AMOXICILLIN TABLETS FOR ORAL SUSPENSION
Rx only

DESCRIPTION
Amoxicillin tablets for oral suspension contain amoxicillin, a semisynthetic antibiotic, an analog of ampicillin, with a broad spectrum of bactericidal activity against many gram-positive and gram-negative microorganisms. Chemically it is \((2S,5R,6R)-6-[(R)-(\text{-})-2\text{-amino-2-(p-hydroxyphenyl)}\text{acetamido}]\text{-3,3-dimethyl-7-oxo-1-azabicyclo[3.2.0]heptane-2-carboxylic acid trihydrate. The structural formula is:}\\

\[
\text{HO} \quad \text{HO} \\
\text{O} \quad \text{O} \\
\text{N} \quad \text{N} \\
\text{CH3} \quad \text{CH3}
\]

The amoxicillin molecular formula is \(\text{C}_{16}\text{H}_{19}\text{N}_{3}\text{O}_{5}\text{S} \cdot 3\text{H}_{2}\text{O}\), and the molecular weight is 419.45.

Amoxicillin tablets for oral suspension are intended for oral administration.

Tablets for Oral Suspension: Each amoxicillin tablet for oral suspension contains amoxicillin trihydrate equivalent to amoxicillin anhydrous 300 or 600 mg. Inactive ingredients: aspartame*, colloidal silicon dioxide, croscarmellose sodium, FD&C red no.40, aluminum lake, magnesium stearate, microcrystalline cellulose and strawberry.

*See PRECAUTIONS.

CLINICAL PHARMACOLOGY
Amoxicillin is stable in the presence of gastric acid and is rapidly absorbed after oral administration. The effect of food on the absorption of amoxicillin from amoxicillin tablets and amoxicillin suspension has been partially investigated. The 400-mg and 875-mg formulations have been studied only when administered at the start of a light meal. However, food effect studies have not been performed with the 200-mg and 500-mg formulations. Amoxicillin diffuses readily into most body tissues and fluids, with the exception of brain and spinal fluid, except when meninges are inflamed. The half-life of amoxicillin is 61.3 minutes. Most of the amoxicillin is excreted unchanged in the urine; its excretion can be delayed by concurrent administration of probenecid. In blood serum, amoxicillin is approximately 20% protein-bound.

Orally administered doses of 250 mg and 500 mg amoxicillin capsules result in average peak blood levels 1 to 2 hours after administration in the range of 3.5 \(\mu\)g/mL to 5.0 \(\mu\)g/mL and 5.5 \(\mu\)g/mL to 7.5 \(\mu\)g/mL, respectively.
Mean amoxicillin pharmacokinetic parameters from an open, two-part, single-dose crossover bioequivalence study in 27 adults comparing 875 mg of amoxicillin with 875 mg of amoxicillin/clavulanate potassium showed that the 875-mg tablet of amoxicillin produces an $\text{AUC}_{0-\infty}$ of $35.4 \pm 8.1 \, \mu g\text{-hr/mL}$ and a C_{max} of $13.8 \pm 4.1 \, \mu g/mL$. Dosing was at the start of a light meal following an overnight fast.

Conventional Amoxicillin chewable tablets, 125 mg and 250 mg, produced blood levels similar to those achieved with the corresponding doses of conventional amoxicillin oral suspensions. Orally administered doses of amoxicillin suspension, 125 mg/5 mL and 250 mg/5 mL, result in average peak blood levels 1 to 2 hours after administration in the range of 1.5 $\mu g/mL$ to 3.0 $\mu g/mL$ and 3.5 $\mu g/mL$ to 5.0 $\mu g/mL$, respectively.

Oral administration of single doses of 400-mg conventional amoxicillin chewable tablets and 400-mg/5 mL suspension to 24 adult volunteers yielded comparable pharmacokinetic data:

<table>
<thead>
<tr>
<th>Dose†</th>
<th>$\text{AUC}_{0-\infty}$ ((\mu g\text{-hr/mL}))</th>
<th>C_{max} ((\mu g/mL))‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>amoxicillin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 mg (5 mL of suspension)</td>
<td>17.1 (3.1)</td>
<td>5.92 (1.62)</td>
</tr>
<tr>
<td>400 mg (one chewable tablet)</td>
<td>17.9 (2.4)</td>
<td>5.18 (1.64)</td>
</tr>
</tbody>
</table>

† Administered at the start of a light meal.
‡ Mean values of 24 normal volunteers. Peak concentrations occurred approximately 1 hour after the dose.

Detectable serum levels are observed up to 8 hours after an orally administered dose of amoxicillin. Following a 1-gram dose and utilizing a special skin window technique to determine levels of the antibiotic, it was noted that therapeutic levels were found in the interstitial fluid. Approximately 60% of an orally administered dose of amoxicillin is excreted in the urine within 6 to 8 hours.

