

Gadolinium Retention Following Gadolinium Based Contrast Agents MRIs: Brain and Other Organs

Ira Krefting, M.D. Deputy Director for Safety Division of Medical Imaging Products (DMIP) Office of Drug Evaluation-IV (ODE IV), Office of New Drugs Center for Drug Evaluation and Research, FDA September 8, 2017

Why are we here?

To seek advice about gadolinium retention in the brain and other organs

What is retention? Persistence of gadolinium for a longer time than would be predicted from the acute time course of gadolinium leaving in the urine and feces

Where we need advice?

- Safety of gadolinium retention in the brain and other organs
- Interpretation of the scientific findings
- Possible clinical signals
- Recommendations for studies to fill the gaps in our knowledge
- Regulatory path forward to ensure safe use

Not for Today's Discussion

- We will not discuss the comparative efficacy of specific GBCAs
- We will not address other risks such as hypersensitivity reactions which are already included in the label

Today's Agenda

7:50 Fedowitz, FDA: Regulatory Safety Actions and Risk Mitigation

8:00 Guest speaker: Wagner, UT: Pathophysiology of GBCAs and the retention of gadolinium

8:30 Industry presentations: Bayer Bracco GE Healthcare Guerbet

Today's Agenda

9:55 FDA presentations

- Croteau: Adverse event reporting
- Bird: Epidemiology
- Greene: GBCA sales data
- Bleich: Gadolinium retention
- Fotenos: Endpoints in evaluation of safety

Overview of Today's Agenda

- 12:25 Open Public Hearing
- 1:55 Questions to the Committee
- 4:00 Adjournment

Background to Questions

- We will summarize findings of gadolinium retention in the brain and other organs. We seek advice in interpreting this data in view of our previous evaluation of Nephrogenic Systemic Fibrosis (NSF).
- 2. We will present FAERS and other clinical adverse event reports related to GBCA exposure. Does the evidence support a causal relationship?

Background to Questions

- Options to study the risk of retention will be presented. Some of the studies are ongoing. We seek advice on the design of studies to further evaluate the gaps in our knowledge
- 4. We plan to implement safety labeling changes. Is this approach consistent with the level of risk?

REGULATORY SAFETY ACTIONS & RISK MITIGATION

Michele Fedowitz, MD Associate Director for Labeling, DMIP

Medical Imaging Drugs Advisory Committee September 8, 2017

Overview

What is new safety information?

What are the sources of this information / FDA monitoring?

How does FDA address new safety information?

Labeling of safety information

A Review: Nephrogenic Systemic Fibrosis

Gadolinium Retention

What is New Safety Information?

New serious risk or unexpected serious risk associated with the use of the drug that FDA has become aware of the risk since the drug was approved

How does FDA become aware of new information?

- Reanalyze existing information
- New data (clinical trial, post-approval study, literature, active post-market safety surveillance)

Sources of New Safety Data

Clinical Trial/Post Approval Study

Pharmacovigilance

- FDA Adverse Event Reporting System (FAERS) Database (Medwatch and mandatory reporting by manufacturers)
- Post market risk identification and analysis system (active)

Peer-reviewed Literature

Regulatory Actions to Address New Safety Information

Withdrawal

Risk Evaluation and Mitigation Strategy (REMS)

Required Post Marketing Studies

Communication to the Public

Safety Labeling Changes

WITHDRAWAL 21 CFR §314.150

There is an imminent hazard to the public health

The drug is unsafe for use under the conditions of use upon the basis of which the drug was approved

REMS

Risk Evaluation and Mitigation Strategy

A Risk Evaluation and Mitigation Strategy (REMS) is a required risk management plan that uses risk minimization strategies beyond professional labeling and is necessary to ensure the benefits of a drug outweigh its risks.

- Medication Guide
- Patient package insert and/or
- Communication plan
- Elements to assure safe use (ETASU)

Safety Label Changes

Food and Drug Administration Amendments Act of 2007 Section 505(o)(4)

FDA received the authority to *require* safety label changes based on new safety information after the approval of a drug

Better define the risk benefit profile

Typically a safety label change will add or strengthen a contraindication or warning and precaution.

Useful if there are patients who benefit from the drug despite its risks.

Safety Label Changes

Boxed Warnings

Contraindications

Warnings and Precautions

Drug Interactions

Adverse Reactions

Indications and Usage

Dosage and Administration

Specific Populations

- Pregnancy
- Lactation
- Pediatric Use
- Geriatric Use
- Renal Impairment

Clinical Pharmacology

ADVERSE REACTIONS 21 CFR §201.57(c)(7) and Guidance

Undesirable effect, reasonably associated with the drug

- Clinically meaningful information that is most important to health care practitioners' prescribing decisions
- Exhaustive lists of every reported adverse event should be avoided

WARNINGS AND PRECAUTIONS 21 CFR §201.57(c)(6) and Guidance

Clinically Significant Adverse Reactions

- Potentially Fatal/ Serious
- Can be prevented or mitigated through appropriate use of the drug

Potential safety hazard

- Anticipated adverse reactions (based on pharmacologic class)
- Anticipated serious risks in humans based upon toxicities seen in animal studies.

Outlines the risk and ways to minimize the risk

CONTRAINDICATIONS 21 CFR §201.57(c)(5)

Clinical Situations or Patients

The risk from use clearly outweighs any possible clinical benefit

BOXED WARNINGS 21 CFR §201.57(c)(1)

Highlight adverse reactions:

- May lead to death or serious injury
- So serious in proportion to the potential benefit from the drug that it is essential that it be considered in assessing the risks and benefits of using the drug
- Can be prevented or reduced in frequency or severity by appropriate use of the drug

Highlight Contraindications or Warning and Precaution

How Does FDA Evaluate a Safety Issue?

New Safety Issue

Nephrogenic Systemic Fibrosis (NSF)

- Debilitating fibrosis affecting the skin, muscle, and internal organs (sometimes fatal) related to GBCA exposure in patients with severe impairment in renal function
- Many patients and even many with renal insufficiency safely received the drug

Post Marketing Analysis: Sources of Evidence

Physiochemical Properties

-Thermodynamic Stability (Binding strength of Gd to the ligand)
-Kinetic Stability/ (Rate of dissociation of Gd from the complex)

- Structure
 - Linear Gadolinium (Gd) linked to an open chain ligand
 - Macrocyclic Gd linked to cyclic "cage" ligand

Pre-clinical Studies

Clinical (FAERS Database)

FDA analysis of Published Literature

ANALYSIS OF EVIDENCE FOR NSF

Tradename (Approved Agents)	Physiochemical Properties Log K _{therm} *	Nonclinical Studies^ Skin Lesions	Single Agent Domestic NSF cases since launch **	Total Volume sold 2005- 2007** (liters X 1000)
Omniscan 1993	16.9	Yes	382	153
Optimark 1999	16.8	Yes	35	51
Magnevist 1988	22.5	NO	195	237
MultiHance 2004	22.6	NO	1	19
Prohance 1992	23.8	NO	0	23

*Frenzel, T., et al, Invest. Radiology, 43, 817–828 (2008) and references cited within

^Data submitted to the NDA

** Gadolinium-Based Contrast Agents and Nephrogenic Systemic Fibrosis, FDA Briefing Document, Advisory Committee, December 8, 2009

Regulatory Actions Risk Minimization Strategies

Communication to the Public

- Public Health Advisories
- Dear Healthcare Provider Letters

Increased Pharmacovigilance Efforts

- Required Expedited Reporting of Adverse Events
- Increased Frequency of Periodic Safety Reports

Clinical Data

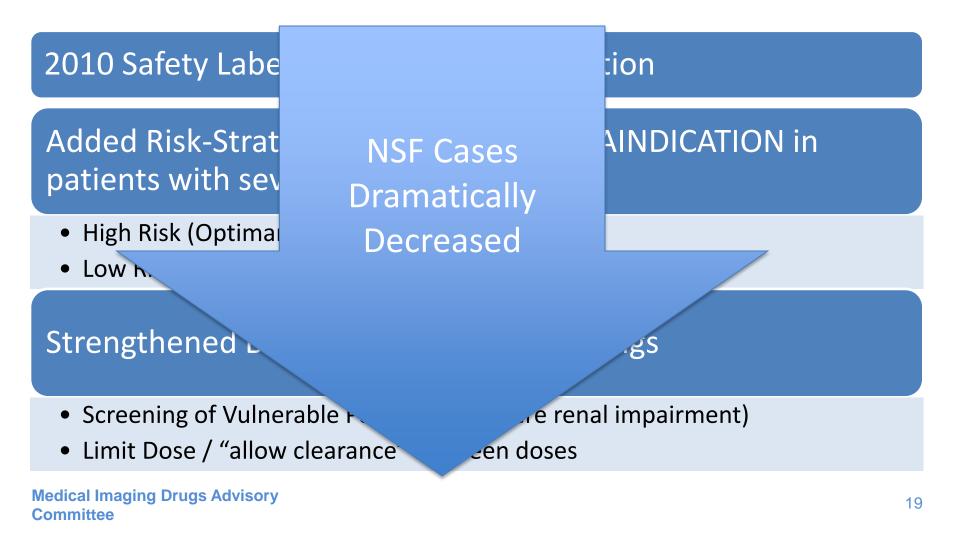
• Required Post Marketing Studies

Regulatory Actions Following 2009 Advisory Committee

2010 Safety Label Changes

CONTRAINDICATION in patients with severe renal insufficiency

Differential Labeling / Differential Risk for GBCAs


- High Risk (Optimark, Omniscan, Magnevist)
- Low Risk (Multihance, Prohance, Eovist, Gadavist, Dotarem)

Strengthened Boxed Warning and Warnings and Precautions

- Screening of Vulnerable Population (severe renal impairment)
- Limit Dose / "allow clearance" between doses

Regulatory Actions Following 2009 Advisory Committee

New Safety Issue: Gadolinium Retention

Gadolinium noted in the brain, skin, bone and organs of patients receiving GBCAs with normal renal function.

What is retention? Persistence of Gd for a longer time than would be predicted from the acute time course of Gd leaving the body in urine & feces

Gadolinium Retention Moving Forward

EVIDENCE

Chemistry

Preclinical Studies

Clinical Studies

- Safety Data
- Epidemiologic studies
- Ongoing studies

Literature

Gadolinium Retention Regulatory Options

What is the risk?

How can we minimize the risk?

