. Abraham,² Julian Carretero,³ Fatima Al-Shahrour,⁴ Tinghu Zhang,⁵ Edmond Chipumuro,⁶ Grit S. Herter-Sprie,¹ Esra A. Akbay,¹ Abigail Altabef,¹ Jianming Zhang,⁵ Takeshi Shimamura,⁷ Marzia Capelletti,¹ Jakob B. Reibel,¹ Jillian D. Cavanaugh,¹ Peng Gao,¹ Yan Liu,¹ Signe R. Michaelsen,⁸ Hans S. Poulsen,⁸ Amir R. Aref,¹ David A. Barbie,¹ James E. Bradner,¹ Rani E. George,⁶ Nathanael S. Gray,^{6,10} Richard A. Young,^{2,0,*} and Kwok-Kin Wong^{1,10,11,*}

*Correspondence: young@wi.mit.edu (R.A.Y.), kwong1@partners.org (K.-K.W.) http://dx.doi.org/10.1016/j.ccell.2014.10.019

Cancer Cell Previews

Inhibit Globally, Act Locally: CDK7 Inhibitors in Cancer Therapy

Kaixiang Cao¹ and Ali Shilatifard^{1,*}

¹Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA *Correspondence: ash@stowers.org http://dx.doi.org/10.1016/j.ccr.2014.07.020

Cancer Cell Previews

CellPress

Treating Transcriptional Addiction in Small Cell Lung Cancer

Arnaud Augert¹ and David MacPherson^{1,*}

¹Divisions of Human Biology and Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA ^{*}Correspondence: dmacpher@fhcrc.org http://dx.doi.org/10.1016/j.ccell.2014.11.012

Cancer Cell 26, December 8, 2014

Therapeutics, Targets, and Chemical Biology

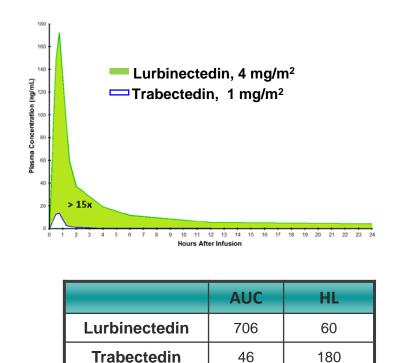
Cancer Research

Lurbinectedin Inactivates the Ewing Sarcoma Oncoprotein EWS-FLI1 by Redistributing It within the Nucleus

Matt L. Harlow¹, Nichole Maloney², Joseph Roland³, Maria Jose Guillen Navarro⁴, Matthew K. Easton⁵, Susan M. Kitchen-Goosen⁵, Elissa A. Boguslawski⁵, Zachary B. Madaj⁵, Ben K. Johnson⁵, Megan J. Bowman⁵, Maurizio D'Incalci⁶, Mary E. Winn⁵, Lisa Turner⁵, Galen Hostetter⁵, Carlos María Galmarini⁴, Pablo M. Aviles⁴, and Patrick J. Grohar^{2,5,7,8}

- Degradation of Pol II by the ubiquitin/proteasome machinery
- Direct block in binding to its target genes
- Redistribution of EWS-FLI1 within the nucleus

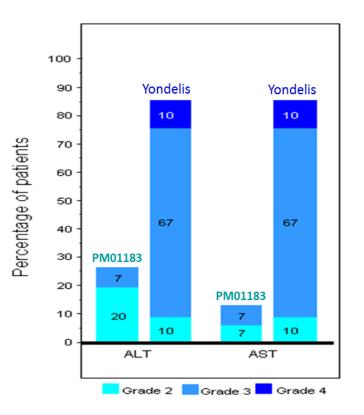
REGULATORY HISTORY: Lurbinectedin (PM01183) - IND Nr. 103556


REGULATORY APPLICATION:	DATE:
Initial Investigational New Drug (IND 103556) Application Clearance	January 16, 2009
Orphan Drug Designation US (Designation number: 12-3765; OD number: 099/12)	August 20, 2012
Orphan Drug Designation EU (EU/3/12/1053)	October 10, 2012.
Full waiver for the Initial Pediatric Study Plan (Agreed iPSP) for treatment of patients with extensive stage, small cell lung cancer (SCLC) that has progressed following platinum-containing chemotherapy.	October 11, 2016

Lurbinectedin is not currently approved for marketing in any country.