Microbiology

Amoxicillin is similar to ampicillin in its bactericidal action against susceptible organisms during the stage of active multiplication. It acts through the inhibition of biosynthesis of cell wall mucopeptide. Amoxicillin has been shown to be active against most strains of the following microorganisms, both in vitro and in clinical infections as described in the **INDICATIONS AND USAGE** section.

Aerobic gram-positive microorganisms:
- *Enterococcus faecalis*
- *Staphylococcus spp.*† (β-lactamase-negative strains only)
- *Streptococcus pneumoniae*
- *Streptococcus spp.* (α- and β-hemolytic strains only)

† Staphylococci which are susceptible to amoxicillin but resistant to methicillin/oxacillin should be considered as resistant to amoxicillin.
Aerobic gram-negative microorganisms:
- Escherichia coli (β-lactamase-negative strains only)
- Haemophilus influenzae (β-lactamase-negative strains only)
- Neisseria gonorrhoeae (β-lactamase-negative strains only)
- Proteus mirabilis (β-lactamase-negative strains only)

Helicobacter:
- Helicobacter pylori

Susceptibility tests

Dilution techniques: Quantitative methods are used to determine antimicrobial minimum inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MICs should be determined using a standardized procedure. Standardized procedures are based on a dilution method (broth or agar) or equivalent with standardized inoculum concentrations and standardized concentrations of ampicillin powder. Ampicillin is sometimes used to predict susceptibility of Streptococcus pneumoniae to amoxicillin; however, some intermediate strains have been shown to be susceptible to amoxicillin. Therefore, Streptococcus pneumoniae susceptibility should be tested using amoxicillin. The MIC values should be interpreted according to the following criteria:

For gram-positive aerobes:

Enterococcus
- **MIC (μg/mL) Interpretation**
 - ≤8 Susceptible (S)
 - ≥16 Resistant (R)

Staphylococcus
- **MIC (μg/mL) Interpretation**
 - ≤0.25 Susceptible (S)
 - ≥0.5 Resistant (R)

Streptococcus (except S. pneumoniae)
- **MIC (μg/mL) Interpretation**
 - ≤0.25 Susceptible (S)
 - 0.5 to 4 Intermediate (I)
 - ≥8 Resistant (R)

S. pneumoniae
- **(Amoxicillin powder should be used to determine susceptibility.)**
 - **MIC (μg/mL) Interpretation**
 - ≤0.5 Susceptible (S)
 - 1 Intermediate (I)
 - ≥2 Resistant (R)
For gram-negative aerobes:

Enterobacteriaceae

<table>
<thead>
<tr>
<th>MIC (µg/mL)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤8</td>
<td>Susceptible (S)</td>
</tr>
<tr>
<td>16</td>
<td>Intermediate (I)</td>
</tr>
<tr>
<td>≥32</td>
<td>Resistant (R)</td>
</tr>
</tbody>
</table>

H. influenzae

<table>
<thead>
<tr>
<th>MIC (µg/mL)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤1</td>
<td>Susceptible (S)</td>
</tr>
<tr>
<td>2</td>
<td>Intermediate (I)</td>
</tr>
<tr>
<td>≥4</td>
<td>Resistant (R)</td>
</tr>
</tbody>
</table>

a. Staphylococci which are susceptible to amoxicillin but resistant to methicillin/oxacillin should be considered as resistant to amoxicillin.

b. These interpretive standards are applicable only to broth microdilution susceptibility tests using cation-adjusted Mueller-Hinton broth with 2-5% lysed horse blood.

c. These interpretive standards are applicable only to broth microdilution test with Haemophilus influenzae using Haemophilus Test Medium (HTM).¹

A report of “Susceptible” indicates that the pathogen is likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable. A report of “Intermediate” indicates that the result should be considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where high dosage of drug can be used. This category also provides a buffer zone which prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of “Resistant” indicates that the pathogen is not likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable; other therapy should be selected.

Standardized susceptibility test procedures require the use of laboratory control microorganisms to control the technical aspects of the laboratory procedures. Standard ampicillin powder should provide the following MIC values:

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>MIC (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli ATCC 25922</td>
<td>2 to 8</td>
</tr>
<tr>
<td>E. faecalis ATCC 29212</td>
<td>0.5 to 2</td>
</tr>
<tr>
<td>H. influenzae ATCC 49247d</td>
<td>2 to 8</td>
</tr>
<tr>
<td>S. aureus ATCC 29213</td>
<td>0.25 to 1</td>
</tr>
</tbody>
</table>

¹ Standardized test procedures.
Using **amoxicillin** to determine susceptibility:

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>MIC Range (μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pneumoniae ATCC 49619</td>
<td>0.03 to 0.12</td>
</tr>
</tbody>
</table>

d. This quality control range is applicable to only *H. influenzae* ATCC 49247 tested by a broth microdilution procedure using HTM.¹

e. This quality control range is applicable to only *S. pneumoniae* ATCC 49619 tested by the broth microdilution procedure using cation-adjusted Mueller-Hinton broth with 2-5% lysed horse blood.