Communication / Education

Labeling

Increase Pharmacovigilance

Additional Clinical / Preclinical Studies

Adverse Events with Gadolinium Retention after Gadolinium-Based Contrast Agent Exposure: FAERS and Medical Literature Review

David Croteau MD, FRCPC Medical Officer Division of Pharmacovigilance Office of Surveillance and Epidemiology U.S. Food and Drug Administration

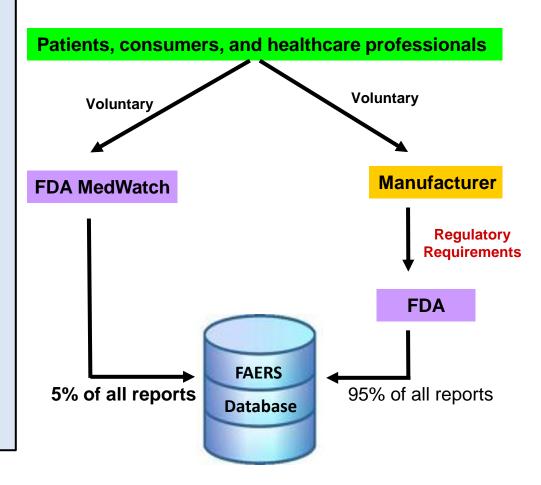
September 8, 2017

Medical Imaging Drugs Advisory Committee Meeting

Outline

- Purpose of the review
- Methods
 - FAERS database
 - FAERS search
 - Medical literature review
- Results
 - FAERS case reports
 - Medical literature
 - Case reports and case series
- Discussion
- Summary

Purpose of the Review



- To identify and describe clinical adverse events in patients with gadolinium retention after gadolinium-based contrast agent (GBCA) exposure without reported renal impairment
- To evaluate the supporting medical literature available on gadolinium retention
- Nephrogenic systemic fibrosis and hypersensitivity reactions are not addressed as they are wellcharacterized in the various GBCA labels

FDA Adverse Event Reporting System

- Computer database of spontaneous reports for human drugs and biologics
 - Mandatory reporting by manufacturers
 - Voluntary reporting by healthcare professionals, patients, and the general public
- > 14 million reports since 1968
 - Over 1.6 million new reports in 2016

FAERS Strengths

- Computerized database
- Includes all U.S. marketed products
- Includes all uses (both approved and off-label use)
- Includes broad patient populations:
 - elderly, children, pregnant women, comorbidities
- Simple, relatively inexpensive reporting system

- Detection of events with low background rate
- Detection of clinically serious events
- Useful for events that occur shortly after exposure and early in postmarketing phase
- Useful for events highly attributable to drugs
- Identification of possible risk factors, and other clinically significant emerging safety concerns

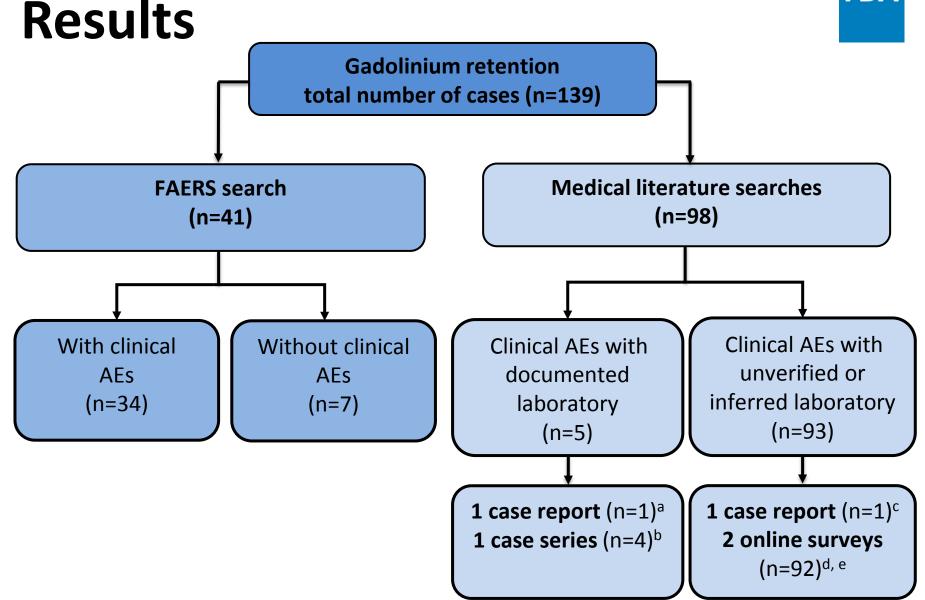
FAERS Limitations

- Variable report quality
- Reporting biases
- Confounding effect of intended drug indication
- Underreporting not every adverse event is reported (passive surveillance)
- Difficult to attribute events with high background rates or long latency periods after exposure

- Causal relationship between a product and an event is not required for reporting to the FDA
- FAERS data cannot be used to calculate the incidence of an adverse event or medication error in the U.S. population
- Comparison of drugs difficult

Methods

FAERS


- Cases reporting gadolinium retention, with or without clinical adverse events
- Gadolinium retention evidence*
 - Any body fluid or tissue, without required quantitative data
 - Inferred based on specific brain MRI abnormalities

*≥4 weeks after GBCA exposure

Medical Literature

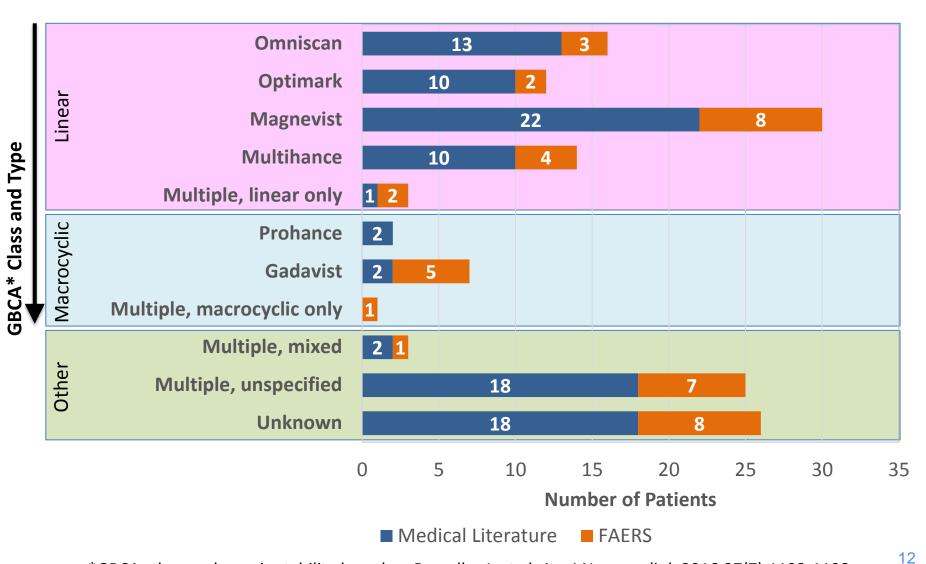
- PubMed and EMBASE search engines
- Search strategies included key words relating to
 - Clinical manifestations associated with gadolinium retention already published in the medical literature
 - Hypothetical clinical manifestations based on brain retention patterns

Case Characteristics

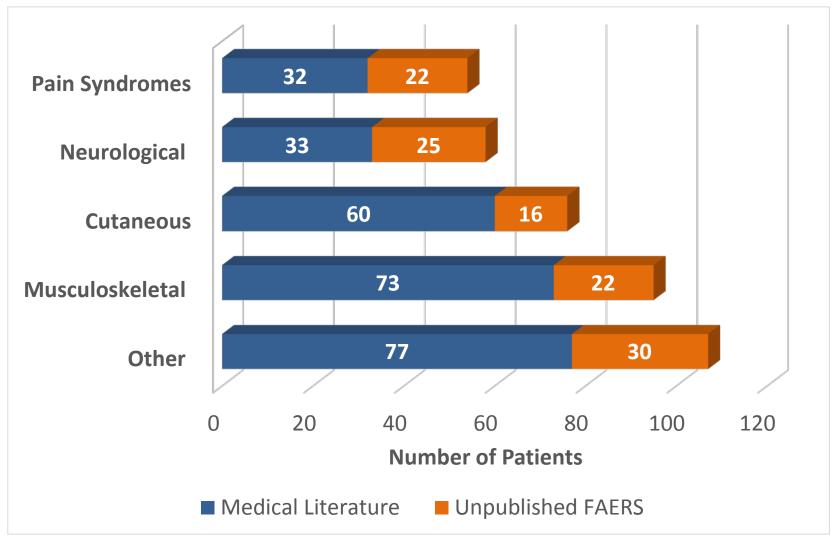
Characteristic	Number of Cases	(N=139)
Country of reporter (n=139)	USA Foreign	132 7
Year of initial report (n=139)	2007-2014 2015 2016 2017	12 15 9 (98 literature cases) 5
Reporter type (n=138)	Consumer Physician/other HCP Publication	27 13 98
Age (years) (n=85)	Range Median	7-81 49
Sex (n=87)	Female Male	65 22
Race/ethnicity (n=64)	Caucasian Hispanic	61 3

Case Characteristics

Characteristic	Number of Cases	(N=139)
Body region imaged* (n=39)	Brain/cranium Abdomen/pelvis Breast Spine Cardiac Limb Unknown	<pre>20 10 5 5 3 3 100</pre>
GBCA indications* (n=32)	Neoplasm/screening Trauma Tachycardia Other Unknown	12 3 2 13 107
Gadolinium retention evidence* (n=137)	Urine Serum Hair Skin Other	104 19 12 7 13

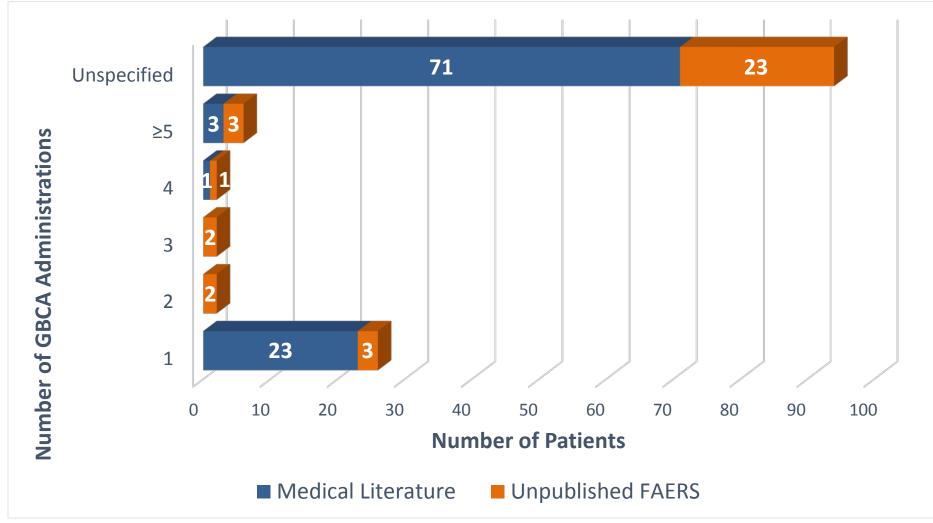

*A patient may have more than one body region imaged, more than one GBCA indication, and more than one body fluid/tissue tested 10