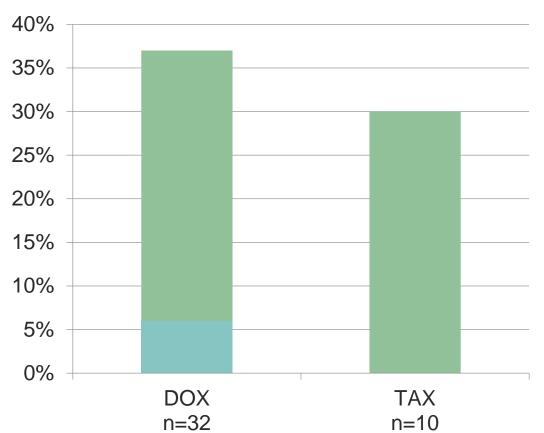
Nonclinical Data Pharmacokinetics

- Long terminal elimination half-life, slow plasma clearance and large volume of distribution in mice, rats, dogs and cynomolgus
- C_{max} and AUC are proportional to dose (up to MTD) either after single or repeated (up to 4 cycles) administration
- ¹⁴C-lurbinectedin-related radioactivity is rapidly distributed in rats
 - Maximum concentration is observed in spleen, liver, lymph nodes, thyroid glands, lung, kidney and small intestine
 - Lowest radioactivity detected in brain and testes
 - Feces are the primary route of excretion in the rat (91% up to 168 h post-dose)

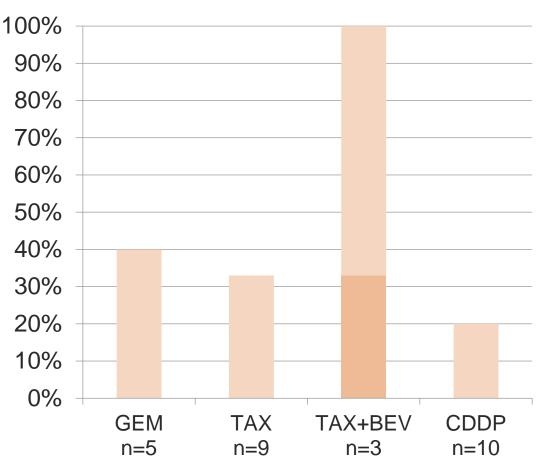

- Oxidative metabolism is very intensive, mainly dominated by CYP3A4
- Lurbinectedin is highly plasma protein bound

Nonclinical Data Safety and Toxicology

- No concerns related to neurotoxicity, cardiovascular or respiratory functions
- Pivotal studies: up to 4 cycles in dogs; and to 8 cycles in rats and cynomolgus –ongoing–
- Clinical signs: transient body weight decreases, diarrhea and emesis
- Mortality related to bone marrow suppression, hepatic alterations and gastrointestinal events
- Reversible findings in the hematopoietic system: reduced reticulocytes and white blood cells, slight anemia, as well as bone marrow depletion and atrophy of the lymphoid system
- Hepatotoxicity: increase in liver function tests, hepatocellular necrosis and biliary damage