Diffusion techniques: Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. One such standardized procedure² requires the use of standardized inoculum concentrations. This procedure uses paper disks impregnated with 10 μg ampicillin to test the susceptibility of microorganisms, except *S. pneumoniae*, to amoxicillin. Interpretation involves correlation of the diameter obtained in the disk test with the MIC for ampicillin.

Reports from the laboratory providing results of the standard single-disk susceptibility test with a 10-μg ampicillin disk should be interpreted according to the following criteria:

For gram-positive aerobes:

- **Enterococcus**

<table>
<thead>
<tr>
<th>Zone Diameter (mm)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥17</td>
<td>Susceptible (S)</td>
</tr>
<tr>
<td>≤16</td>
<td>Resistant (R)</td>
</tr>
</tbody>
</table>

- **Staphylococcus**

<table>
<thead>
<tr>
<th>Zone Diameter (mm)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥29</td>
<td>Susceptible (S)</td>
</tr>
<tr>
<td>≤28</td>
<td>Resistant (R)</td>
</tr>
</tbody>
</table>

- **β-hemolytic streptococci**

<table>
<thead>
<tr>
<th>Zone Diameter (mm)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥26</td>
<td>Susceptible (S)</td>
</tr>
<tr>
<td>19 to 25</td>
<td>Intermediate (I)</td>
</tr>
<tr>
<td>≤18</td>
<td>Resistant (R)</td>
</tr>
</tbody>
</table>

NOTE: For streptococci (other than β-hemolytic streptococci and *S. pneumoniae*), an ampicillin MIC should be determined.

- **S. pneumoniae**

 S. pneumoniae should be tested using a 1-μg oxacillin disk. Isolates with oxacillin zone sizes of ≥20 mm are susceptible to amoxicillin. An amoxicillin MIC should be determined on isolates of *S. pneumoniae* with oxacillin zone sizes of ≤19 mm.
For gram-negative aerobes:

Enterobacteriaceae

<table>
<thead>
<tr>
<th>Zone Diameter (mm)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥17</td>
<td>Susceptible (S)</td>
</tr>
<tr>
<td>14 to 16</td>
<td>Intermediate (I)</td>
</tr>
<tr>
<td>≤13</td>
<td>Resistant (R)</td>
</tr>
</tbody>
</table>

H. influenzae

<table>
<thead>
<tr>
<th>Zone Diameter (mm)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>>??</td>
<td>Susceptible (S)</td>
</tr>
<tr>
<td>19 to 21</td>
<td>Intermediate (I)</td>
</tr>
<tr>
<td>≤18</td>
<td>Resistant (R)</td>
</tr>
</tbody>
</table>

f. Staphylococci which are susceptible to amoxicillin but resistant to methicillin/oxacillin should be considered as resistant to amoxicillin.

g. These interpretive standards are applicable only to disk diffusion susceptibility tests with H. influenzae using Haemophilus Test Medium (HTM).²

Interpretation should be as stated above for results using dilution techniques.

As with standard dilution techniques, disk diffusion susceptibility test procedures require the use of laboratory control microorganisms. The 10-μg ampicillin disk should provide the following zone diameters in these laboratory test quality control strains:

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Zone diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli ATCC 25922</td>
<td>16 to 22</td>
</tr>
<tr>
<td>H. influenzae ATCC 49247ʰ</td>
<td>13 to 21</td>
</tr>
<tr>
<td>S. aureus ATCC 25923</td>
<td>27 to 35</td>
</tr>
</tbody>
</table>

Using 1-μg oxacillin disk:

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Zone diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pneumoniae ATCC 49619ʰ</td>
<td>8 to 12</td>
</tr>
</tbody>
</table>

h. This quality control range is applicable to only H. influenzae ATCC 49247 tested by a disk diffusion procedure using HTM.²
i. This quality control range is applicable to only S. pneumoniae ATCC 49619 tested by a disk diffusion procedure using Mueller-Hinton agar supplemented with 5% sheep blood and incubated in 5% CO₂.

Susceptibility testing for Helicobacter pylori

In vitro susceptibility testing methods and diagnostic products currently available for determining minimum inhibitory concentrations (MICs) and zone sizes have not been standardized, validated, or approved for testing H. pylori microorganisms.
Culture and susceptibility testing should be obtained in patients who fail triple therapy. If clarithromycin resistance is found, a non-clarithromycin-containing regimen should be used.