Case Characteristics


Characteristic	Number of Cases	(N=139)
Number of adverse events per patient (n=40)	1 2 3 4 5-10 >10 Range Median	4 1 3 5 16 11 1-39 7
Adverse event onset after GBCA exposure (n=80)	Immediately ≤ 24 hours >24h - 6 weeks >6 weeks	37 11 29 3
Adverse event duration at the time of report (n=35)	1-≤3 months 3-≤6 months 6-≤12 months >12 months Range Median	10 9 3 13 1 month – 9 years 5 months

*GBCAs thermodynamic stability based on Ramalho J, et al. Am J Neuroradiol. 2016;37(7):1192-1198

Number of Patients by Adverse Event Clinical Category (N=132)



Adverse Events Reported by Clinical Category (N=132)

Pain Syndromes	Neurological	Cutaneous	Musculoskeletal	Other
(N=54)	(N=58)	(N=76)	(N=95)	(N=107)
limb or central torso nociceptive paresthesias/ dysesthesias (53) headache (37) unspecified pain (10)	clouded mentation (31) non-nociceptive paresthesias/ dysesthesias (14) cognitive impairment (13)	<pre>skin discoloration (30) skin changes (29) skin thickening (25) rash/erythema (14)</pre>	bone pain (40) bone/joint pain (38) muscle spasms (36) joint stiffness (33) arthralgia (12) muscular weakness (10)	fatigue/asthenia (51) head & neck including headache, vision changes, and hearing changes (38) other unspecified (37) generalized whole body symptoms (30) digestive symptoms including nausea, vomiting, and diarrhea (27) chest symptoms/dyspnea (26) buzzing sensation (24) metallic taste (20)

Number of GBCA Administrations Before Onset of Reported AE (N=132)

FDA

Case Report: FAERS

- FAERS #11805981, reported by consumer, 2015
- 53-year-old Caucasian woman with normal renal function and reportedly unremarkable past medical history
- GBCA exposure
 - 6 contrast-enhanced MRIs over 9 months with Gadavist (4), Multihance (1), and Magnevist (1) for transverse myelitis indication
 - 3 contrast-enhanced MRIs with unspecified GBCA and indications over the preceding 9 years
- Symptoms developed 2 months after first of 6 most recent contrast-enhanced MRIs and included
 - Bone pain
 - Generalized muscle tightening
 - Weakness
 - Fatigue
 - Other unspecified symptoms

Case Report: FAERS

- Investigation: 24-hour urine gadolinium measurements revealed
 - One month before last MRI: 17 mcg/specimen (reference range, <0.6 mcg/specimen)
 - Two months after last MRI: 6.9 mcg/specimen (reference range, 0.0 – 0.4 mcg/specimen)

Case Report: Medical Literature

- 29-year-old Caucasian woman with normal renal function and past medical history significant for medullary sponge kidney
- GBCA exposure
 - One contrast-enhanced MRI with Magnevist (20 mL) for suspected complex renal cysts indication observed on ultrasonography
- Symptoms developed within 24 hours of the contrastenhanced MRI and included
 - Flu-like body aches
 - Nociceptive paresthesias/dysesthesias (burning, sharp pins and needles) involving central torso and all 4 limbs
 - Clouded mentation
 - Headaches
 - Arthralgias

Case Report: Medical Literature

- Investigation (1 month later)
 - Blood gadolinium: 0.7 ng/mL (reference range, <0.5 ng/mL)
 - 24-hour urine gadolinium: 18 mcg/specimen (reference range, 0.0 0.4 mcg/specimen)
- Physical examination unremarkable (2 months later)
- Outcome (2 months)
 - Progression over days with subsequent gradual diminution of symptoms
 - Sporadic nociceptive paresthesias/dysesthesias
 - Persistent clouded mentation, headaches, and arthralgias

Specific Populations

- Pediatric (≤18 years old) (n=2)
- Geriatric (≥65 years old) (n=3)
- Pregnancy/lactation (n=0)
- Hepatic insufficiency (n=0)
- Pre-existing systemic inflammatory conditions (n=1)
 - Pelvic skin graft rejection, idiopathic thrombocytopenic purpura (ITP), rheumatoid arthritis, unspecified autoimmune symptoms
- Pre-existing neurological inflammatory conditions (n=1)
 - Encephalitis not otherwise specified

Discussion

- Despite clustering around certain clinical categories, the marked heterogeneity of clinical adverse reported makes interpretation challenging
- Unverified self-reported information in most reports
 - Assessment of clinical adverse events by HCP
 - Laboratory results supporting gadolinium retention
 - Originates from published online surveys (n=92) (Semelka 2016b; Burke 2016) and FAERS consumer reports (n=27)

Discussion

- Alternative etiology investigation not provided
- Symptoms related to MRI study indication
- Discordant site of gadolinium measurement and symptomatic body region(s)
- Internet websites and social media with interest in gadolinium retention may lead in reporting stimulation
- Challenging recognition of clinical manifestations with insidious or delayed onset, and non-specific features

Summary

- Evidence of growing concern for untoward effects of retained gadolinium, within both the lay public and the medical community
- Despite lacking consistent phenotype, some clustering of clinical adverse events around certain clinical categories (pain syndromes, neurological, cutaneous, and musculoskeletal) was observed
- At this juncture, a causal association between reported clinical adverse events and GBCA exposure cannot be determined

Epidemiologic Studies on the Safety of Gadolinium-Based Contrast Agents

Steven T Bird, PhD, PharmD Division of Epidemiology I Office of Surveillance and Epidemiology CDER / FDA

Welk 2016: Association Between Gadolinium Contrast Exposure and the Risk of Parkinsonism

- Retrospective Cohort Study using Administrative Databases in Ontario
- Patients >66 years of age without parkinsonism between 2003-2013
- MRI with gadolinium (n=99,739) and MRI without Gadolinium (n=146,818); excluding brain or spine MRI
- Rate of parkinsonism
 - − ≥1 Contrast MRI: 3.17 / 1,000 person-years
 - Only Non-Contrast MRI: 2.71 / 1,000 person-years
- Relative Risk = 1.04 (0.98 1.09) per Contrast MRI
- While a well done study, its average four year follow-up per patient may not be sufficient for evaluating parkinsonism

Welk B et al. JAMA 2016;316(1):98-8

Ray 2016: Child and Infant Outcomes Following Gadolinium Contrast Exposure during Pregnancy

- Retrospective cohort study in administrative database in Ontario (2003-2015)
- A sample of 1,424,105 linked mothers and infants
- Contrast MRI anytime during pregnancy (n=397)
- Rate of stillbirth or neonatal death
 - Contrast MRI: 7 outcomes in 397 women (17.6 / 1000 person-years)
 - No MRI: 9,844 outcomes / 1,418,451 women (6.9 / 1000 person-years)
- Relative Risk for stillbirth and neonatal death = 3.70 (1.55 to 8.85)
- While a well done study, it had a small number of outcomes, was not powered for a comparison of contrast MRI versus non-contrast MRI, and needs replication.

Utilization of Gadolinium During Pregnancy in the United States

- An internal FDA evaluation in a sample of 3,726,555 pregnancies from the Sentinel Distributed Database observed 8,842 gadolinium MRI during pregnancy (2008-2015)
 - 1 in 421 US pregnancies
- The majority of exposures in the first trimester
- 8-fold greater use of gadolinium pregnancy in this US study Canadian study by Ray et al
- FDA is evaluating the feasibility of replicating the Ray study

High Level Considerations when Evaluating Adverse Effects of Gadolinium Exposure

- All tissues could potentially retain gadolinium
 - This leads to a large number of potential adverse effects
 - Focus Groups, case reports, and historical datasets may inform outcomes to study
- Number of Exposures and Dosage Matters
 - Focus on identifying patients receiving multiple MRIs for conditions unrelated to the adverse effects being studied
- Dose Exposure (i.e. retention) Varies
 - The extent of retention varies with time, by tissue, and by agent
- Follow-up Time
 - Latency of outcomes is unknown and studies with long follow-up are required to assess risk

Challenges in Epidemiological Assessment of the Risk Due to GBCA Deposits in the Body

Study Characteristics	Suggestions and rationale	Challenges
Study Population		
Administrative Databases (e.g. claims data or electronic medical record)	 Cohorts including millions of exposures can be identified Historical datasets of patients with CKD who received gadolinium may be informative Mother-baby linkages available to study exposures during pregnancy 	 Most outcomes are not captured Outcome of interest may be unpredictable Patients with ≥4 exposures are less common Follow-up time is limited
Ongoing prospective observational studies	 These studies typically have long follow-up and high quality data on patient comorbidity 	 Pertinent outcomes may not have been captured Lower exposure levels Loss to follow-up is an issue
New Prospective observational studies	 Prospective observational studies can be tailored to a specific clinical concern Parallel arms can be conducted by each sponsor 	 These studies take a long time to conduct May be expensive Loss to follow-up is an issue
Randomized Clinical Trials	- Gold Standard	- Ethical and feasibility requirements need to be taken into consideration

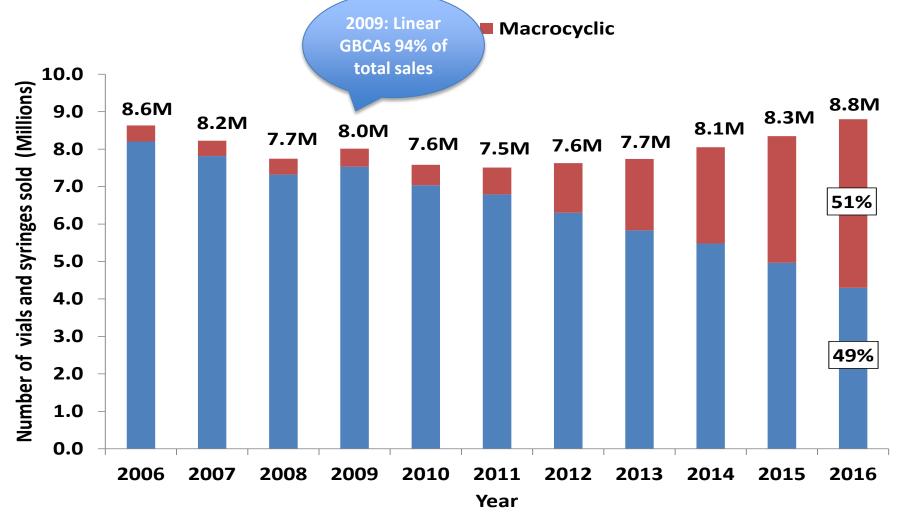
Key Messages

- Epidemiologic studies on the safety of gadolinium contrast in patients without chronic kidney disease are sparse
- Focus groups with highly-exposed patients and review of case reports may inform avenues for further research
- Vulnerable populations and pregnant women need special attention
- Studies must be carefully evaluated for quality attributes such as outcome identification and length of patient follow-up
- A multitude of studies are likely required to address current concerns with gadolinium retention
- There is no guarantee of definitive answers in the near term