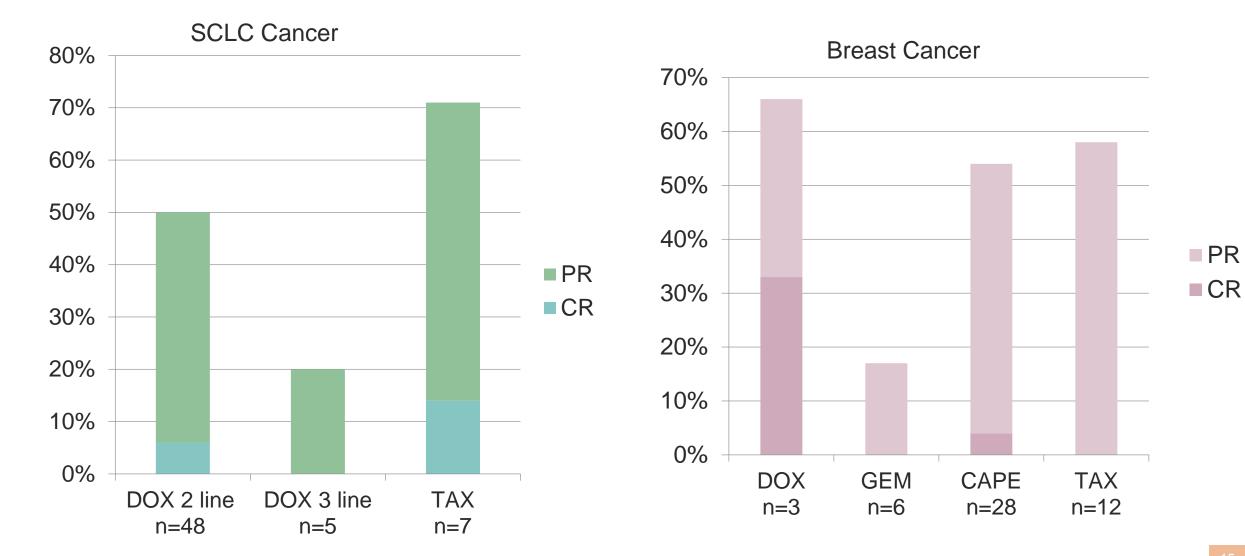

 Other target organs: gastrointestinal atrophy, adrenal glands (cortical hypertrophy) and kidneys (cortical tubular vacuolization)




- More than 1000 patients were treated with lurbinected in PharmaMar clinical trials
- The RD as single agent is 3.2 mg/m² and in combination from 1.1 to 2.2 mg/m²
- Most relevant AE asociated with lurbinectedin are hematological, mainly dose dependent neutropenia
- Other AEs were mild to moderate gastrointestinal and fatigue
- Efficacy was observed in different tumor types with single agent and in combination

Single-agent	Non-randomized trials		
Phase 1 FIM	Pancrea	tic cancer	
Day 1&8	Breast	cancer	
Day rao	Selected advan	ced solid tumors	
Leukemia	Random	ized trials	
Combination	00000	Lurbinectedin	
Doxorubicin	PRROC	Topotecan	
Gemcitabine		Lurbinectedin	
	NSCLC	Lurbinectedin+Gemcitabine	
Capecitabine		Docetaxel	
Paclitaxel	Phase	III trials	
Paclitaxel + Bevacizumab	PROC	Lurbinectedin	
Cieveletive	PRUC	PLD or topotecan	
Cisplatin		Lurbinectedin+Doxorubicin	
Irinotecan	SCLC	CAV or topotecan	

Efficacy in Endometrial and Ovarian Cancer from Phase I Studies in Combination



Ovarian Cancer

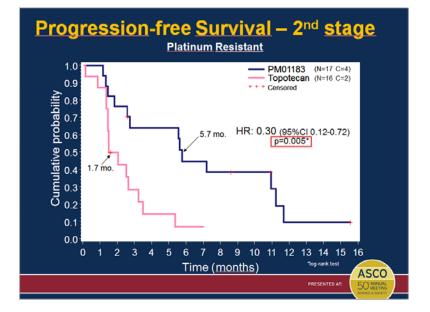
■CR ■PR

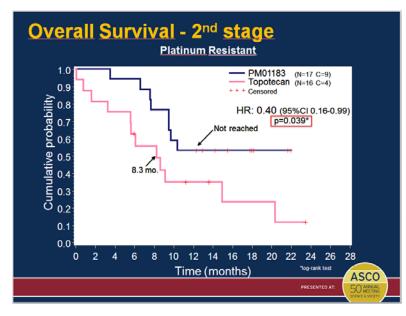
CR PR

Clinical Trials in Adult Patients with Cancer Efficacy in SCLC and MBC from Phase I Studies in Combination