INDICATIONS AND USAGE
Amoxicillin is indicated in the treatment of infections due to susceptible (ONLY β-lactamase-negative) strains of the designated microorganisms in the conditions listed below:

- **Infections of the ear, nose, and throat** due to Streptococcus spp. (α- and β-hemolytic strains only), Streptococcus pneumoniae, Staphylococcus spp., or H. influenzae
- **Infections of the genitourinary tract** due to E. coli, P. mirabilis, or E. faecalis
- **Infections of the skin and skin structure** due to Streptococcus spp. (α- and β-hemolytic strains only), Staphylococcus spp., or E. coli
- **Infections of the lower respiratory tract** due to Streptococcus spp. (α- and β-hemolytic strains only), Streptococcus pneumoniae, Staphylococcus spp., or H. influenzae
- **Gonorrhea, acute uncomplicated** (ano-genital and urethral infections) due to N. gonorrhoeae (males and females)

Therapy may be instituted prior to obtaining results from bacteriological and susceptibility studies to determine the causative organisms and their susceptibility to amoxicillin.

Indicated surgical procedures should be performed.

H. pylori eradication to reduce the risk of duodenal ulcer recurrence

- **Triple therapy:** Amoxicillin/clarithromycin/lansoprazole
 - Amoxicillin, in combination with clarithromycin plus lansoprazole as triple therapy, is indicated for the treatment of patients with H. pylori infection and duodenal ulcer disease (active or one-year history of a duodenal ulcer) to eradicate H. pylori. Eradication of H. pylori has been shown to reduce the risk of duodenal ulcer recurrence. (See CLINICAL STUDIES and DOSAGE AND ADMINISTRATION.)

- **Dual therapy:** Amoxicillin/lansoprazole
 - Amoxicillin, in combination with lansoprazole delayed-release capsules as dual therapy, is indicated for the treatment of patients with H. pylori infection and duodenal ulcer disease (active or one-year history of a duodenal ulcer) who are either allergic or intolerant to clarithromycin or in whom resistance to clarithromycin is known or suspected. (See the clarithromycin package insert, MICROBIOLOGY.) Eradication of H. pylori has been shown to reduce the risk of duodenal ulcer recurrence. (See CLINICAL STUDIES and DOSAGE AND ADMINISTRATION.)

CONTRAINDICATIONS
A history of allergic reaction to any of the penicillins is a contraindication.

WARNINGS
SERIOUS AND OCCASIONALLY FATAL HYPERSENSITIVITY (ANAPHYLACTIC) REACTIONS HAVE BEEN REPORTED IN PATIENTS ON PENICILLIN THERAPY. ALTHOUGH ANAPHYLAXIS IS MORE FREQUENT FOLLOWING PARENTERAL THERAPY, IT HAS OCCURRED IN PATIENTS ON ORAL PENICILLINS. THESE
REACTIONS ARE MORE LIKELY TO OCCUR IN INDIVIDUALS WITH A HISTORY OF PENICILLIN HYPERSENSITIVITY AND/OR A HISTORY OF SENSITIVITY TO MULTIPLE ALLERGENS. THERE HAVE BEEN REPORTS OF INDIVIDUALS WITH A HISTORY OF PENICILLIN HYPERSENSITIVITY WHO HAVE EXPERIENCED SEVERE REACTIONS WHEN TREATED WITH CEPHALOSPORINS. BEFORE INITIATING THERAPY WITH AMOXICILLIN, CAREFUL INQUIRY SHOULD BE MADE CONCERNING PREVIOUS HYPERSENSITIVITY REACTIONS TO PENICILLINS, CEPHALOSPORINS, OR OTHER ALLERGENS. IF AN ALLERGIC REACTION OCCURS, AMOXICILLIN SHOULD BE DISCONTINUED AND APPROPRIATE THERAPY INSTITUTED. SERIOUS ANAPHYLACTIC REACTIONS REQUIRE IMMEDIATE EMERGENCY TREATMENT WITH EPINEPHRINE. OXYGEN, INTRAVENOUS STEROIDS, AND AIRWAY MANAGEMENT, INCLUDING INTUBATION, SHOULD ALSO BE ADMINISTERED AS INDICATED.

Pseudomembranous colitis has been reported with nearly all antibacterial agents, including amoxicillin, and may range in severity from mild to life-threatening. Therefore, it is important to consider this diagnosis in patients who present with diarrhea subsequent to the administration of antibacterial agents.

Treatment with antibacterial agents alters the normal flora of the colon and may permit overgrowth of clostridia. Studies indicate that a toxin produced by Clostridium difficile is a primary cause of “antibiotic-associated colitis.”