Gadolinium-Based Contrast Agents U.S. Sales Data 2006-2016

Patty Greene, PharmD Drug Utilization Analyst Division of Epidemiology II Office of Surveillance and Epidemiology Center for Drug Evaluation and Research

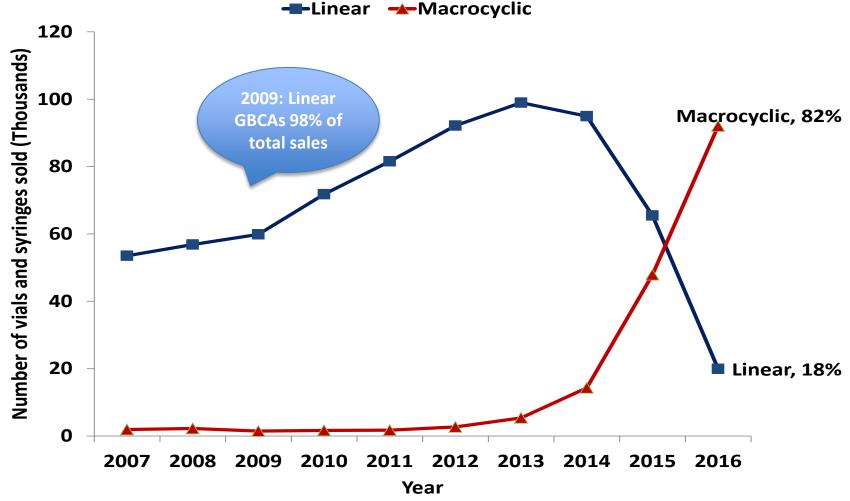
September 8, 2017


Medical Imaging Drugs Advisory Committee

U.S. Sales Database

- QuintilesIMS Health, National Sales Perspectives™ Database
 - Measures the number of packages* sold from manufacturers to hospitals and clinics
 - Data are nationally estimated from a nearly 90% capture of the market
 - Measure of sales volume, <u>not</u> direct patient utilization
 - No patient demographic information available

National Estimate of GBCA Sales from Manufacturers to Hospitals and Clinics


Source: QuintilesIMS Health, IMS National Sales Perspectives™. Data Extracted July 2017.

Pediatric Sales Database

- Symphony Health Solutions' PHAST NonRetail Monthly Database
 - Measures the volume of sales by number of packages* sold from manufacturers to <u>50</u> pediatric specialty hospitals and <u>5</u> pediatric clinics in the U.S.
 - National estimates are not available at this time
 - Measure of sales volume, not direct patient utilization
 - No demographic information available

GBCA Sales from Manufacturers to a Sample* of Pediatric Hospitals and Clinics

Source: Symphony Health Solutions' PHAST NonRetail Monthly . Data Extracted July 2017.

*Sample = 50 pediatric hospitals and 5 pediatric clinics

Summary

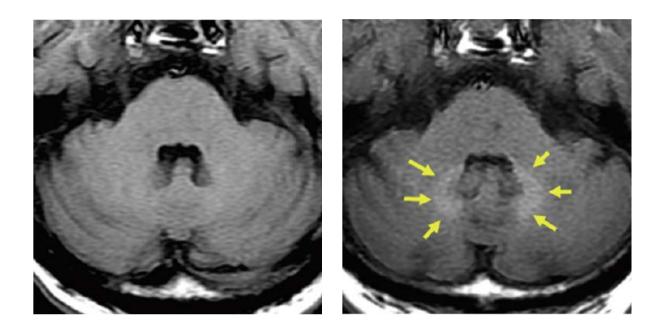
- National trends show an increase in macrocyclic GBCAs and a decrease in linear GBCAs since 2009
 - Nearly evenly distributed market share in 2016
- In 2016, sales to a sample of pediatric specialty hospitals suggest a higher proportion of macrocyclic GBCAs use compared to trends nationwide

Gadolinium Retention: A Summary

Karen Bleich, MD Division of Medical Imaging Products Medical Imaging Drugs Advisory Committee Meeting September 8th, 2017

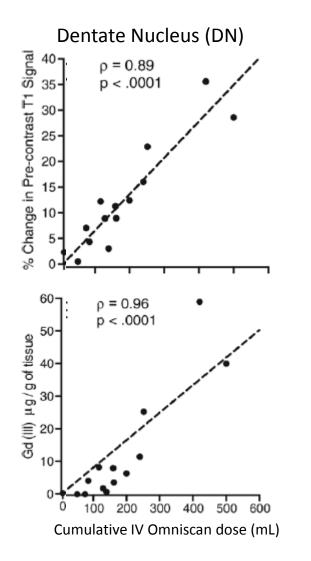
Overview

Highlights of the emerging science related to gadolinium retention


Most of the studies presented here represent published and unpublished studies by the GBCA sponsors without review of primary data by FDA.

Regulatory evaluation of GBCAs: NSF and gadolinium retention - process and actions taken

2014


Increased T1W signal in portions of brain related to prior GBCA administration

Increased signal intensity visualized after multiple administrations of linear GBCAs. Kanda 2014, Errante 2014

Imaging findings confirmed to be gadolinium

13 patients who underwent 4-29 MRIs with Omniscan.

The SI in the DN increases as the total Omniscan dose increases.

The concentration of Gd found in the DN increases as the total Omniscan dose increases *McDonald 2015*

Human autopsy study

Regulatory response 2015

> Gadolinium is retained in the brain

FDA U.S. FOOD & DRUG

7.27.2015 Drug Safety Communication: FDA evaluating the risk of brain deposits with repeated use of GBCAs

NSF Regulatory Evaluation

Intrinsic stability of GBCAs

In vitro Gd dissociation kinetics

Nonclinical evidence of toxicity

- Clinical evidence of toxicity
- Susceptible patient populations

In response to NSF, GBCAs were risk-stratified based on the totality of this evidence and risk mitigation steps were taken.

- Intrinsic stability of GBCAs
- In vitro Gd dissociation kinetics
- Nonclinical evidence of toxicity
- Clinical evidence of toxicity
- Susceptible patient populations

How tightly the Gd ion is bound to the chelating molecule

Gadolinium Toxicity

- Gd is a potent blocker of many types of Ca-dependent biological pathways
- Metal exchange between endogenous metals and Gd ion inhibits molecular processes
- Gd is a potent inhibitor of the mononuclear phagocyte system
- Gd has a proliferative effect on fibroblasts

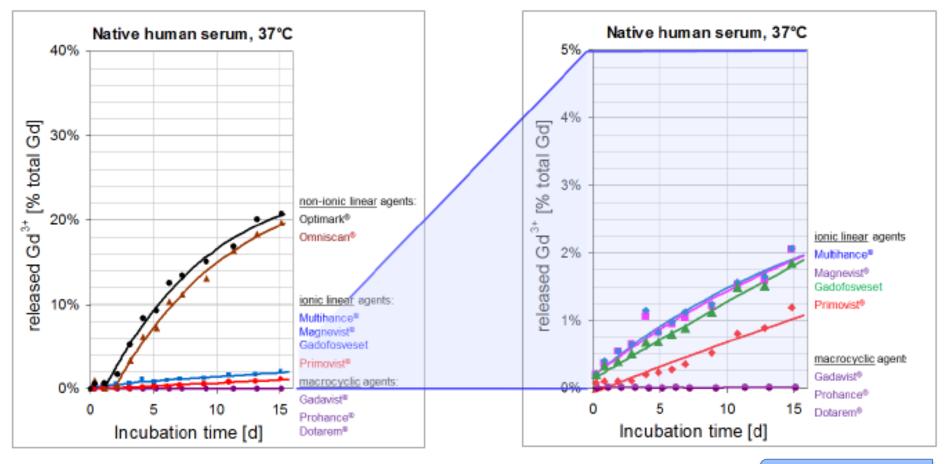
GBCA Intrinsic Stability

Lower

Higher

Linear GBCAs

- » Omniscan
- » OptiMARK
- » Magnevist
- » Multihance
- » Eovist


Macrocyclic GBCAs

- » ProHance
- » Gadavist
- » Dotarem

The intrinsic stability of the GBCAs is not the whole story when evaluating NSF or gadolinium retention, and does not necessarily reflect comparative toxicity within the complex in vivo environment.

In vitro Gd Dissociation Kinetics

Frenzel 2008

- ► Intrinsic stability of GBCAs
- In vitro Gd dissociation kinetics
- Nonclinical evidence of toxicity
- Clinical evidence of toxicity
- Susceptible patient populations

Does the intrinsic stability of GBCAs correlate with gadolinium dissociation in the setting of gadolinium retention?

- Intrinsic stability of GBCAs
- > In vitro kinetics of release of free Gd
- > Nonclinical evidence of toxicity
- Clinical evidence of toxicity
- Susceptible patient populations

Nonclinical Evidence of Toxicity

No histopathologic evidence of toxicity in animal brain after repeated high doses of GBCAs

Rats received 80x (surface adapted) human dose over 5 weeks. Histological analysis demonstrated no abnormality in the brain tissue. *Lohrke 2017 (Bayer)*

No behavioral or neurological abnormality detected in completed studies in rats

Juvenile rats received 36x (surface adapted) human pediatric dose over 3 weeks. Behavioral and neurologic testing was normal. *Bracco Study AB21194, unpublished*

Nonclinical Evidence of Toxicity

Gross and histopathologic toxicity HAS been demonstrated in the skin of animals after repeated high doses of the linear non-ionic agents Omniscan and OptiMark

Wible 2001 and Lohrke 2017 (Bayer)

- Intrinsic stability of GBCAs
- In vitro Gd dissociation kinetics
- > Nonclinical evidence of toxicity
- Clinical evidence of toxicity
- Susceptible patient populations

Clinical evidence of toxicity

- In the published human autopsy studies to date, there has been no histologic evidence of toxicity from gadolinium in the human brain.
- Pharmacovigilance and epidemiology reviews have not defined clinical signs or symptoms related to GBCAs
- Reports of patients with symptoms including pain, skin changes, and clouded mentation
- Gadolinium-associated plaques 3 cases reported
- Context of clinical use: over 450 million doses of GBCAs have been given since 1988, and can provide essential and life-saving information

- Intrinsic stability of GBCAs
- In vitro Gd dissociation kinetics
- > Nonclinical evidence of toxicity
- Clinical evidence of toxicity
- Susceptible patient populations

Susceptible Patient Populations

Higher lifetime doses Pediatrics Chronic conditions

Longer GBCA exposure times Renal impairment Elderly Pregnancy

Immunologic interactions with GBCAs Inflammatory conditions

In considering gadolinium retention, where we don't have a defined syndrome, susceptible patient populations include those with higher *lifetime doses, longer* exposure times, and an increased risk of immunologic reaction to the retained gadolinium.