Efficacy in Phase II single agent and single arm studies

Study Indication	Participant sites and countries	Evaluable patients	N pts	ORR % Conf RECIST v.1.1	Study status at cutoff
BRCA 1/2-associated or unselected MBC	11 Spain U.S.	BRCA+	54	41%	Recruitment completed
	28	BRCA+ MBC	6	33%	
	Belgium France	SCLC	23	26%	
Selected advanced solid	Germany Italy	Endometrial	37	14%	Ongoing
tumors	Spain Sweden	EFT	17	18%	
	Switzerland U.K.	Biliary Tract	18	6%	
	U.S.	NET	26	4%	


Efficacy in a randomized Phase II single agent study in PRROC


Overall Response Rate (ORR)

	PM01183		Topotecan	
	Overall (1 st & 2 nd stage) n=52	Randomized (2 nd stage) n=30	n=29	p-value
ORR (n [%])				
CR	1 (2)	1 (3)	0 (0)	
PR	^{&} 10 (19)	4 (13)	0 (0)	
SD	26 (50)	14 (47)	15 (52)	
PD	15 (29)	11 (37)	14 (48)	
ORR (%) (95% CI)	21 (11-35)	17 (6-35)	0 (0-11)	0.006
- Platinum resistant	30 (16-49)	24 (7-50)	0 (0-21)	0.020
- Platinum refractory	5 (0-26)	8 (0-36)	0 (0-25)	1

⁸2 PRs by Rustin criteria

Safety: Adverse Events

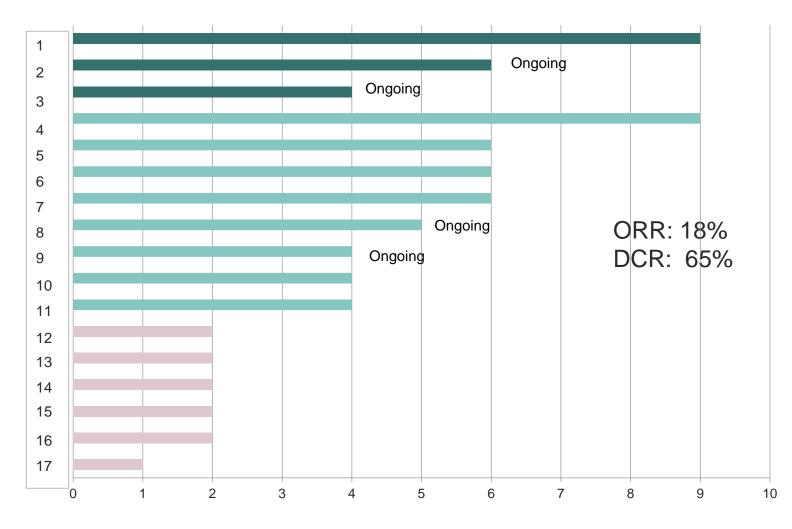
	NCI-CTCAE grade			Total	
	1	2	3	4	(n=492)
SOC/MedDRA PT	n (%)	n (%)	n (%)	n (%)	n (%)
	Treatment-relat	ed AEs or with u	nknown relationsh	ip	
Nausea	42 (8.5%)	40 (8.1%)	12 (2.4%)	•	94 (19.1%)
Vomiting	32 (6.5%)	32 (6.5%)	13 (2.6%)		77 (15.7%)
Fatigue	31 (6.3%)	36 (7.3%)	22 (4.5%)	•	89 (18.1%)
Diarrhea	14 (2.8%)	9 (1.8%)	•	•	23 (4.7%)
Constipation	13 (2.6%)	5 (1.0%)	•	•	18 (3.7%)
Alopecia	6 (1.2%)	3 (0.6%)	•		9 (1.8%)
Abdominal pain	3 (0.6%)	2 (0.4%)	•	•	5 (1.0%)
Abdominal pain upper	4 (0.8%)	1 (0.2%)	•	•	5 (1.0%)
Dyspnea	2 (0.4%)	•	3 (0.6%)		5 (1.0%)
Phlebitis		5 (1.0%)	•		5 (1.0%)
Stomatitis	4 (0.8%)	1 (0.2%)	•		5 (1.0%)