After the diagnosis of pseudomembranous colitis has been established, appropriate therapeutic measures should be initiated. Mild cases of pseudomembranous colitis usually respond to drug discontinuation alone. In moderate to severe cases, consideration should be given to management with fluids and electrolytes, protein supplementation, and treatment with an antibacterial drug clinically effective against Clostridium difficile colitis.

PRECAUTIONS
General: The possibility of superinfections with mycotic or bacterial pathogens should be kept in mind during therapy. If superinfections occur, amoxicillin should be discontinued and appropriate therapy instituted.

Phenylketonurics: Each 300 mg Amoxicillin Tablet for Oral Suspension contains 5.6 mg phenylalanine; Each 600 mg Amoxicillin Tablet for Oral Suspension contains 5.6 mg phenylalanine.

Laboratory Tests: As with any potent drug, periodic assessment of renal, hepatic, and hematopoietic function should be made during prolonged therapy.

All patients with gonorrhea should have a serologic test for syphilis at the time of diagnosis. Patients treated with amoxicillin should have a follow-up serologic test for syphilis after 3 months.

Drug Interactions: Probenecid decreases the renal tubular secretion of amoxicillin. Concurrent use of amoxicillin and probenecid may result in increased and prolonged blood levels of amoxicillin.
Chloramphenicol, macrolides, sulfonamides, and tetracyclines may interfere with the bactericidal effects of penicillin. This has been demonstrated in vitro; however, the clinical significance of this interaction is not well documented.

Drug/Laboratory Test Interactions: High urine concentrations of ampicillin may result in false-positive reactions when testing for the presence of glucose in urine using Clinitest®, Benedict's Solution or Fehling's Solution. Since this effect may also occur with amoxicillin it is recommended that glucose tests based on enzymatic glucose oxidase reactions (such as Clinistix® or Tes-Tape®) be used.

Following administration of ampicillin to pregnant women, a transient decrease in plasma concentration of total conjugated estriol, estriol-glucuronide, conjugated estrone, and estradiol has been noted. This effect may also occur with amoxicillin.

Carcinogenesis, Mutagenesis, Impairment of Fertility: Long-term studies in animals have not been performed to evaluate carcinogenic potential. Studies to detect mutagenic potential of amoxicillin alone have not been conducted; however, the following information is available from tests on a 4:1 mixture of amoxicillin and potassium clavulanate. Mixture of amoxicillin and potassium clavulanate was non-mutagenic in the Ames bacterial mutation assay, and the yeast gene conversion assay. Mixture of amoxicillin and potassium clavulanate was weakly positive in the mouse lymphoma assay, but the trend toward increased mutation frequencies in this assay occurred at doses that were also associated with decreased cell survival. Mixture of amoxicillin and potassium clavulanate was negative in the mouse micronucleus test, and in the dominant lethal assay in mice. Potassium clavulanate alone was tested in the Ames bacterial mutation assay and in the mouse micronucleus test, and was negative in each of these assays. In a multi-generation reproduction study in rats, no impairment of fertility or other adverse reproductive effects were seen at doses up to 500 mg/kg (approximately 3 times the human dose in mg/m²).

Pregnancy: Teratogenic Effects. Pregnancy Category B. Reproduction studies have been performed in mice and rats at doses up to ten (10) times the human dose and have revealed no evidence of impaired fertility or harm to the fetus due to amoxicillin. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed.

Labor and Delivery: Oral ampicillin class antibiotics are poorly absorbed during labor. Studies in guinea pigs showed that intravenous administration of ampicillin slightly decreased the uterine tone and frequency of contractions but moderately increased the height and duration of contractions. However, it is not known whether use of amoxicillin in humans during labor or delivery has immediate or delayed adverse effects on the fetus, prolongs the duration of labor, or increases the likelihood that forceps delivery or other obstetrical intervention or resuscitation of the newborn will be necessary.

Nursing Mothers: Penicillins have been shown to be excreted in human milk. Amoxicillin use by nursing mothers may lead to sensitization of infants. Caution should be exercised when amoxicillin is administered to a nursing woman.

Pediatric Use: Because of incompletely developed renal function in neonates and young infants, the elimination of amoxicillin may be delayed. Dosing of amoxicillin should be
modified in pediatric patients 12 weeks or younger (≤3 months). (See DOSAGE AND ADMINISTRATION—Neonates and infants.)

ADVERSE REACTIONS
As with other penicillins, it may be expected that untoward reactions will be essentially limited to sensitivity phenomena. They are more likely to occur in individuals who have previously demonstrated hypersensitivity to penicillins and in those with a history of allergy, asthma, hay fever, or urticaria. The following adverse reactions have been reported as associated with the use of penicillins:

Gastrointestinal: nausea, vomiting, diarrhea, and hemorrhagic/pseudomembranous colitis. Onset of pseudomembranous colitis symptoms may occur during or after antibiotic treatment. (See WARNINGS.)