- Intrinsic stability of GBCAs
- In vitro Gd dissociation kinetics
- Nonclinical histopathologic evidence of toxicity
- Clinical evidence of toxicity
- Susceptible patient populations

With NSF, the FDA was able to determine the comparative risks between the different GBCAs based on these critical data points.

- Intrinsic stability of GBCAs
- In vitro Gd dissociation kinetics
- > Nonclinical histopathologic evidence of toxicity
- Clinical evidence of toxicity
- Susceptible patient populations

For gadolinium retention, there is no known safety margin. In making regulatory decisions, we have to consider the comparative exposure to gadolinium caused by each GBCA to evaluate the theoretical risk.

- Intrinsic stability of GBCAs
- In vitro Gd dissociation kinetics
- Nonclinical evidence of toxicity
- Clinical evidence of toxicity
- Susceptible patient populations
- Comparative exposure to gadolinium from each GBCA

-Which agents are retained?
-Where does the retention occur?
-How much gadolinium is retained?
-For how long is the gadolinium retained?
-In what form is the gadolinium retained?

Comparative Exposure to Gadolinium

- > Studies to date come largely from the sponsors of the GBCAs
- Highlights presented here do not represent definitive assessment of the comparative exposure from each GBCA and are not meant to support cross product comparisons
- Complete characterization of the GBCAs by standardized methods (amount, washout, dissociation, location) in relation to retention has not been done
- While consideration of the comparative exposure to gadolinium from each GBCA is important, patient factors (in addition to renal function) are likely to play an important role in elucidating the clinical significance of gadolinium retention.

Gadolinium retention – Which agents?

All GBCAs are associated with Gd retention in brain

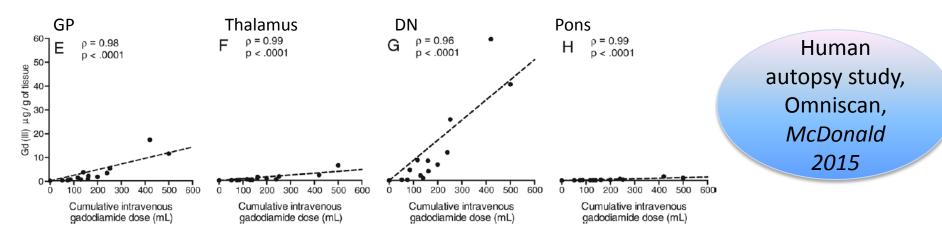
Linear

Omniscan Optimark Eovist

✔ McDonald 2015

Magnevist **V** Kanda 2015 Multihance V Murata 2016 ✔ Murata 2016

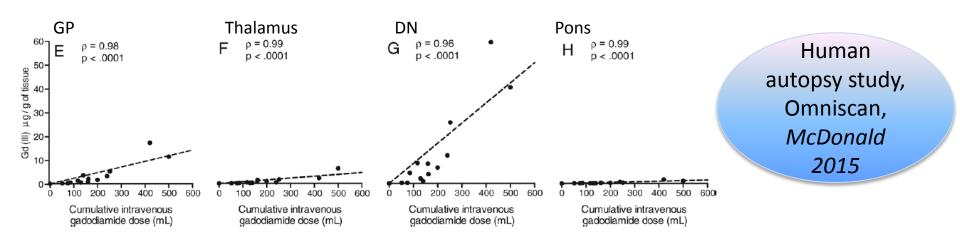
√ Human autopsy studies

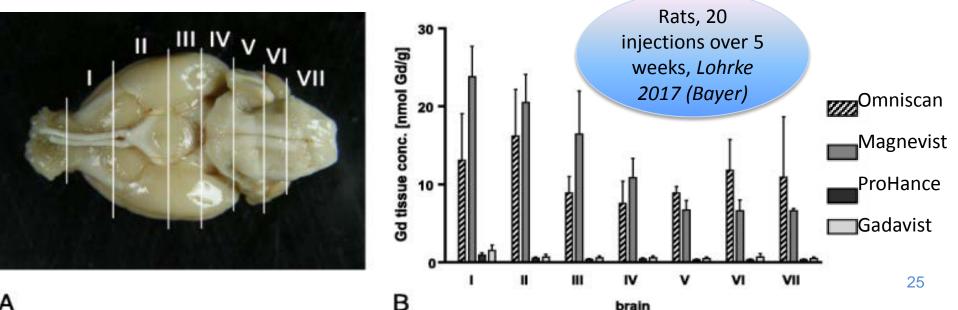

studies

Macrocyclic Gadavist ProHance Dotarem

V Murata 2016 ✔ Murata 2016 **V** Jost 2016

Gadolinium retention – Where?


> All brain regions tested, not just DN and GP


FDA

Gadolinium retention – Where?

All brain regions tested, not just DN and GP

DA

brain

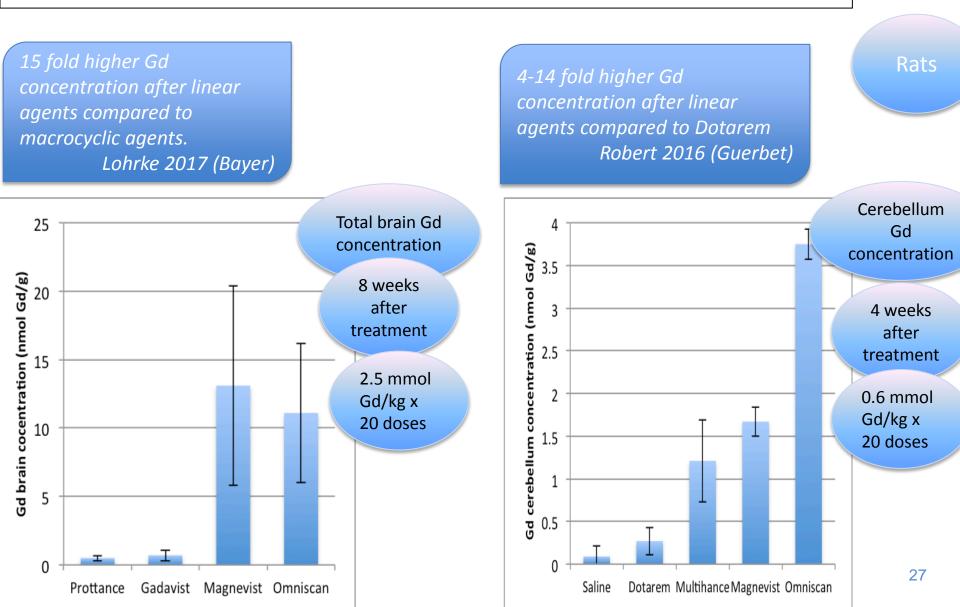
Gadolinium retention – Where?

> All tissues tested – skin, bone, liver, spleen, etc

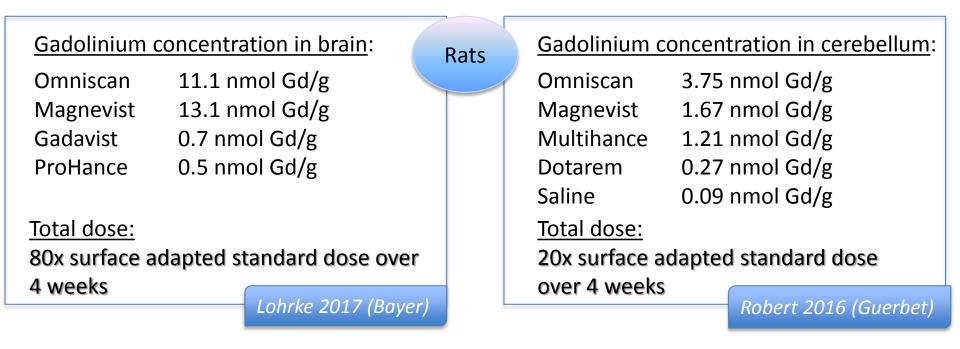
2004 – Gd present in bone 3-8 days (Gibby 2004)

2009 – Gd present in bone up to 8 years later (Darrah 2009)

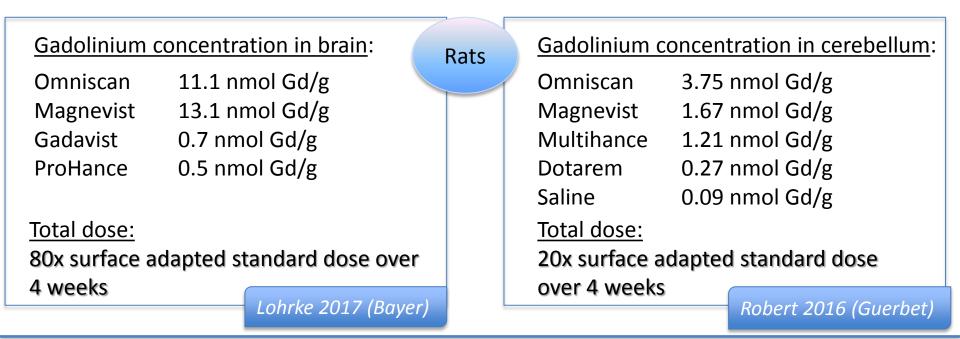
2010 – EMA asked Sponsors to conduct a study of the potential for long-term retention of Gd in human bone and skin (in pts with normal renal function, and in pts with impaired renal function), study is ongoing



