Archived Content

The content on this page is provided for reference purposes only. This content has not been altered or updated since it was archived.


BBB - Scombrotoxin

Bad Bug Book:
Foodborne Pathogenic Microorganisms and Natural Toxins Handbook

A new version of the Bad Bug Book was released in 2012, below is a previous version.

1. Name of the Organism:


2. Nature of Acute Disease:

Scombroid Poisoning (also called Histamine Poisoning)

Scombroid poisoning is caused by the ingestion of foods that contain high levels of histamine and possibly other vasoactive amines and compounds. Histamine and other amines are formed by the growth of certain bacteria and the subsequent action of their decarboxylase enzymes on histidine and other amino acids in food, either during the production of a product such as Swiss cheese or by spoilage of foods such as fishery products, particularly tuna or mahi mahi. However, any food that contains the appropriate amino acids and is subjected to certain bacterial contamination and growth may lead to scombroid poisoning when ingested.

3. Nature of Disease:

Initial symptoms may include a tingling or burning sensation in the mouth, a rash on the upper body and a drop in blood pressure. Frequently, headaches and itching of the skin are encountered. The symptoms may progress to nausea, vomiting, and diarrhea and may require hospitalization, particularly in the case of elderly or impaired patients.

4. Diagnosis of Human Illness:

Diagnosis of the illness is usually based on the patient's symptoms, time of onset, and the effect of treatment with antihistamine medication. The suspected food must be analyzed within a few hours for elevated levels of histamine to confirm a diagnosis.

5. Associated Foods:

Fishery products that have been implicated in scombroid poisoning include the tunas (e.g., skipjack and yellowfin), mahi mahi, bluefish, sardines, mackerel, amberjack, and abalone. Many other products also have caused the toxic effects. The primary cheese involved in intoxications has been Swiss cheese. The toxin forms in a food when certain bacteria are present and time and temperature permit their growth. Distribution of the toxin within an individual fish fillet or between cans in a case lot can be uneven, with some sections of a product causing illnesses and others not. Neither cooking, canning, or freezing reduces the toxic effect. Common sensory examination by the consumer cannot ensure the absence or presence of the toxin. Chemical testing is the only reliable test for evaluation of a product.

6. Relative Frequency of Disease:

Scombroid poisoning remains one of the most common forms of fish poisoning in the United States. Even so, incidents of poisoning often go unreported because of the lack of required reporting, a lack of information by some medical personnel, and confusion with the symptoms of other illnesses. Difficulties with underreporting are a worldwide problem. In the United States from 1968 to 1980, 103 incidents of intoxication involving 827 people were reported. For the same period in Japan, where the quality of fish is a national priority, 42 incidents involving 4,122 people were recorded. Since 1978, 2 actions by FDA have reduced the frequency of intoxications caused by specific products. A defect action level for histamine in canned tuna resulted in increased industry quality control. Secondly, blocklisting of mahi mahi reduced the level of fish imported to the United States.

7. Course of Disease and Complications:

The onset of intoxication symptoms is rapid, ranging from immediate to 30 minutes. The duration of the illness is usually 3 hours, but may last several days.

8. Target Populations:

All humans are susceptible to scombroid poisoning; however, the symptoms can be severe for the elderly and for those taking medications such as isoniazid. Because of the worldwide network for harvesting, processing, and distributing fishery products, the impact of the problem is not limited to specific geographical areas of the United States or consumption pattern. These foods are sold for use in homes, schools, hospitals, and restaurants as fresh, frozen, or processed products.

9. Food Analysis:

An official method was developed at FDA to determine histamine, using a simple alcoholic extraction and quantitation by fluorescence spectroscopy. There are other untested procedures in the literature.

10. Selected Outbreaks:

CDC/MMWR: Scombrotoxin
Provides a list of Morbidity and Mortality Weekly Reports at CDC relating to this organism or toxin. The date shown is the date the item was posted on the Web, not the date of the MMWR. The summary statement shown are the initial words of the overall document. The specific article of interest may be just one article or item within the overall report.
NIH/PubMed: Scombrotoxin
Provides a list of research abstracts contained in the National Library of Medicine's MEDLINE database for this organism or toxin.
Agricola: Scombrotoxin
Provides a list of research abstracts contained in the National Agricultural Library database for this organism or toxin.

For more information on recent outbreaks see the Morbidity and Mortality Weekly Reports from CDC.

11. Education and Background Resources:

Literature references can be found at the links below.

  • Loci index for genome

    Available from the GenBank Taxonomy database, which contains the names of all organisms that are represented in the genetic databases with at least one nucleotide or protein sequence.

12. Molecular Structural Data:

Scombrotoxin: Generation of Histamine from Histidine

Page Last Updated: 04/25/2017
Note: If you need help accessing information in different file formats, see Instructions for Downloading Viewers and Players.
Language Assistance Available: Español | 繁體中文 | Tiếng Việt | 한국어 | Tagalog | Русский | العربية | Kreyòl Ayisyen | Français | Polski | Português | Italiano | Deutsch | 日本語 | فارسی | English