Hypersensitivity Reactions: Serum sickness like reactions, erythematous maculopapular rashes, erythema multiforme, Stevens-Johnson Syndrome, exfoliative dermatitis, toxic epidermal necrolysis, hypersensitivity vasculitis and urticaria have been reported. NOTE: These hypersensitivity reactions may be controlled with antihistamines and, if necessary, systemic corticosteroids. Whenever such reactions occur, amoxicillin should be discontinued unless, in the opinion of the physician, the condition being treated is life-threatening and amenable only to amoxicillin therapy.

Liver: A moderate rise in AST (SGOT) and/or ALT (SGPT) has been noted, but the significance of this finding is unknown. Hepatic dysfunction including cholestatic jaundice, hepatic cholestasis and acute cytolytic hepatitis have been reported.

Hemic and Lymphatic Systems: Anemia, including hemolytic anemia, thrombocytopenia, thrombocytopenic purpura, eosinophilia, leukopenia, and agranulocytosis have been reported during therapy with penicillins. These reactions are usually reversible on discontinuation of therapy and are believed to be hypersensitivity phenomena.

Central Nervous System: Reversible hyperactivity, agitation, anxiety, insomnia, confusion, convulsions, behavioral changes, and/or dizziness have been reported rarely.

Combination therapy with clarithromycin and lansoprazole
In clinical trials using combination therapy with amoxicillin plus clarithromycin and lansoprazole, and amoxicillin plus lansoprazole, no adverse reactions peculiar to these drug combinations were observed. Adverse reactions that have occurred have been limited to those that had been previously reported with amoxicillin, clarithromycin, or lansoprazole.

Triple therapy: Amoxicillin/clarithromycin/lansoprazole
The most frequently reported adverse events for patients who received triple therapy were diarrhea (7%), headache (6%), and taste perversion (5%). No treatment-emergent adverse events were observed at significantly higher rates with triple therapy than with any dual therapy regimen.
Dual therapy: Amoxicillin/lansoprazole

The most frequently reported adverse events for patients who received amoxicillin t.i.d. plus lansoprazole t.i.d. dual therapy were diarrhea (8%) and headache (7%). No treatment-emergent adverse events were observed at significantly higher rates with amoxicillin t.i.d. plus lansoprazole t.i.d. dual therapy than with lansoprazole alone.

For more information on adverse reactions with clarithromycin or lansoprazole, refer to their package inserts, ADVERSE REACTIONS.

OVERDOSAGE

In case of overdosage, discontinue medication, treat symptomatically, and institute supportive measures as required. If the overdosage is very recent and there is no contraindication, an attempt at emesis or other means of removal of drug from the stomach may be performed. A prospective study of 51 pediatric patients at a poison-control center suggested that overdosages of less than 250 mg/kg of amoxicillin are not associated with significant clinical symptoms and do not require gastric emptying. Interstitial nephritis resulting in oliguric renal failure has been reported in a small number of patients after overdosage with amoxicillin. Renal impairment appears to be reversible with cessation of drug administration. High blood levels may occur more readily in patients with impaired renal function because of decreased renal clearance of amoxicillin. Amoxicillin may be removed from circulation by hemodialysis.

DOSAGE AND ADMINISTRATION

Directions for Amoxicillin Tablets for Oral Suspension: Dissolve each tablet in 1 tablespoonful to 2 ounces of water in a glass, cup or other suitable container. Stir or swirl until a uniform dispersion forms, and drink the entire dispersion. Do not chew or swallow the entire tablets. If tablets are placed in the mouth they will not rapidly dissolve on the tongue.

The tablet is not recommended to be mixed with any liquid other than water, as studies have only been conducted using water.

All recommended dosages for amoxicillin are included in this section for informational purposes only. The 300 mg tablet for oral suspension is appropriate only for a 300 mg dose and the 600 mg tablet for oral suspension is appropriate only for a 600 mg dose.

Neonates and infants aged ≤12 weeks (≤3 months)