Human studies

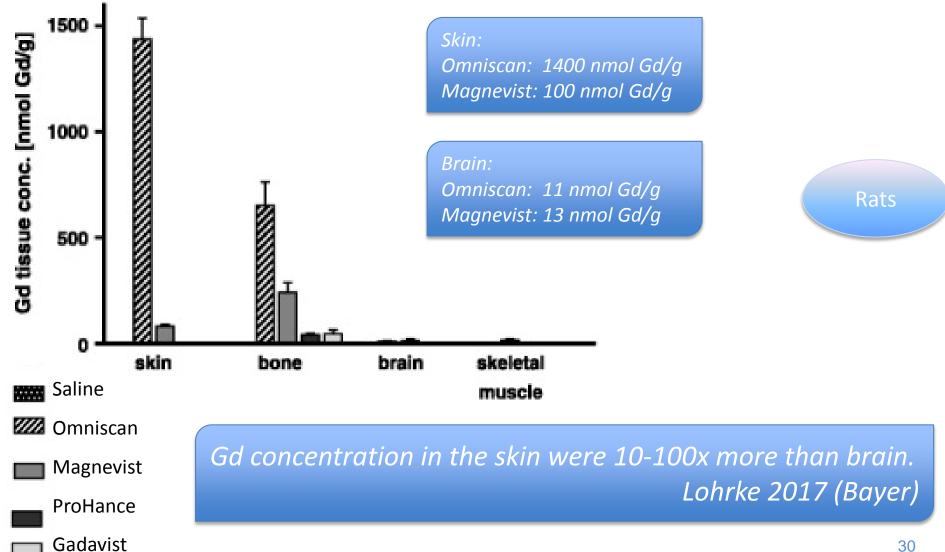

Linear GBCAs lead to greater Gd retention than macrocyclic GBCAs

D



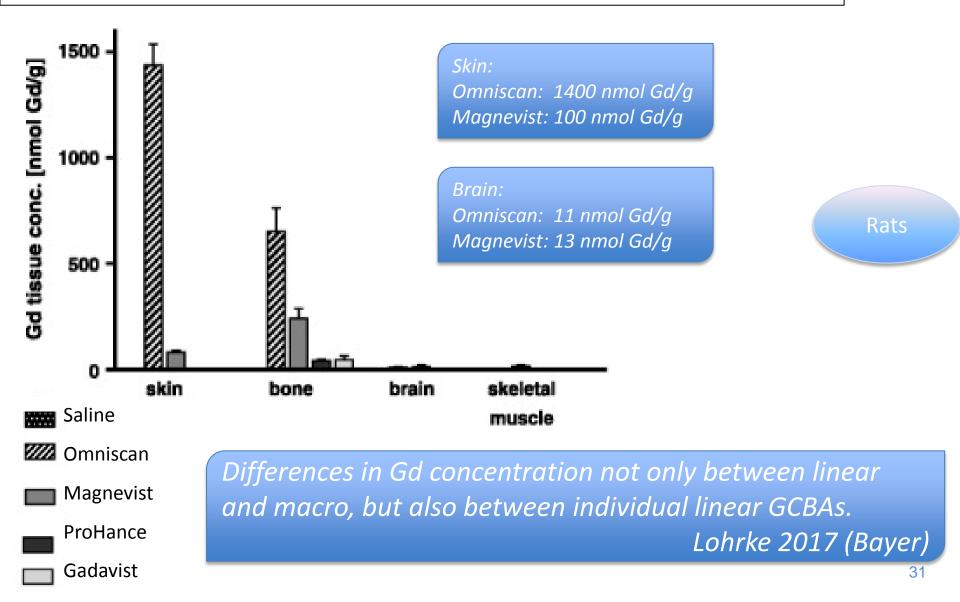
Linear GBCAs lead to greater Gd retention than macrocyclic GBCAs

Linear GBCAs lead to greater Gd retention than macrocyclic GBCAs

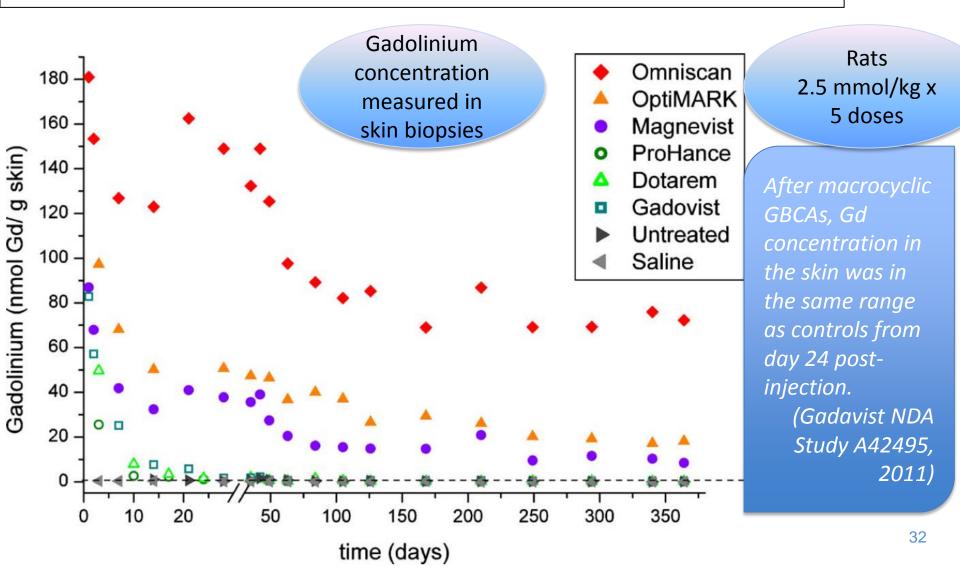


		Kanda 2015	McDonald 2015	Murata 2016
Human	Gd concentration In brain	0.43 - 13.4 nmol Gd/g (DN)	0.6 - 373.9 nmol Gd/g (DN)	BRL - 6.8 nmol Gd/g (DN)
autopsy	Number of GBCA doses	2 - 4	4 - 29	1 - 11
studies	Day since last dose	15-1170	13-623	5-392

Most of the comparative retention data has been done using animal models in order to provide controlled data that is not possible in humans

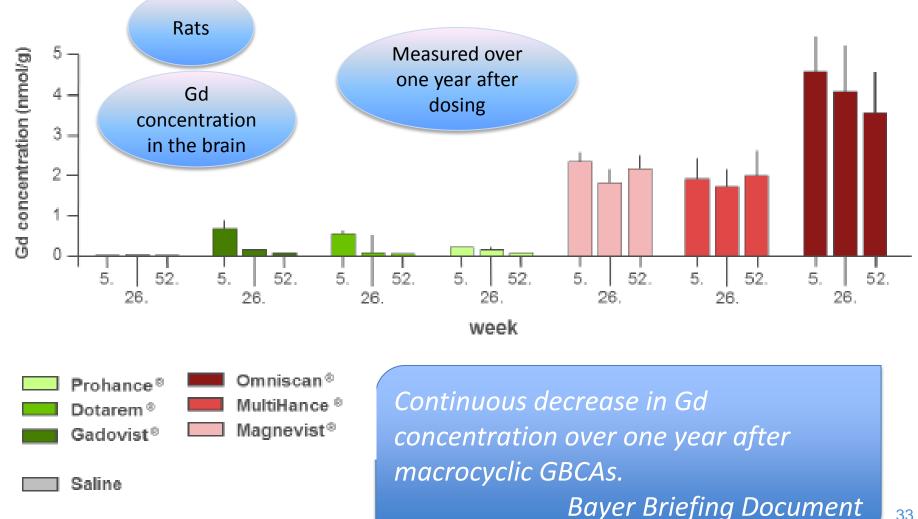


Gd retention in the skin and bone is greater than in the brain



Gd concentrations vary among the linear GBCAs outside of the brain

Gadolinium retention – For how long?

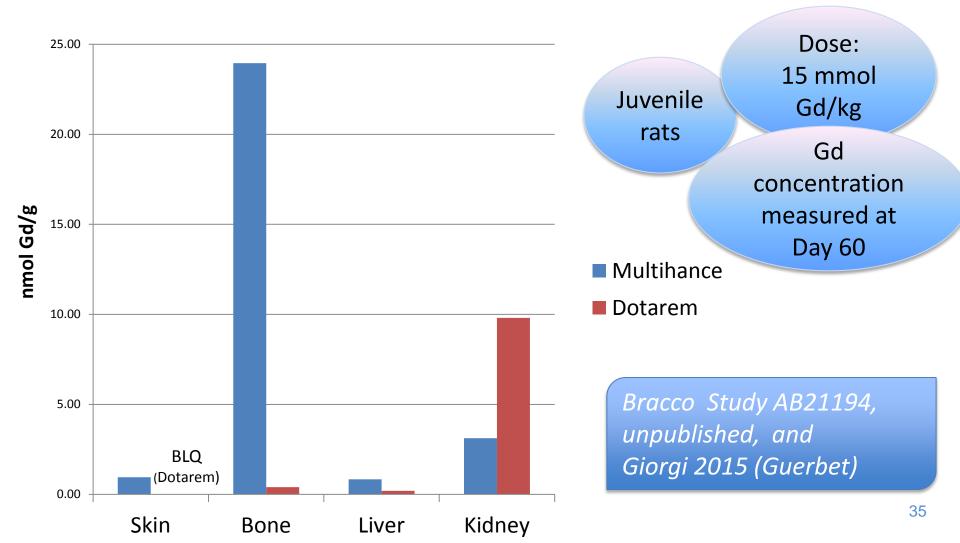

Gd clearance from skin after macrocyclic agents occurred at a much faster rate than for linear agents

FDA

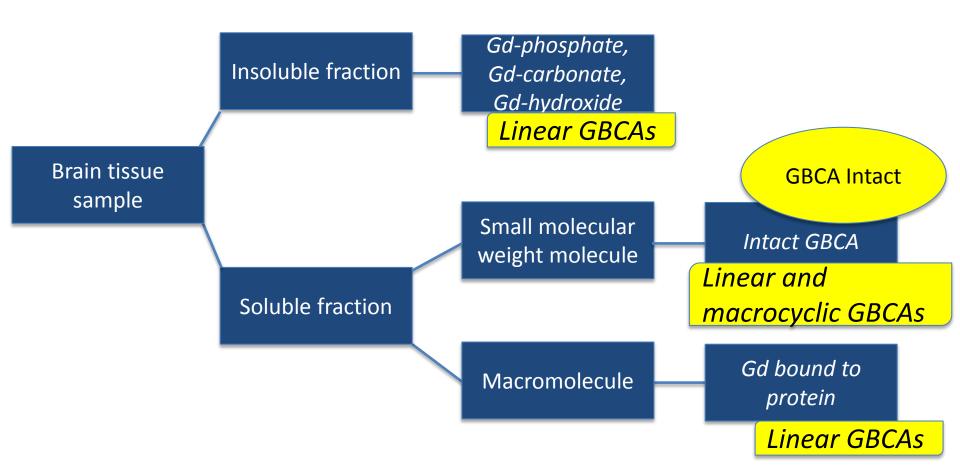
Gadolinium retention – For how long?

Gd clearance from brain tissue after macrocyclic agents occurred at a much faster rate than for linear agents

FD/


Gadolinium retention – For how long? FDA Brain gadolinium concentration in humans is cumulative after Omniscan Human autopsy GP Thalamus DN Pons study $\rho = 0.99$ $\rho = 0.96$ $\rho = 0.99$ $\rho = 0.98$ G н p < .0001 p < .0001 p < .0001 p < .0001 enssi job / δη (III) pg / δη (III) 20-Omniscan only 10-400 500 600 200 300 400 500 600 100 300 400 500 600 100 200 300 400 500 600 200 n 300 Cumulative intravenous Cumulative intravenous Cumulative intravenous Cumulative intravenous gadodiamide dose (mL) gadodiamide dose (mL) gadodiamide dose (mL) gadodiamide dose (mL)

Neuronal tissue deposition of gadolinium appears to be cumulative over a patient's lifetime, in the absence of renal dysfunction.


Gadolinium retention – How much and how long in juvenile models?

Limited data available, studies are on-going

Gadolinium retention – In what form?