Safety: Laboratory Abnormalities

SOC/MedDRA PT	1	2	3	4	Total (n=492)
	n (%)	n (%)	n (%)	n (%)	n (%)
	Hemato	logical laboratory a	bnormalities		
Anemia	177 (36.0%)	176 (35.8%)	87 (17.7%)		440 (89.4%)
Leukopenia	62 (12.6%)	111 (22.6%)	124 (25.2%)	78 (15.9%)	375 (76.2%)
Neutropenia	22 (4.5%)	80 (16.3%)	89 (18.1%)	150 (30.5%)	341 (69.3%)
Thrombocytopenia	151 (30.7%)	41 (8.3%)	36 (7.3%)	49 (10.0%)	277 (56.3%)
Febrile neutropenia	•	•	30 (6.1%)	16 (3.3%)	46 (9.3%)
	Bioche	mical laboratory at	onormalities		I
ALT increased	213 (43.3%)	62 (12.6%)	53 (10.8%)	3 (0.6%)	331 (67.3%)
AST increased	213 (43.3%)	34 (6.9%)	22 (4.5%)	3 (0.6%)	272 (55.3%)
Bilirubin increased	49 (10.0%)	21 (4.3%)	13 (2.6%)	3 (0.6%)	86 (17.5%)
Creatinine increased	38 (7.7%)	16 (3.3%)	10 (2.0%)	8 (1.6%)	72 (14.6%)

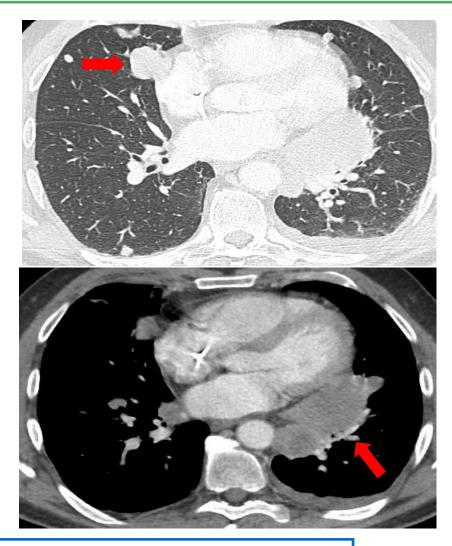
Clinical Trials with Relevance to Pediatrics

Ewing Sarcoma in Adults Baseline Characteristics

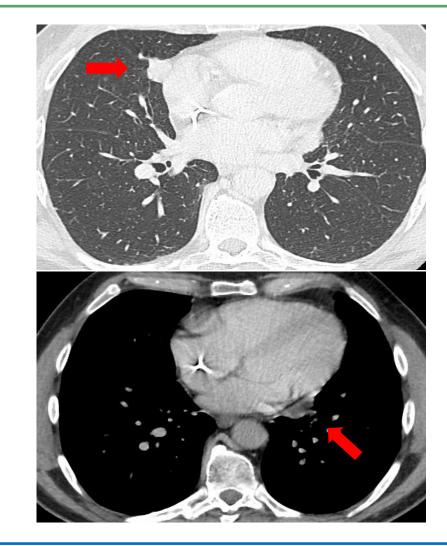

Baseline C	Ewing sarcoma n=22	
Age years	Median range	30 (20-74)
Gender	M / F	14/8
ECOG PS	0/1/2	12/9/1
BSA m ²	Median range	1.9 (1.6-2.4)
Sites of disease involvement	< 3 / ≥ 3	16/6
	1	5
Prior chemotherapy lines	2	12
	>2	5