Due to incompletely developed renal function affecting elimination of amoxicillin in this age group, the recommended upper dose of amoxicillin is 30 mg/kg/day divided q12h.
<table>
<thead>
<tr>
<th>Infection</th>
<th>Severity</th>
<th>Usual Adult Dose</th>
<th>Usual Dose for Children >3 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ear/nose/throat</td>
<td>Mild/Moderate</td>
<td>500 mg every 12 hours or 250 mg every 8 hours</td>
<td>25 mg/kg/day in divided doses every 12 hours or 20 mg/kg/day in divided doses every 8 hours</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td>875 mg every 12 hours or 500 mg every 8 hours</td>
<td>45 mg/kg/day in divided doses every 12 hours or 40 mg/kg/day in divided doses every 8 hours</td>
</tr>
<tr>
<td>Lower respiratory tract</td>
<td>Mild/Moderate or Severe</td>
<td>875 mg every 12 hours or 500 mg every 8 hours</td>
<td>45 mg/kg/day in divided doses every 12 hours or 40 mg/kg/day in divided doses every 8 hours</td>
</tr>
<tr>
<td>Skin/skin structure</td>
<td>Mild/Moderate</td>
<td>500 mg every 12 hours or 250 mg every 8 hours</td>
<td>25 mg/kg/day in divided doses every 12 hours or 20 mg/kg/day in divided doses every 8 hours</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td>875 mg every 12 hours or 500 mg every 8 hours</td>
<td>45 mg/kg/day in divided doses every 12 hours or 40 mg/kg/day in divided doses every 8 hours</td>
</tr>
<tr>
<td>Genitourinary tract</td>
<td>Mild/Moderate</td>
<td>500 mg every 12 hours or 250 mg every 8 hours</td>
<td>25 mg/kg/day in divided doses every 12 hours or 20 mg/kg/day in divided doses every 8 hours</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td>875 mg every 12 hours or 500 mg every 8 hours</td>
<td>45 mg/kg/day in divided doses every 12 hours or 40 mg/kg/day in divided doses every 8 hours</td>
</tr>
<tr>
<td>Infection</td>
<td>Severity‡</td>
<td>Usual Adult Dose</td>
<td>Usual Dose for Children >3 months§ ¶</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------</td>
<td>---</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Gonorrhea</td>
<td>Acute, prepubertal females</td>
<td>3 grams as single oral dose</td>
<td>Prepubertal children: 50 mg/kg amoxicillin, combined with 25 mg/kg probenecid as a single dose.</td>
</tr>
<tr>
<td></td>
<td>Acute, uncomplicated ano-genital and urethral infections in males and females</td>
<td></td>
<td>NOTE: SINCE PROBENECID IS CONTRAINDICATED IN CHILDREN UNDER 2 YEARS, DO NOT USE THIS REGIMEN IN THESE CASES.</td>
</tr>
</tbody>
</table>

‡ Dosing for infections caused by less susceptible organisms should follow the recommendations for severe infections.

§ The children’s dosage is intended for individuals whose weight is less than 40 kg. Children weighing 40 kg or more should be dosed according to the adult recommendations.

All patients with gonorrhea should be evaluated for syphilis. (See PRECAUTIONS - Laboratory Tests.)

Larger doses may be required for stubborn or severe infections.

General: It should be recognized that in the treatment of chronic urinary tract infections, frequent bacteriological and clinical appraisals are necessary. Smaller doses than those recommended above should not be used. Even higher doses may be needed at times. In stubborn infections, therapy may be required for several weeks. It may be necessary to continue clinical and/or bacteriological follow-up for several months after cessation of therapy. Except for gonorrhea, treatment should be continued for a minimum of 48 to 72 hours beyond the time that the patient becomes asymptomatic or evidence of bacterial eradication has been obtained. It is recommended that there be at least 10 days’ treatment for any infection caused by Streptococcus pyogenes to prevent the occurrence of acute rheumatic fever.

H. pylori eradication to reduce the risk of duodenal ulcer recurrence

Triple therapy: Amoxicillin/clarithromycin/lansoprazole

The recommended adult oral dose is 1 gram amoxicillin, 500 mg clarithromycin, and 30 mg lansoprazole, all given twice daily (q12h) for 14 days. (See INDICATIONS AND USAGE.)

Dual therapy: Amoxicillin/lansoprazole

The recommended adult oral dose is 1 gram amoxicillin and 30 mg lansoprazole, each given three times daily (q8h) for 14 days. (See INDICATIONS AND USAGE.)
Please refer to clarithromycin and lansoprazole full prescribing information for CONTRAINDICATIONS and WARNINGS, and for information regarding dosing in elderly and renally impaired patients.

Dosing recommendations for adults with impaired renal function:
Patients with impaired renal function do not generally require a reduction in dose unless the impairment is severe. Severely impaired patients with a glomerular filtration rate of <30 mL/minute should not receive the 875-mg tablet. Patients with a glomerular filtration rate of 10 to 30 mL/minute should receive 500 mg or 250 mg every 12 hours, depending on the severity of the infection. Patients with a less than 10 mL/minute glomerular filtration rate should receive 500 mg or 250 mg every 24 hours, depending on severity of the infection. Hemodialysis patients should receive 500 mg or 250 mg every 24 hours, depending on severity of the infection. They should receive an additional dose both during and at the end of dialysis.

There are currently no dosing recommendations for pediatric patients with impaired renal function.