These two studies suggest that there is more dissociation of the linear GBCAs than the macrocyclic GBCAs in the brain

Frenzel 2017 (Bayer) and Guerbet ER-16-0005 unpublished

FD/

Regulatory Response 2017

- > No clinical consequences of Gd brain retention have been identified
- No histopathological changes have been seen in rat brain tissues after repeated administration of GBCAs

FDA U.S. FOOD & DRUG

5.22.2017 Drug Safety Communication: No harmful effects identified to date with brain retention of GBCAs Review to continue Advisory Committee meeting planned

- There is a theoretical risk associated with Gd retention in the brain.
- Clinical consequences could take many years to identify.
- The concentration of Gd in the brain is higher after linear GBCAs.
- Gd clearance from brain tissue occurs at a much faster rate after macrocyclic GBCAs, compared to linear GBCAs.
- There is greater dissociation of Gd from the linear GBCAs compared to the macrocyclic GBCAs.
- Clinically, the multipurpose GBCAs are interchangeable.

Gadolinium Retention – Summary (1)

- Intrinsic stability of GBCAs/In vitro dissociation
 Linear agents are more likely than macrocyclic agents to release free gadolinium
- Nonclinical evidence of toxicity

Skin toxicity in demonstrated in animal model ; no toxicity demonstrated in brain

Clinical evidence of toxicity

No definitive signs, symptoms, or syndrome; further evaluation is necessary

Susceptible patient populations

Related to higher doses, longer exposures, and potential immunologic predisposing factors

Gadolinium Retention – Summary (2)

Comparative exposure to retained gadolinium from each GBCA

Locations of gadolinium retention

Gadolinium retention occurs everywhere, greatest in skin and bone

Amount of gadolinium retention

Higher concentrations of gadolinium after linear GBCAs than macrocyclic GBCAs

Length of time of gadolinium retention

Faster washout of macrocyclic GBCAs than for linear GBCAs

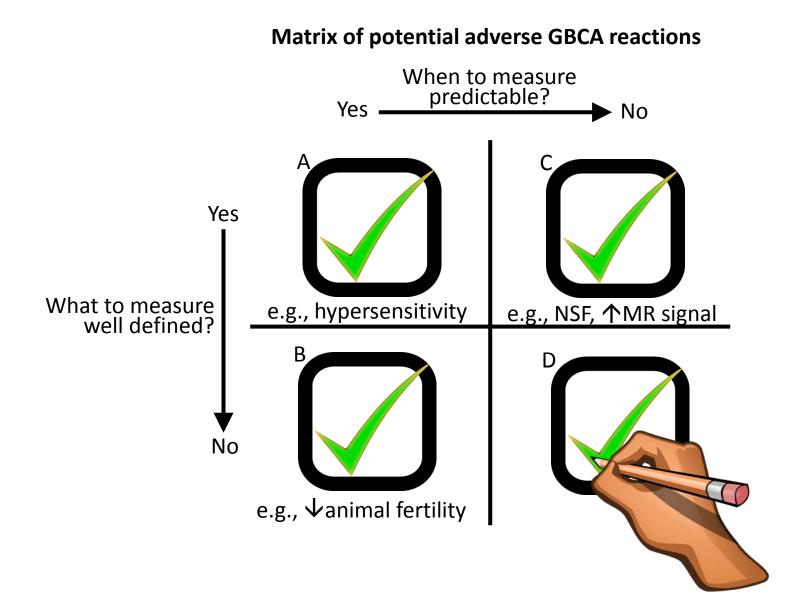
Form of retained gadolinium

Greater dissociation with linear GBCAs than macrocyclic GBCAS (brain)

Without a defined safety margin, the clinical relevance of the comparative retention data is unknown

References

- Birka M, Wentker KS, Lusmöller E, Arheilger B, Wehe CA, Sperling M, Stadler R, Karst U. Diagnosis of nephrogenic systemic fibrosis by means of elemental bioimaging and speciation analysis. Analytical chemistry. 2015 Mar 4;87(6):3321-8.
- Darrah TH, Prutsman-Pfeiffer JJ, Poreda RJ, Campbell ME, Hauschka PV, Hannigan RE. Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics. 2009;1(6):479-88.
- Errante Y, Cirimele V, Mallio CA, Di Lazzaro V, Zobel BB, Quattrocchi CC. Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Investigative radiology. 2014 Oct 1;49(10):685-90.
- Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann HJ. Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 C. Investigative radiology. 2008 Dec 1;43(12):817-28.
- Frenzel T, Apte C, Jost G, Schöckel L, Lohrke J, Pietsch H. Quantification and assessment of the chemical form of residual gadolinium in the brain after repeated administration of gadolinium-based contrast agents: comparative study in rats. Investigative Radiology. 2017 Jul 1;52(7):396-404.
- Giorgi H, Ammerman J, Briffaux JP, Fretellier N, Corot C, Bourrinet P. Non-clinical safety assessment of gadoterate meglumine (Dotarem®) in neonatal and juvenile rats. Regulatory Toxicology and Pharmacology. 2015 Dec 31;73(3):960-70.
- Jost G, Lenhard DC, Sieber MA, Lohrke J, Frenzel T, Pietsch H. Signal increase on unenhanced T1-weighted images in the rat brain after repeated, extended doses of gadolinium-based contrast agents: comparison of linear and macrocyclic agents. Investigative radiology. 2016 Feb;51(2):83.
- Kanda, Tomonori, et al. "High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material." *Radiology* 270.3 (2013): 834-841.
- Kanda T, Fukusato T, Matsuda M, Toyoda K, Oba H, Kotoku JI, Haruyama T, Kitajima K, Furui S. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology. 2015 May 5;276(1):228-32.
- Kartamihardja AA, Nakajima T, Kameo S, Koyama H, Tsushima Y. Distribution and clearance of retained gadolinium in the brain: differences between linear and macrocyclic gadolinium based contrast agents in a mouse model. The British journal of radiology. 2016 Aug 19;89(1066):20160509.
- Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE. Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology. 2007 Mar;242(3):647-9.
- Lohrke J, Frisk AL, Frenzel T, Schöckel L, Rosenbruch M, Jost G, Lenhard DC, Sieber MA, Nischwitz V, Küppers A, Pietsch H. Histology and gadolinium distribution in the rodent brain after the administration of cumulative high doses of linear and macrocyclic gadolinium-based contrast agents. Investigative radiology. 2017 Jun;52(6):324.
- Pietsch H, Lengsfeld P, Jost G, Frenzel T, Hütter J, Sieber MA. Long-term retention of gadolinium in the skin of rodents following the administration of gadolinium-based contrast agents. European radiology. 2009 Jun 1;19(6):1417-24.
- Prince MR, Zhang H, Morris M, MacGregor JL, Grossman ME, Silberzweig J, DeLapaz RL, Lee HJ, Magro CM, Valeri AM. Incidence of nephrogenic systemic fibrosis at two large medical centers. Radiology. 2008 Sep;248(3):807-16.
- Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-based contrast agent accumulation and toxicity: an update. American Journal of Neuroradiology. 2016 Jul 1;37(7):1192-8.
- Robert P, Violas X, Grand S, Lehericy S, Idée JM, Ballet S, Corot C. Linear gadolinium-based contrast agents are associated with brain gadolinium retention in healthy rats. Investigative radiology. 2016 Feb;51(2):73.
- Sieber MA, Lengsfeld P, Frenzel T, Golfier S, Schmitt-Willich H, Siegmund F, Walter J, Weinmann HJ, Pietsch H. Preclinical investigation to compare different gadolinium-based contrast agents regarding their propensity to release gadolinium in vivo and to trigger nephrogenic systemic fibrosis-like lesions. European radiology. 2008 Oct 1;18(10):2164-73.
- Sieber MA, Pietsch H, Walter J, Haider W, Frenzel T, Weinmann HJ. A preclinical study to investigate the development of nephrogenic systemic fibrosis: a possible role for gadolinium-based contrast media. Investigative radiology. 2008 Jan 1;43(1):65-75.
- Smith AP, Marino M, Roberts J, Crowder JM, Castle J, Lowery L, Morton C, Hibberd MG, Evans PM. Clearance of gadolinium from the brain with no pathologic effect after repeated administration of gadodiamide in healthy rats: an analytical and histologic study. Radiology. 2016 Sep 27;282(3):743-51.
- Tweedle MF, Wedeking P, Kumar K. Biodistribution of radiolabeled, formulated gadopentetate, gadoteridol, gadoterate, and gadodiamide in mice and rats. Investigative radiology. 1995 Jun 1;30(6):372-80.


Toward More Sensitive Endpoints in Evaluating the Safety of Post-GBCA Gadolinium Retention

Anthony Fotenos, MD, PhD Lead Medical Officer, Division of Medical Imaging Products (DMIP) Office of Drug Evaluation IV (ODE IV) Office of New Drugs (OND) Center for Drug Evaluation and Research (CDER)

Medical Imaging Drug Advisory Committee (MIDAC) on Gadolinium Retention September 8, 2017

Outline

- 1. Current state
- 2. Study design lead generation
- 3. Future approaches
- 4. Conclusion

Current State: Knowledge Gap

How are the risks of gadolinium retention best characterized?

Current State: What We Know

Surveillance and epidemiology

- Some clustering of adverse events
- Causal association to retention not established
- Usage patterns changing

Medical imaging

- Retention GBCA class-wide issue
- Retention in other tissues more than brain
- Retention of linears more than macrocyclics
- Considerable variability in retention among the linears
- Omniscan and to a lesser extent certain other linear agents have caused fibroplastic pathology in high-repeat-dose experiments in animals with normal renal function

Current State: What We Know (2)

FDA's imaging drug review

- Assumes single or infrequent rather than chronic use
- Placebo-controlled, parallel-arm clinical trials not required
- Pre-market, hundreds of animal and dozens of human studies involving thousands of subjects reviewed per GBCA
- Post-market, millions of patients have benefited from GBCAs without reported adverse reactions

Completed GBCA animal toxicology

- Brain safety studies for initial GBCA approval typically limited to acute neurological observations
- Recent non-comparative repeat-dose studies in juvenile rats for certain GBCAs have evaluated cognitive, motor, and sensory functions and identified no safety signals

Current State: Ongoing Investigations

- Heightened pharmacovigilance
- GBCA-wide toxicokinetic studies in animals that include functional neurological assessment
- Human epidemiological and database mining studies
- Phase IV prospective uncontrolled study to explore long-term retention of gadolinium in adult patients scheduled for orthopedic surgery with bone and skin sampling (NCT01853163, EudraCT Number 2012-001439-30, filed 2013)