Ewing Sarcoma in Adults Efficacy in 17 Evaluable Patients

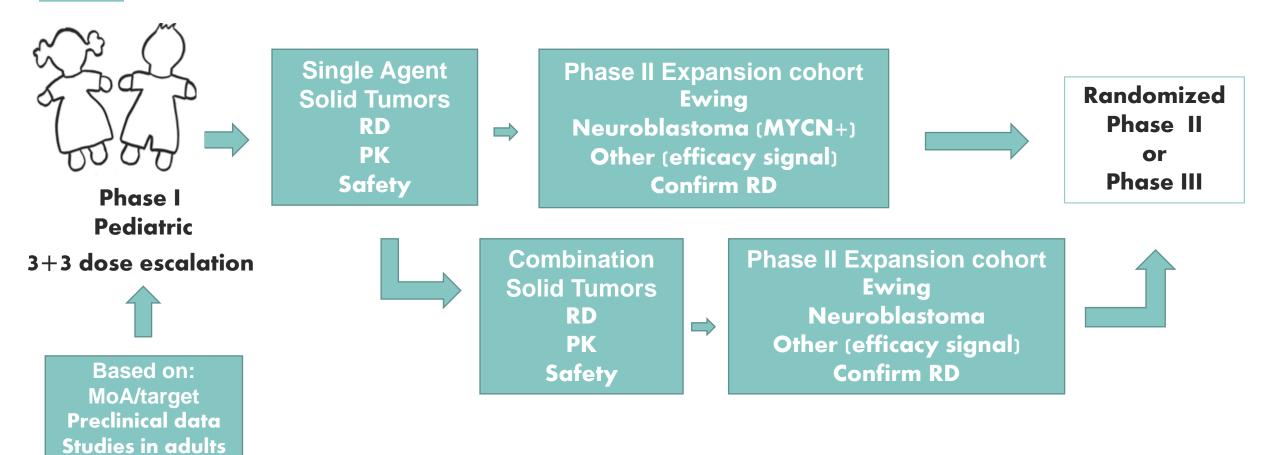
PR


SD

PD



54 years old EWS of right femur, treated in 2015 Lurbinectedin as first line treatment (lung / pleural / mediastinal relapse)



Post C2 Lurbinectedin (03/03/2017)

Rationale for the Development in Neuroblastoma

- No patients with neuroblastoma have been treated with lurbinectedin
- Amplification of the MYC family member, MYCN, is found in about 25% of cases and correlates with high-risk disease and poor prognosis
- MYCN protein, is a DNA binding transcription factor known to cause malignant transformation in both in vitro and in vivo tumor models

Proposed Pediatric Development Plan

Only children >2 years will be included initially. Once safety information for this subgroups is available to continue including pediatric population subgroups: infants and toddlers (28 days to 23 months) and term newborn infants (0 to 27 days) progressively

Potential Challenges for Clinical Development of Iurbinectedin In Pediatric Indications

- Lurbinectedin is provided as a lyophilized drug product for solution for infusion for i.v. administration
 - The lubinectedin solution for infusion contains sucrose, sodium lactate and sodium chloride or glucose as excipients
 - Oral presentations for pediatric are precluded due to the very low permeability of lurbinectedin through oral mucosa and oral bioavailability below 5%
 - Lurbinectedin needs to be infused in a volume of at least 100 mL. The lower doses for pediatric population will require optimization of the lurbinectedin strength per vial and the infusion volumes to ensure accurate dose measurement, to reduce the risk of dosing errors and prevent subcutaneous lesions in case of extravasation
- Liver maturation
- Low penetration in CNS and testes

Thanks