HOW SUPPLIED
Each amoxicillin tablet for suspension contains 300 mg or 600 mg amoxicillin as the trihydrate

Description of tablets to be determined.

Package Size to be determined

Dispense in a tight container

Store at controlled room temperature 15° to 30° C (59° to 86° F) (see USP).

CLINICAL STUDIES
H. pylori eradication to reduce the risk of duodenal ulcer recurrence
Randomized, double-blind clinical studies performed in the U.S. in patients with H. pylori and duodenal ulcer disease (defined as an active ulcer or history of an ulcer within one year) evaluated the efficacy of lansoprazole in combination with amoxicillin capsules and clarithromycin tablets as triple 14-day therapy, or in combination with amoxicillin capsules as dual 14-day therapy, for the eradication of H. pylori. Based on the results of these studies, the safety and efficacy of two different eradication regimens were established:

- **Triple therapy:** amoxicillin 1 gram b.i.d./clarithromycin 500 mg b.i.d./lansoprazole 30 mg b.i.d.
- **Dual therapy:** amoxicillin 1 gram t.i.d./lansoprazole 30 mg t.i.d.

All treatments were for 14 days. H. pylori eradication was defined as two negative tests (culture and histology) at 4 to 6 weeks following the end of treatment.
Triple therapy was shown to be more effective than all possible dual therapy combinations. Dual therapy was shown to be more effective than both monotherapies. Eradication of H. pylori has been shown to reduce the risk of duodenal ulcer recurrence.

H. pylori Eradication Rates – Triple Therapy
(amoxicillin/clarithromycin/lansoprazole)
Percent of Patients Cured
[95% Confidence Interval]
(Number of Patients)

<table>
<thead>
<tr>
<th>Study</th>
<th>Triple Therapy</th>
<th>Intent-to-Treat Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Evaluable Analysis†</td>
<td></td>
</tr>
<tr>
<td>Study 1</td>
<td>92§ (n=48)</td>
<td>86§ (n=55)</td>
</tr>
<tr>
<td></td>
<td>[80.0–97.7]</td>
<td>[73.3–93.5]</td>
</tr>
<tr>
<td>Study 2</td>
<td>86‖ (n=66)</td>
<td>83‖ (n=70)</td>
</tr>
<tr>
<td></td>
<td>[75.7–93.6]</td>
<td>[72.0–90.8]</td>
</tr>
</tbody>
</table>

† This analysis was based on evaluable patients with confirmed duodenal ulcer (active or within one year) and H. pylori infection at baseline defined as at least two of three positive endoscopic tests from CLOtest®, (Delta West Ltd., Bentley, Australia), histology and/or culture. Patients were included in the analysis if they completed the study. Additionally, if patients dropped out of the study due to an adverse event related to the study drug, they were included in the analysis as failures of therapy.

‡ Patients were included in the analysis if they had documented H. pylori infection at baseline as defined above and had a confirmed duodenal ulcer (active or within one year). All dropouts were included as failures of therapy.

§ (p<0.05) versus lansoprazole/amoxicillin and lansoprazole/clarithromycin dual therapy.

‖ (p<0.05) versus clarithromycin/amoxicillin dual therapy.

H. pylori Eradication Rates – Dual Therapy
(amoxicillin/lansoprazole)
Percent of Patients Cured
[95% Confidence Interval]
(Number of Patients)

<table>
<thead>
<tr>
<th>Study</th>
<th>Dual Therapy</th>
<th>Intent-to-Treat Analysis††</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Evaluable Analysis‡‡</td>
<td></td>
</tr>
<tr>
<td>Study 1</td>
<td>77‖ (n=51)</td>
<td>70‖ (n=60)</td>
</tr>
<tr>
<td></td>
<td>[62.5–87.2]</td>
<td>[56.8–81.2]</td>
</tr>
<tr>
<td>Study 2</td>
<td>66§§ (n=58)</td>
<td>61§§ (n=67)</td>
</tr>
<tr>
<td></td>
<td>[51.9–77.5]</td>
<td>[48.5–72.9]</td>
</tr>
</tbody>
</table>

‡‡ This analysis was based on evaluable patients with confirmed duodenal ulcer (active or within one year) and H. pylori infection at baseline defined as at least two of three
positive endoscopic tests from CLOtest®, histology and/or culture. Patients were included in the analysis if they completed the study. Additionally, if patients dropped out of the study due to an adverse event related to the study drug, they were included in the analysis as failures of therapy.

†† Patients were included in the analysis if they had documented H. pylori infection at baseline as defined above and had a confirmed duodenal ulcer (active or within one year). All dropouts were included as failures of therapy.

‡‡ (p<0.05) versus lansoprazole alone.

§§ (p<0.05) versus lansoprazole alone or amoxicillin alone.

REFERENCES