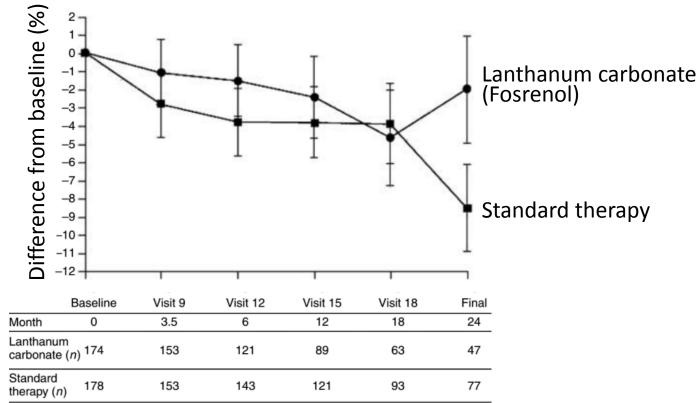
Current State: Knowledge Limitations

System	Question	Yes/No
Brain	 Have the most sensitive cognitive, psychomotor, and pathological methods been adapted for studies of brain gadolinium retention? 	No
Body	 Have symptomatic patients received systematic clinical evaluation, including centralized pathological analysis? Has recent progress in understanding gadolinium pathophysiology been translated into more sensitive endpoints compared to originally established criteria for NSF? 	No

Study Design Lead Generation: Sources

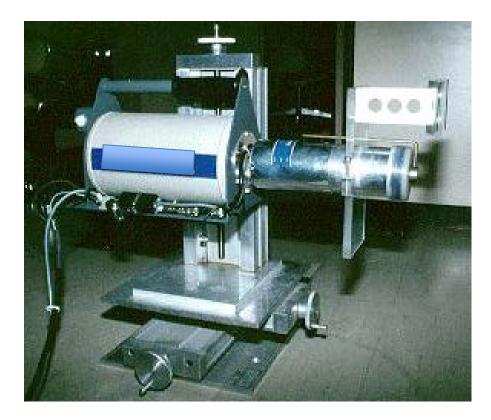
Any safety signal identified through studies of retention caused by administration of...

	Gadolinium or related metal in animals?	Gadolinium or related metal in humans?	GBCA in animals?	GBCA in humans?
Brain	Yes ¹	Yes ²	Yes ³	Yes ⁴
Body	Yes⁵	Yes ⁶	Yes ⁷	Yes ⁸

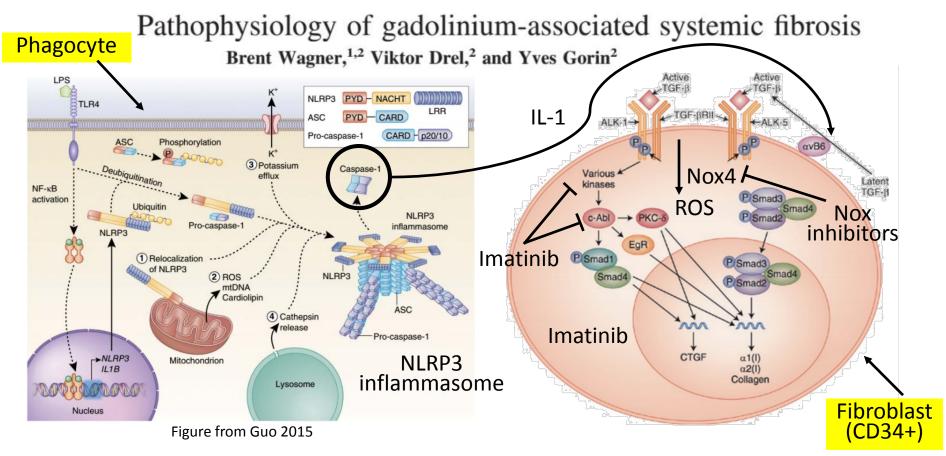

Caveat: These are some examples of endpoints and designs which might or might not be applicable and are provided not as part of any regulatory recommendation but rather as something to consider.

Brain Study Design Lead (1)

Cognitive function in Stage 5 chronic kidney disease patients on hemodialysis: No adverse effects of lanthanum carbonate compared with standard phosphate-binder therapy P Altmann¹, ME Barnett^{2,3} and WF Finn⁴,


Randomized safety trial of cognitive risk from lanthanide brain retention (shown is one of five subdomains in Cognitive Drug Research [CDR] battery)

Brain Study Design Lead (2)


Confirming improved detection of gadolinium in bone using *in vivo* XRF¹ M.L. Lord^{a,*}, F.E. McNeill^b, J.L. Gräfe^c, A.L. Galusha^{d,e}, P.J. Parsons^{d,e}, M.D. Noseworthy^{f,g,h,i}, L. Howard^j, D.R. Chettle^b

Body Study Design Lead (3)

Gadolinium-Induced Fibrosis Derrick J. Todd^{1,2} and Jonathan Kay³ Cutaneous Fibrosis and Normal Wound Healing Emily Hamburg-Shields, Peggy Myung, and Shawn E. Cowper

Body Study Design Lead (4)

Can abnormalities established for immunological measurements in animal studies be translated into more sensitive probes for evaluation of potential body reactions in patients with normal renal function?

Quantitative pathology

- Skin thickness¹
- Skin cell count²

Cytokines

- Interleukin-1 family (IL-1) ^{3,4}
- Interleukin-4 (IL-4)^{3,5}
- Monocyte chemoattractant protein-1 (MCP-1/CCL2)^{3,5}
- Osteopontin³
- Tumor necrosis factor- α (TNF- α)³

Extracellular matrix proteins

- α -smooth muscle actin (α -SMA)^{2,4}
- Tissue inhibitor of metalloproteinase type-1 (TIMP-1)^{3,5}

How are the risks of gadolinium retention best characterized?

Approaches to Gadolinium Retention Evidence Generation

Classification	Type of data source	Example	Status
Descriptive	Spontaneous adverse event reporting	FAERS, manufacturer databases	Ongoing
	Publications	Scientific literature: case reports, cases series	Ongoing
		Non-peer-reviewed sources	Ongoing
	Enhanced pharmacovigilance	Standardized data collection, development of case definition	Ongoing, registries to be considered
	Administrative databases	Mother-baby linkages	Ongoing
	Epidemiologic observational	Cohort prospective and retrospective	Ongoing
Analytical	Prospective uncontrolled	Longitudinal	Ongoing
	Drocpostive controlled	Parallel-arm	Feasibility
	Prospective controlled	Randomized	To be considered

Prospective Controlled Approach Considerations

- As part of further discussion at this meeting and of our questions to the committee, we will discuss registries and pharmacovigilance; is there an additional role for prospectively controlled clinical studies?
- How might symptomatic patients be systematically evaluated and compared to patients studied prospectively?
- How should prospective studies be powered?
- How might prospective study protocols proposed by different GBCA manufacturers be integrated?

Good Gadolinium Retention Study Design: Points to Consider

In vitro studies

- Compare multiple GBCAs, concentrations bracketing in vivo exposure, and exposure durations
- Account for potential osmolarity effects in design of positive and negative controls

Animals studies

- Prioritize questions least amenable to human study (e.g., effects of retention on early neurodevelopment)
- Administer GBCA doses that span full range of dose-toxicity curve from no to maximally tolerated effect
- Include positive and negative comparator controls
- Select maximally sensitive endpoints
- Extend dosing over a period of months for repeat-dose studies and compare endpoints both before and after drug-free washout periods
- Do not exclude sensitive species

Human studies

- Include neurological endpoints sufficiently sensitive for detection of subclinical adverse reactions caused by retention of metals with known toxicology
- Include endpoints more sensitive than NSF for potential body reactions
- Maximize control over sources of confounding and bias
- FDA encourages meetings to discuss protocol questions during planning phase

Conclusions

- Gadolinium retention safety is a priority for the MRI community
- Focus of this presentation on gaps that remain between
 - What we'd like to know and do
 - What experimental designs we might adapt and have
- Regulators and manufacturers aligned on understanding of available data but consensus lacking on implications for risk
- FDA awaiting results from ongoing studies by manufacturers and academic community
- Ongoing and additional sensitive safety studies have potential to build on mostly reassuring evidence reviewed to date in order to shed more light on this important public health issue

Preview of Upcoming Questions for the Advisory Committee

- **Question 1**: how do you characterize the risks of gadolinium retention?
- **Question 2**: is there a causal relationship to symptoms in patients ?
- **Question 3**: what investigations do you recommend to address gaps?
- **Question 4**: are planned labeling revisions premature, just right, or not enough?

FDA

References

- 🔁 Altmann 2007 cognitive function in stage 5 chronic kidney disease patients on hemodialysis no adverse effects of lanthanum carbonate.pdf
- 🔁 Do 2014 type of MRI contrast tissue gadolinium and fibrosis.pdf
- 🔁 FDA 2011 Gadavist nonclinical NDA review.pdf
- 🔁 Forslin 2017 retention of gadolinium-based contrast agents in multiple sclerosis retrospective analysis of an 18-year longitudinal study.pdf
- 🔁 Giorgi 2015 non-clinical safety assessment of Dotarem in neonatal and juvenile rats.pdf
- 🔁 Guo 2015 Inflammasomes mechanism of action role in disease and therapeutics.pdf
- 🔁 Haley 1963 skin reaction to intradermal injection of rare earths.pdf
- 🔁 Hamburg-Shields 2017 cutaneous fibrosis and normal wound healing.pdf
- 🔁 He 2008 neurotoxicological evaluation of long-term lanthanum chloride exposure in rats.pdf
- 🔁 Hutchison 2016 lanthanum carbonate safety data after 10 years.pdf
- 🔁 Idee 2014 the role of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis a critical update.pdf
- 🔁 Kim 2011 neuroimaging in manganese-induced parkinsonism.pdf
- 🔁 Lord 2017 confirming improved detection of gadolinium in bone using in vivo XRF.pdf
- 🔁 Roberts 2016 high levels of gadolinium deposition in the skin of a patient with normal renal function.pdf
- 🔁 Schmidt-Lauber 2015 gadolinium-based compounds induce NLRP3-dependent IL-1β production and peritoneal inflammation.pdf
- 🔁 Shelley 1958 intradermal tests with metals and other inorganic elements in sarcoidosis and anthraco-silicosis.pdf
- 🔁 Shih 2007 cumulative lead dose and cognitive function in adults a review of studies that measured both blood lead and bone lead.pdf
- 🔁 Steger-Hartmann 2009 the involvement of pro-inflammatory cytokines in NSF a mechanistic hypothesis based on rat model treated with Omniscan.pdf
- 🔁 Sun 2017 rare earth elements in street dust and associated health risk in a municipal industrial base of central China.pdf
- 🔁 Todd 2016 gadolinium-induced fibrosis.pdf
- 🔁 Wagner 2016 pathophysiology of gadolinium-associated systemic fibrosis.pdf
- 🔁 Wermuth 2014 induction of type I interferon signature in normal human monocytes by GBCAs comparison of linear and macrocyclic agents.pdf